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REAL EMBEDDINGS AND THE ATIYAH-PATODI-SINGER INDEX
THEOREM FOR DIRAC OPERATORS∗

XIANZHE DAI† AND WEIPING ZHANG‡

Abstract. We present the details of our embedding proof, which was announced in [DZ1], of
the Atiyah-Patodi-Singer index theorem for Dirac operators on manifolds with boundary [APS1].

Introduction. The index theorem of Atiyah, Patodi and Singer [APS1, (4.3)]
for Dirac operators on manifolds with boundary has played important roles in various
problems in geometry, topology as well as mathematical physics. Not surprisingly
then, there are by now quite a number of proofs of this index theorem other than
Atiyah, Patodi and Singer’s original proof [APS1]. Among these proofs we mention
those of Cheeger [C1, 2] (see also Chou [Ch]), Bismut-Cheeger [BC1] and Melrose
[M]. One common point underlying all these proofs (including the original one) is that
they can all be viewed, in one way or another, as certain extensions to manifolds with
boundary of the heat kernel proof of the local index theorem for Dirac operators on
closed manifolds (cf. [BeGV]). That is, one starts with a Mckean-Singer type formula
and then studies the small time asymptotics of the corresponding heat kernels. In
particular, one makes use of the explicit formulas for the heat kernel of the Laplace
operators on the cylinder ([APS1], [M]) and/or cone ([BC1], [C1, 2], [Ch]) (being
attached the boundary) for the analysis near the boundary. The η-invariant on the
boundary, which was first defined in [APS1], appears naturally during the process.

Now recall that Atiyah and Singer [AS] also have a K-theoretic proof of their index
theorem for elliptic operators on closed manifolds. In such a proof, one transforms
the problem, through direct image constructions in K-theory, to a sphere and then
applies the Bott periodicity theorem on the sphere to establish the result.1 It is thus
natural to ask whether the strategy of Atiyah-Singer’s K-theoretic ideas can be used
to prove the Atiyah-Patodi-Singer index theorem for manifolds with boundary. The
purpose of this paper is to present such a proof, of which an announcement of basic
ideas has already appeared in [DZ1].

Briefly speaking, we embed the manifold with boundary under consideration into
a ball, instead of a sphere, so that it maps the boundary of the original manifold to
the boundary sphere of the ball, and reduce the problem to the ball. Now since any
vector bundle on the ball is topologically trivial, one obtains the result immediately.
This works even when the original manifold has no boundary, giving a proof of the
Atiyah-Singer index theorem for Dirac operators. The Bott periodicity theorem is
thus not needed.

Observe that in [AS], Atiyah and Singer made heavy use of the techniques of
pseudodifferential operators, which is not suitable for treating directly the global
elliptic boundary problems. This is the first serious difficulty in extending directly
the arguments in [AS] to deal with the Atiyah-Patodi-Singer boundary problems.
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On the other hand, Bismut and Lebeau developed in [BL] a general and direct
localization procedure which applies to a wide range of localization problems involving
Dirac type operators. For example, it has lead to a direct analytic treatment of the
index theorem for Dirac operators on closed manifolds along the lines of [AS] (cf.
[Z, Remark 2.6]), as well as a localization formula for η-invariants of Dirac operators
[BZ] which may be viewed as an odd dimensional analogue of the main result in [BL].
It is these techniques and results that will be used in the present paper, giving an
embedding proof of the Atiyah-Patodi-Singer index theorem for Dirac operators on
manifolds with boundary [APS1].

In the proof described in [DZ1], we also used in an essential way Cheeger’s cone
method [C1, 2]. The reason being, in order to apply Bismut-Lebeau’s method [BL],
we need to transfer the Atiyah-Patodi-Singer boundary problem to an elliptic problem
on certain manifolds with cone-like singularity. Now, in the present paper, we will
show that how one can avoid the analysis on the cone at all. This is done by consider-
ing the Atiyah-Patodi-Singer type boundary value problem for certain non-differetial
operators arising naturally from the analysis in [BL]. In this way, one no longer en-
counters the heat kernel analysis on cylinders and/or cones which are essential for the
other proofs of the Atiyah-Patodi-Singer index theorem. We regard this as a major
technical simplification with respect to [DZ1].

In a separate paper [DZ3], we will further extend the main result of this paper
to the case of families. In particular, we will give a new proof of the family index
theorem of Bismut-Cheeger [BC1, 2] and Melrose-Piazza [MP] along the lines of this
paper.

This paper is organized as follows. In Section 1, we prove an important variation
formula for the indices of the Atiyah-Patodi-Singer boundary value problems for Dirac
operators on manifolds with boundary. In Section 2, we state a localization formula
of Riemann-Roch type for the indices of the Atiyah-Patodi-Singer boundary value
problems for Dirac operators on manifolds with boundary. In Section 3, we prove the
Riemann-Roch property stated in Section 2. In Section 4, by combining the results in
Sections 1, 2 with those of Bismut-Zhang [BZ], we complete our proof of the Atiyah-
Patodi-Singer index theorem for Dirac operators on manifolds with boundary. There
is also an appendix in which we prove a harmonic oscillator property for certain Dirac
operators on flat spaces, which plays an essential role in the main text.

1. Dirac type operators on manifolds with boundary: index and its
variations. In this section, we recall the definition of the Atiyah-Patodi-Singer
boundary value problems [APS1] for Dirac type operators on Spin manifolds with
boundary. We also prove an important variation formula for the indices of these
boundary value problems.

Let X be a compact oriented even dimensional spin manifold with boundary ∂X.
We assume that X has been equipped with a fixed spin structure. Then ∂X carries
the canonically induced orientation and spin structure.

Let gTX be a metric on TX. Let gT∂X be its restriction on T∂X. We assume
that gTX is of product structure near the boundary ∂X. That is, there is an open
neighborhood Uα = [0, α) × ∂X of ∂X in X with α > 0 such that one has the
orthogonal splitting on Uα,

(1.1) gTX
∣∣
Uα

= dr2 ⊕ π∗αgT∂X ,

where πα : [0, α)× ∂X → ∂X is the obvious projection onto the second factor.
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Let ξ be a Hermitian vector bundle over X with Hermitian metric gξ. Let ∇ξ be
a Hermitian connection on ξ with respect to gξ. We make the assumption that over
the open neighborhood Uα of ∂X, one has

(1.2) gξ
∣∣
Uα

= π∗α
(
gξ|∂X

)
, ∇ξ

∣∣
Uα

= π∗α
(∇ξ|∂X

)
.

By taking α > 0 sufficiently small, one can always find gTX , gξ and ∇ξ verifying
(1.1) and (1.2).

Let S(TX) = S+(TX) ⊕ S−(TX) be the Z2-graded Hermitian vector bundle of
spinors associated to (TX, gTX). Let ∇S(TX) be the Hermitian connection on S(TX)
canonically induced from the Levi-Civita connection ∇TX of gTX . Then ∇S(TX)

preserves the Z2-splitting S(TX) = S+(TX)⊕ S−(TX). We denote by ∇S±(TX) the
restriction of∇S(TX) on S±(TX). Let∇S(TX)⊗ξ (resp. ∇S±(TX)⊗ξ) be the Hermitian
connection on S(TX) ⊗ ξ (resp. S±(TX) ⊗ ξ) obtained from the tensor product of
∇S(TX) (resp. ∇S±(TX)) and ∇ξ.

For any e ∈ TX, let c(e) be the Clifford action of e on S(TX). Then c(e) extends
to an action on S(TX)⊗ ξ by acting as identity on ξ. We still denote this extended
action by c(e).

Let e1, · · · , edim X be an oriented (local) orthonormal base of TX. We can then de-
fine the (total) twisted Dirac operator with coefficient bundle ξ as follows (cf. [BeGV]
and [LM]),

(1.3) Dξ =
dim X∑

i=1

c(ei)∇S(TX)⊗ξ
ei

: Γ(S(TX)⊗ ξ) → Γ(S(TX)⊗ ξ).

Let Dξ
± be the restriction of Dξ on Γ(S±(TX) ⊗ ξ). Then Dξ

− is the formal adjoint
of Dξ

+.

Definition 1.1. By a Dirac type operator on Γ(S(TX) ⊗ ξ), we mean a first
order differential operator D : Γ(S(TX) ⊗ ξ) → Γ(S(TX) ⊗ ξ) such that D − Dξ is
an odd self-adjoint element of zeroth order, and that for α > 0 sufficiently small, the
following identity holds on Uα,

(1.4) D = c

(
∂

∂r

)(
∂

∂r
+ B

)
,

with B independent of r and its restriction on Γ(S(TX)⊗ ξ)|∂X formally self-adjoint.
We will also call the restriction D+ (resp. D−) of D to Γ(S+(TX) ⊗ ξ) (resp.
Γ(S−(TX)⊗ ξ)) a Dirac type operator.

When there is no confusion, we will also use B to denote its restriction on
(S(TX)⊗ξ)|∂X . Clearly, B preserves the Z2-grading of (S(TX)⊗ξ)|∂X = (S+(TX)⊗
ξ)|∂X⊕(S−(TX)⊗ξ)|∂X . We denote by B± the restriction of B on (S±(TX)⊗ξ)|∂X .

Now consider the formally self-adjoint first order differential operator B+, which
is clearly elliptic, acting on sections of (S+(TX)⊗ ξ)|∂X . Then the L2-completion of
(S+(TX)⊗ ξ)|∂X admits an orthogonal decomposition

(1.5) L2 ((S+(TX)⊗ ξ)|∂X) =
⊕

λ∈Spec(B+)

Eλ,

where Eλ is the eigenspace of λ.
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For any a ∈ R, let L2
≥a((S+(TX)⊗ξ)|∂X) denote the direct sum of the eigenspaces

Eλ associated to the eigenvalues λ ≥ a. Let P+,≥a denote the orthogonal projection
from L2((S+(TX) ⊗ ξ)|∂X) to L2

≥a((S+(TX) ⊗ ξ)|∂X). We call the particular pro-
jection P+,≥0 the Atiyah-Patodi-Singer projection associated to B+, to emphasize its
role in [APS1].

Following [APS1], one can then impose the boundary value problem

(1.6) (D+, P+,≥a) : {u : u ∈ Γ(S+(TX)⊗ ξ), P+,≥au|∂X = 0} → Γ(S−(TX)⊗ ξ),

which is Fredholm by [APS1]. In particular, we call the boundary problem (D+, P+,≥0)
the Atiyah-Patodi-Singer boundary problem associated to D+. We denote by
ind(D+, P+,≥a) the index of the associated Fredholm operator.

Now let D+(s), 0 ≤ s ≤ 1, be a smooth family of Dirac type operators with the
induced boundary operators B+(s). We can now state the main result of this section,
which has been announced in [DZ1, Theorem 1.1], as follows.

Theorem 1.2. The following identity holds,

(1.7) ind (D+(1), P+,≥0(1))− ind (D+(0), P+,≥0(0)) = −sf{B+(s), 0 ≤ s ≤ 1},
where sf is the notation for the spectral flow of Atiyah-Patodi-Singer [APS2].

Proof. Take any 0 ≤ s0 ≤ 1. Let 2a0 be the minimal absolute value of the nonzero
eigenvalues of B+(s0). Then there exsists ε0 > 0 such that for any s ∈ [s0 − ε0, s0 +
ε0]∩ [0, 1], a0 is not an eigenvalue of B+(s). Then for any s ∈ [s0− ε0, s0 + ε0]∩ [0, 1],
(D+(s), P+,≥a0(s)) defines a continuous family of Fredholm operators. Therefore,

(1.8) ind(D+(s), P+,≥a0(s)) = ind(D+(s0), P+,≥a0(s0)).

On the other hand, by the classical Agranovič-Dynin type formula (cf. [BoW,
Chap. 21]) and the definition of spectral flow [APS2], one verifies easily that

ind(D+(s), P+,≥a0(s))− ind(D+(s), P+,≥0(s)) = −sf{B+(s) + ua0, 0 ≤ u ≤ 1},

ind(D+(s0), P+,≥a0(s0))− ind(D+(s0), P+,≥0(s0))

(1.9) = −sf{B+(s0) + ua0, 0 ≤ u ≤ 1}.
Formula (1.7) follows easily from (1.8), (1.9) and the additivity (using twice) of

the spectral flow [APS2].

Remark 1.3. For a similar variation formula for η-invariants on odd dimensional
manifolds with boundary, see Dai-Freed [DF].

Remark 1.4. For an extension of Theorem 1.2 to the case of families, see [DZ2].

2. A Riemann-Roch theorem under embedding for Dirac operators on
manifolds with boundary. In this section, we state a Riemann-Roch type formula
for indices of Dirac type operators on manifolds with boundary. This formula will be
proved in the next section and will play a key role in our proof of the Atiyah-Patodi-
Singer index theorem in Section 4.

This section is organized as follows. In a), we describe the basic geometric data.
In b), we state the main result of this section, whose proof will be given in the next
section.
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a). The geometric construction of direct images under embedding be-
tween manifolds with bounday. Let Y be another even dimensional oriented com-
pact spin manifold with boundary ∂Y . Moreover, there is an embedding i : Y ↪→ X
such that ∂Y ⊂ ∂X, and that Y intersects transversally with ∂X.

Let gT (∂Y ) be the metric on T (∂Y ) induced from gT (∂X). Set

(2.1) U ′
α = Uα ∩ Y.

We can and we will assume that α is small enough so that U ′
α is also a tubular

neighborhood of ∂Y . Then U ′
α carries a metric gTU ′α naturally induced from gTUα .

Let π : N → Y be the normal bundle of Y in X. Then N∂Y = N |∂Y is the normal
bundle to ∂Y in ∂X.

Clearly, dimN = dim X−dimY is even. Furthermore, since TX, TY are oriented
and spin, N is also oriented and spin.

Let gTX be a metric on TX such that its restriction on Uα is gTUα . Let gTY

be the restriction of gTX on Y . For simplicity, we can and we will assume that the
embedding i : (Y, gTY ) ↪→ (X, gTX) is totally geodesic. We identify N with the
orthogonal completement of TY in (TX)|Y . Let gN be the metric on N restricted
from g(TX)|Y . Let PTY (resp. PN ) be the orthogonal projection from (TX)|Y to
TY (resp. N) with respect to g(TX)|Y . Then PTY i∗∇TXPTY , where ∇TX is the
Levi-Civita connection of gTX , is the Levi-Civita connection ∇TY of gTY and one has
the orthogonal splitting

(2.2) i∗∇TX = ∇TY ⊕∇N ,

where ∇N = PN i∗∇TXPN is the induced Euclidean connection on N .
Let S(TX) = S+(TX) ⊕ S−(TX) (resp. S(TY ) = S+(TY ) ⊕ S−(TY ), S(N) =

S+(N) ⊕ S−(N)) be the Z2-graded Hermitian vector bundle of (TX, gTX) (resp.
(TY, gTY ), (N, gN )) spinors. Then one has

(2.3) S (TX) |Y = S (TY ) ⊗̂S (N) .

The connections ∇TX , ∇TY , ∇N lift to unitary connections on ∇S(TX), ∇S(TY ),
∇S(N), ∇S∗(N) on S(TX), S(TY ), S(N), S∗(N) respectively, preserving the corre-
sponding Z2-gradings.

Let πα : Uα = [0, α)× ∂X → ∂X (resp. π′α : Uα = [0, α)× ∂Y → ∂Y ) denote the
projection from Uα (resp. U ′

α) to the boundary of X (resp. Y ).
Let ξ = ξ+ ⊕ ξ− be a Z2-graded complex vector bundle over X such that ξ|Uα =

π∗α(ξ|∂X). Let gξ be a Hermitian metric on ξ such that such that gξ|Uα
= π∗α(gξ|∂X)

and that ξ+ and ξ− are orthogonal to each other with respect to gξ.
Let V ∈ Γ(Endodd(ξ)) be a self-adjoint element such that

(2.4) V |Uα
= π∗α (V |∂X) .

We assume that V is invertible on X \ Y , and that on Y , kerV has locally constant
nonzero dimension, so that kerV is a nonzero smooth Z2-graded vector subbundle of
ξ|Y . Let gker V be the metric on kerV induced by the metric gξ|Y . Let P ker V be the
orthogonal projection from ξ|Y on kerV .

If y ∈ Y , U ∈ TyX, let ∂UV (y) be the derivative of V with repsect to U in any
given smooth trivialization of ξ near y ∈ X. One then verifies that P ker V ∂UV (y)P ker V

does not depend on the trivialization, and only depends on the image Z of U ∈ TyX



780 X. DAI AND W. ZHANG

in Ny. From now on, we will write ∂̇ZV (y) instead of P ker V ∂UV (y)P ker V . Then one
verifies easily that ∂̇ZV (y) is a self-adjoint element of Endodd(kerVy).

If Z ∈ N , let c̃(Z) ∈ End(S∗(N)) be the transpose of c(Z) acting on S(N).
Let τN∗ ∈ End(S∗(N)) be the transpose of τN defining the Z2-grading of S(N) =
S+(N)⊕ S−(N).

Let µ be a complex vector bundle over Y such that µ|U ′α = π′∗α (µ|∂Y ), equipped
with a Hermitian metric gµ such that gµ|U ′α = π′∗α (gµ|∂Y ). We equip S∗(N) ⊗ µ the
tensor product metric gS∗(N)⊗µ. Also, we extend an endomorphism of S∗(N) to that
of S∗(N)⊗ µ by acting as identity on µ. We now make the fundamental assumption
that over the total space of N , we have the identification

(2.5)
(
π∗ kerV, π∗gker V , ∂̇ZV (y)

)
=

(
π∗ (S∗(N)⊗ µ) , π∗

(
gS∗(N)⊗µ

)
, c̃(Z)τN∗

)
.

Let ∇µ be a Hermitian connection on µ which is of product nature near the
boundary. Let ∇S∗(N)⊗µ be the Hermitian connection on S∗(N) ⊗ µ obtained from
the tensor product of ∇S∗(N) and ∇µ.

Let ∇ξ = ∇ξ+ ⊕ ∇ξ− be a unitary connection on ξ = ξ+ ⊕ ξ−, which preserves
the Z2-grading of ξ and is of product nature near the boundary. Let ∇ker V be the
unitary connection on kerV given by

(2.6) ∇ker V = P ker V∇ξ|Y P ker V .

We then make the assumption that under the identification (2.5), we also have the
identification of connections

(2.7) ∇ker V = ∇S∗(N)⊗µ.

One easily verifies that there always exists a connection ∇ξ such that (2.7) holds.

Remark 2.1. By using a well-known construction of Atiyah-Hirzebruch [AH],
one verifies easily that given metrics gµ and gN on µ and N , there exist ξ = ξ+ ⊕ ξ−,
gξ = gξ+ ⊕ gξ− and V taken as before, such that (2.5) holds (Compare with [BZ,
Remark 1.1]). In particular, ξ+−ξ− is a representative of the direct image i!µ ∈ K(X)
of µ ∈ K(Y ) (cf. [LM]).

Remark 2.2. As an easy but important observation, we note that the restriction
of the identifications (2.5), (2.7) on the boundary takes forms of exactly the same na-
ture (Compare with [BZ, Sect. 2b)]). In what follows, whenever such an identification
on the boundary will be considered, we will simply use a subscript and/or superscript
‘∂’ to indicate the restriction, when there will be no confusion from the context.

b). A Riemann-Roch theorem under emdedding for Dirac type opera-
tors on manifolds with boundary. We continue the discussions in a).

Let Dξ = Dξ+ +Dξ− , Dµ be the Dirac operators defined as in (1.3). We consider
a Dirac type operator DX acting on Γ(S(TX)⊗̂ξ) such that EX = DX − Dξ is an
odd endomorphism of S(TX)⊗̂ξ.

From (2.3), (2.5) and (A.1), one finds

(2.8) S(TX)|Y ⊗̂(kerV ) = S(TY )⊗̂S(N)⊗̂S∗(N)⊗ µ = (S(TY )⊗ µ)⊗̂ ∧∗ (N∗),

where ∧∗(N∗) is the exterior algebra bundle of N∗ over Y . Let p be the orthogonal
projection from S(TX)|Y⊗(kerV ) to S(TY )⊗µ which maps as zero on each S(TY )⊗
µ⊗ ∧i(N∗), i ≥ 1.
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Let EY ∈ Endodd(S(TY )⊗ µ) be defined by

(2.9) EY = p(EX)|Y p.

Let DY be the Dirac type operator

(2.10) DY = Dµ + EY .

Let BX (resp. BY ) be the induced boundary operator from DX (resp. DY ) in
the sense of (1.4).

The following assumption is essential for this section.

Assumption 2.3. The operator BY has no zero eigenvalue.

For any T ∈ R, let DT : Γ(S(TX)⊗̂ξ) → Γ(S(TX)⊗̂ξ) be the operator defined
by

(2.11) DT = DX + TV,

where V ∈ End(ξ) extends as an action on S(TX)⊗̂ξ by 1⊗̂V , etc. Then by (1.4), its
induced boundary operator BT is given by

(2.12) BT = BX − Tc

(
∂

∂r

)
V |∂X .

Let DT,+ be the restriction of DT on Γ(S+(TX)⊗ ξ+⊕S−(TX)⊗ ξ−). Let BT,+

the associated boundary operator and PT,+,≥0 the Atiyah-Patodi-Singer projection
associated to BT,+.

We can now state the main result of this section as follows, whose proof will be
given in the next section.

Theorem 2.4. Under the Assumption 2.3, there exists T0 > 0 such that for any
T ≥ T0,

(2.13) ind(DT,+, PT,+,≥0) = ind(DY,+, PY,+,≥0).

3. Proof of Theorem 2.4. The purpose of this section is to prove the Riemann-
Roch property, Theorem 2.4, for the index of boundary value problems. The proof
we described in [DZ1, Sect. 2] relies on Cheeger’s cone method. Here, we will give
a more direct proof without passing to manifolds with cone-like singularity. We thus
avoid the heat kernel analysis on cylinders and/or cones completely.

The methods and techniques developed by Bismut and Lebeau [BL, Sects. 8, 9]
will play an essential role in this section. In fact, what we will do may be thought of
as extensions of the Bismut-Lebeau method to manifolds with boundary.

This section is organized as follows. In a), we construct a natural embedding from
the space of sections over Y into the space of sections over X. In b), we decompose
the total Dirac operator on X to a sum of four operators according to this embedding
and introduce a suitable deformation of the Dirac type operators as well as their
associated boundary operators. In c), we prove the elliptic estimates for the deformed
operators on the boundary. In d), we prove the Fredholm property of the Atiyah-
Patodi-Singer type boundary problem for the deformed operators introduced in b).
In e), we complete the proof of Theorem 2.4.
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Throughout the rest of the paper, we will make the same assumptions and use
the same notation as in Section 2.

a). An embedding mapping sections over Y (resp. ∂Y ) to sections over
X (resp. ∂X). For any γ ≥ 0, let Eγ (resp. Eγ

∂X , Fγ , Fγ
∂Y ) be the set of sections of

S(TX)⊗̂ξ over X (resp. (S(TX)⊗̂ξ)|∂X over ∂X, S(TY )⊗µ over Y , (S(TY )⊗µ)|∂Y

over ∂Y ) which lie in the γth Sobolev space.
Following [BL, Sect. 8g)], for any y ∈ Y , Z ∈ Ny, let t ∈ R 7→ xt = expX

y (tZ) ∈ X

be the geodesic in X with x0 = y, dxt

dt |t=0 = Z. For ε > 0, set Bε = {Z ∈ N : |Z| < ε}.
Since X, Y are compact, there exists ε0 > 0 such that for 0 < ε < ε0, the map
(y, Z) ∈ N 7→ expX

y (Z) ∈ X is a diffeomorphism from Bε onto a tubular neighborhood
Uε of Y in X. From now on, we identify Bε with Uε and use the notation (y, Z) instead
of expX

y (Z). In particular, we identify y ∈ Y with (y, 0) ∈ N .
Let dvN be the volume form of the fibers in N . Then dvY (y)dvN (Z) is a natural

volume form on the total space of N . Let k(y, Z) be the smooth positive function on
Bε0 defined by

(3.1) dvX(y, Z) = k(y, Z)dvY (y)dvN (Z).

The function k has a positive lower bound on Bε0/2. Also, k(y, 0) = 1.
Now for any x = (y, Z) ∈ Uε0 , we identify (S(TX) ⊗ ξ)x with (S(TX) ⊗ ξ)y by

parallel transport with respect to ∇S(TX)⊗ξ along the geodesic t 7→ (y, tZ). Clearly,
this identification preserves the Z2-grading of S(TX)⊗̂ξ.

Take ε ∈ (0, ε0/2]. Let ρ : R → [0, 1] be a smooth function such that ρ(a) = 1 if
a ≤ 1/2, while ρ(a) = 0 if a ≥ 1. For Z ∈ N , set ρε(Z) = ρ(|Z|/ε).

For T > 0, y ∈ Y , set

(3.2) αT (y) =
∫

Ny

exp
(−T |Z|2) ρ2

ε(Z)dvN (Z).

Definition 3.1. For any T > 0, µ ≥ 0, let JT : Fµ → Eµ be defined by

(3.3) JT : s 7→ k−1/2α
−1/2
T ρε(Z) exp

(
−T |Z|2

2

)
s.

One verifies easily that JT is well-defined. In particular, it induces an isometric
embedding JT : F0 → E0.

Furthermore, one verifies that (3.3) also induces for any T > 0, µ ≥ 0, an embed-
ding

(3.4) JT,∂ : Fγ
∂Y → Eγ

∂X ,

and that JT,∂ : F0
∂Y → E0

∂X is an isometric embedding.

b). A decomposition of Dirac type operators under consideration and
the associated deformation. For any T > 0, let E0

T (resp. E0
T,∂X) denote the

image of F0 (resp. F0
∂Y ) under JT (resp. JT,∂). Let E0,⊥

T (resp. E0,⊥
T,∂X) be the

orthogonal completement of E0
T (resp. E0

T,∂X) in E0 (resp. E0
∂X). Let pT , p⊥T (resp.

pT,∂X , p⊥T,∂X) be the orthogonal projections from E0 (resp. E0
∂X) to E0

T , E0,⊥
T (resp.

E0
T,∂X , E0,⊥

T,∂X) respectively.
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Recall that the Dirac operators DT , BT have been defined in (2.11), (2.12). We
now decompose DT , BT to

(3.5) DT =
4∑

i=1

DT,i , BT =
4∑

i=1

BT,i

respectively, where

DT,1 = pT DT pT , DT,2 = pT DT p⊥T ,

DT,3 = p⊥T DT pT , DT,4 = p⊥T DT p⊥T .(3.6)

and

BT,1 = pT,∂XBT pT,∂X , BT,2 = pT,∂XBT p⊥T,∂X ,

BT,3 = p⊥T,∂XBT pT,∂X , BT,4 = p⊥T,∂XBT p⊥T,∂X .(3.7)

We now introduce a deformation of DT (resp. BT ) according to the decomposition
(3.6) (resp. (3.7)).

Definition 3.2. For any T > 0, u ∈ [0, 1], set

(3.8) DT (u) = DT,1 + DT,4 + u (DT,2 + DT,3) ,

(3.8)′ BT (u) = BT,1 + BT,4 + u (BT,2 + BT,3) .

One verifies easily that BT (u) is the boundary operator associated to DT (u) in
the sense of (1.4).

c). Elliptic estimates for BT (u). The purpose of this subsection is to show
that the operators BT (u) verify the elliptic estimates satisfied by the usual elliptic
differential operators, when T is large enough.

In fact, by the geometric assumptions in Section 2a), when restricted to the
boundary (see in particular Remark 2.2), as well as Theorem A.3, one can proceed
exactly as in [BL, Sect. 8, 9] and [BZ] to show that the following estimates for BT,i,
1 ≤ i ≤ 4, hold.

Recall that the construction of JT depends on a parameter ε > 0.

Proposition 3.3. There exist ε > 0 such that (a). as T → +∞,

(3.9) J−1
T,∂BT,1JT,∂ = BY + O

(
1√
T

)
: Γ ((S(TY )⊗ µ)|Y ) −→ Γ ((S(TY )⊗ µ)|Y ) ;

(b). there exist C1 > 0, C2 > 0 and T0 > 0 such that for any T ≥ T0, any s ∈
E1,⊥

T,∂X = E0,⊥
T,∂X ∩ E1

∂X , s′ ∈ E1
T,∂X = E0

T,∂X ∩ E1
∂X , then

‖BT,2s‖0 ≤ C1

(‖s‖1√
T

+ ‖s‖0
)

,

‖BT,3s
′‖0 ≤ C1

(‖s′‖1√
T

+ ‖s′‖0
)

(3.10)

and

(3.11) ‖BT,4s‖0 ≥ C2

(
‖s‖1 +

√
T‖s‖0

)
.
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From here, one obtains the following estimates for BT (u), which says that BT (u)
is a ‘small’ perturbation of BT , when T is very large. Thus, it can be regarded as an
elliptic estimate for BT (u).

Proposition 3.4. There exist C > 0 and T0 > 0 such that for any u ∈ [0, 1],
T ≥ T0 and s ∈ E1

∂X , the following inequality holds,

(3.12) ‖BT s−BT (u)s‖0 ≤ C

(‖BT s‖0√
T

+ ‖s‖0
)

.

Proof. By the definitions of BT and BT (u), one has

(3.13) BT s−BT (u)s = (1− u)(BT,2s + BT,3s).

From (3.10) and (3.13), one gets that for u ∈ [0, 1], T ≥ T0 with T0 > 0 be as in
Proposition 3.3, one has

(3.14) ‖BT s−BT (u)s‖0 ≤
√

2C1

(‖s‖1√
T

+ ‖s‖0
)

.

Now one verifies easily that the super commutator [BX , c( ∂
∂r )V |∂X ] is of zeroth

order. Thus one deduces from (2.12) and the standard estimates for elliptic operators
that there exist positive constants A, C3, C4 such that

(3.15) ‖BT s‖20 ≥ ‖BXs‖20 − TA‖s‖20 ≥ C3‖s‖21 − C4‖s‖20 − TA‖s‖20.

It follows then that there exist constants C5 > 0, C6 > 0 such that

(3.16) ‖BT s‖0 ≥ C5‖s‖1 − C6

√
T‖s‖0.

From (3.14) and (3.16), one gets (3.12).

Since for any T > 0, BT is a self-adjoint elliptic differential operator, Propo-
sition 3.4 and the standard elliptic method enable one to deduce that when T ≥
max{T0, 4C2}, each BT (u), for u ∈ [0, 1], is self-adjoint and has discrete eigenval-
ues with finite multiplicity. Let PT (u) denote the Atiyah-Patodi-Singer projection
associated to BT (u). In the next subsection, we will show that the boundary valued
problems (DT (u), PT (u)), u ∈ [0, 1], are elliptic when T is large enough.

d). The Fredholm property of the boundary problems (DT (u), PT (u)).
We continue the discussion in the previous subsection. In particular, we assume that
T ≥ max{T0, 4C2} so that each BT (u), u ∈ [0, 1], is formally self-adjoint with discrete
eigenvalues of finite multiplicity.

Set, for any T ≥ max{T0, 4C2} and u ∈ [0, 1],

(3.17) E1
T (u) =

{
s ∈ E1 : PT (u) (s|∂X) = 0

}
.

Let

(3.18) DT,APS(u) : E1
T (u) −→ E0

be the uniquely determined extension of DT (u).
The main result of this subsection can be stated as follows.
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Proposition 3.5. There exists T1 > 0 such that for any u ∈ [0, 1] and T ≥ T1,
DT,APS(u) is a Fredholm operator.

Proof. By standard elliptic methods (cf. [BoW, Chap. 20]), in order to get
Proposition 3.5, it suffices to prove the following result.

Proposition 3.6. There exist T1 > 0, C7 > 0, C8 > 0 such that for any
u ∈ [0, 1], T ≥ T1 and s ∈ E1

T (u), one has

(3.19) ‖DT (u)s‖0 ≥ C7‖s‖1 − C8

√
T‖s‖0.

The rest of this subsection is devoted to a proof of Proposition 3.6.

We decompose X into two parts, the interior and the boundary region:

(3.20) X =
(
X \ Uα/3

) ∪ U2α/3.

Our proof of Proposition 3.6 consists of three steps, corresponding to the interior,
the boundary region and the transition region.

Step 1. The case where s is supported in X \ Uα/3:
Since α/3 > 0, using the geometric assumptions in Section 2a), formulas (2.9),

(2.10), Theorem A.3 and proceeding as in [BL, Sects. 8, 9] one obtains the following
estimates.

Lemma 3.7. There exists ε > 0 such that (a). as T → +∞,

(3.21) J−1
T DT,1JT = DY + O

(
1√
T

)
: Γ (S(TY )⊗ µ) −→ Γ (S(TY )⊗ µ) ;

(b). there exist C9 > 0, C10 > 0 and T2 > 0 such that for any T ≥ T2, any
s ∈ E1,⊥

T = E0,⊥
T ∩ E1, s′ ∈ E1

T = E0
T ∩ E1 with Supp(|s|+ |s′|) ⊂ X \ Uα/3,

‖DT,2s‖0 ≤ C9

(‖s‖1√
T

+ ‖s‖0
)

,

‖DT,3s
′‖0 ≤ C9

(‖s′‖1√
T

+ ‖s′‖0
)

(3.22)

and

(3.23) ‖DT,4s‖0 ≥ C10

(
‖s‖1 +

√
T‖s‖0

)
.

Now, from (3.21), together with the standard elliptic estimates for DY on Y \U ′
α/3

as well as an obvious analogue of [BL, (9.7)], we deduce that there exist constants
C11 > 0, C12 > 0 such that when T is large enough,

(3.24) ‖DT,1pT s‖0 ≥ C11‖pT s‖1 − C12

(
1 +

√
T

)
‖pT s‖0.

Thus, using (3.8) and (3.22)-(3.24), one deduces that for T large enough and
u ∈ [0, 1],

‖DT (u)s‖0 ≥
(

C11 − C9√
T

)
‖pT s‖1 −

(
C9 + C12 + C12

√
T

)
‖pT s‖0(3.25)

+
(

C10 − C9√
T

) ∥∥p⊥T s
∥∥

1
+

(
C10

√
T − C9

) ∥∥p⊥T s
∥∥

0
.
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Estimate (3.19) follows as a consequence.

Step 2. The case where s is supported in U2α/3 :
The key observation in this case is that since all the geometric data are of product

nature on Uα, one can use separation of variables to split the analysis into those along
the ∂

∂r direction and those along the cross section {r} × ∂X’s with 0 ≤ r ≤ 2α/3 on
which the analysis is the same as on ∂X. In particular, by (1.4), (2.11) and (2.12)
one can write on U2α/3 that

(3.26) DT = c

(
∂

∂r

)(
∂

∂r
+ BT

)
.

Furthermore, by the definition of the embedding JT as well as its restriction on
∂X, and thus on each {r} × ∂X, 0 ≤ r ≤ 2α/3, also, one deduces from (3.26) the
following formula on U2α/3,

(3.27) DT (u) = c

(
∂

∂r

)(
∂

∂r
+ BT (u)

)
, u ∈ [0, 1].

One also verifies easily that BT (u) anti-commutes with c( ∂
∂r ). Thus from (3.27)

one gets

(3.28) (DT (u))2 = − ∂2

∂r2
+ (BT (u))2 .

From (3.27), (3.28) and Green’s formula (cf. [BoW, Chap. 3]), one deduces easily
that for any s ∈ Γ(S(TX)⊗ ξ) which is supported in U2α/3,

(3.29) ‖DT (u)s‖20 =
∫

[0, 2α
3 ]

〈BT (u)s,BT (u)s〉{r}×∂X dr +
∥∥∥∥

∂s

∂r

∥∥∥∥
2

0

− 〈s,BT (u)s〉∂X .

Now if s also verifies the boundary condition under consideration, that is,

(3.30) PT (u) (s|∂X) = 0,

then one finds

(3.31) 〈s,BT (u)s〉∂X ≤ 0.

On the other hand, it is clear that one can apply the analysis in Section 3c) to
each {r}×∂X. Thus by (3.12), (3.16) one deduces that there exist constants C13 > 0,
C14 > 0 such that when T is large enough,

‖BT (u)s‖{r}×∂X,0 ≥
(

1− C√
T

)
‖BT s‖{r}×∂X,0 − C‖s‖{r}×∂X,0(3.32)

≥ C13‖s‖{r}×∂X,1 − C14

√
T‖s‖{r}×∂X,0.

From (3.29), (3.31) and (3.32), one deduces (3.19) easily.

Step 3. The general case:
Now by the results in Steps 1 and 2, one can apply the gluing argument in [BL,

pp. 115-117] to complete the proof of Proposition 3.6.
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The proof of Proposition 3.5 is thus also completed.

e). Proof of Theorem 2.4. We assume that T ≥ T1 with T1 determined by
Proposition 3.5. We will first show that when T is large enough, the family of Fredholm
operators DT,APS(u), 0 ≤ u ≤ 1, constructed in Proposition 3.5 is a continuous family.
For this, one establishes the following result.

Proposition 3.8. There exists T2 > 0 such that for any T ≥ T2, u ∈ [0, 1], the
operator BT (u) is invertible.

Proof. Recall from Assumption 2.3 that BY is invertible. Let c > 0 be such that

(3.33) Spec(BY ) ∩ [−2c, 2c] = ∅.

Proposition 3.8 follows from

Lemma 3.9. There exists T2 > 0 such that for any T ≥ T2, u ∈ [0, 1] and
s ∈ E1

∂X , then

(3.34) ‖BT (u)s‖0 ≥
3c

2
‖s‖0.

Proof. We proceed similarly as in the proof of [TZ, Lemma 4.7]. Write s as
s = s′ + s′′ with s′ ∈ E1

T,∂X and s′′ ∈ E1,⊥
T,∂X . Then one has

(3.35) ‖BT (u)s‖20 = ‖BT,1s
′ + uBT,2s

′′‖20 + ‖uBT,3s
′ + BT,4s

′′‖20 ,

from which it follows that for any sufficiently small ν > 0, one has

‖BT (u)s‖0 ≥
7
8
‖BT,1s

′ + uBT,2s
′′‖0 + ν ‖uBT,3s

′ + BT,4s
′′‖0(3.36)

≥ 7
8
‖BT,1s

′‖0 −
7
8
‖BT,2s

′′‖0 + ν ‖BT,4s
′′‖0 − ν ‖BT,3s

′‖0 .

In view of (3.33), one sees easily that

(3.37)
∥∥JT BY J−1

T s′
∥∥

0
≥ 2c ‖s′‖0 .

From (3.37) and Proposition 3.3a), one deduces that there exists C15 > 0 such
that when T is sufficiently large, one has

(3.38)
7
8
‖BT,1s

′‖0 ≥
3c

2
‖s′‖0 +

1
8

∥∥JT BY J−1
T s′

∥∥
0
− C15√

T

(∥∥JT BY J−1
T s′

∥∥
0

+ ‖s′‖0
)
.

From (3.37), (3.38) one finds that when T is sufficiently large,

(3.39)
7
8
‖BT,1s

′‖0 ≥
3c

2
‖s′‖0 +

1
16

∥∥JT BY J−1
T s′

∥∥
0
.

On the other hand, by standard elliptic estimates as well as an obvious analogue
of [BL, (9.7)], there exists constant C16 > 0 such that

(3.40) ‖s′‖1 ≤ C16

(∥∥JT BY J−1
T s′

∥∥
0

+
√

T‖s′‖0
)

.
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By (3.36)-(3.40) and Proposition 3.3b), one deduces that when T is sufficiently
large,

‖BT (u)s‖0 ≥
3c

2
‖s′‖0+

1
32

∥∥JT BY J−1
T s′

∥∥
0
+

c

16
‖s′‖0 − 7C1

8

(‖s′′‖1√
T

+‖s′′‖0
)

(3.41)

+ νC2

(
‖s′′‖1 +

√
T‖s′′‖0

)
− νC1

(
C16

∥∥JT BY J−1
T s′

∥∥
0√

T
+ (C16 + 1)‖s′‖0

)

≥ 3c

2
‖s′ + s′′‖0 +

(
1
32
− νC1C16√

T

) ∥∥JT BY J−1
T s′

∥∥
0

+
( c

16
− νC1(C16 + 1)

)
‖s′‖0

+
(

ηC2 − 7C1

8
√

T

)
‖s′′‖1 +

(
νC2

√
T − 7C1

8
− 3c

2

)
‖s′′‖0.

Now if we choose ν > 0 so that one also has

(3.42)
c

16
− νC1(C16 + 1) ≥ 0,

then from (3.41) one deduces easily that when T is sufficiently large, (3.34) holds.

The proof of Proposition 3.8 is completed.

From Proposition 3.5 and Proposition 3.8, we see that when T is large enough,
we have a continuous family of Fredholm operators {DT,APS(u)}0≤u≤1. Furthermore,
by Proposition 3.8 and Green’s formula, the operators DT,APS(u), 0 ≤ u ≤ 1, are
self-adjoint.

Now let τX (resp. τY ) be the Z2-grading operator of S(TX)⊗̂ξ (resp. S(TY )⊗µ).
One verifies directly that

(3.43) JT τY = τXJT ,

that is, JT preserves the Z2-gradings of S(TY )⊗ µ and S(TX)⊗̂ξ.
From the above discussions as well as the homotopy invariance of the index of

Fredholm operators, one gets easily that

(3.44) ind (DT,+, PT,+,≥0) = Tr
[
τX |ker(DT,AP S(1))

]
= Tr

[
τX |ker(DT,AP S(0))

]
.

Now let PT,1 (resp. PT,4) be the Atiyah-Patodi-Singer projection associated to
BT,1 (resp. BT,4) acting on E0

T,∂X (resp. E0,⊥
T,∂X). Then by using Proposition 3.3 and

proceed as in Section 3d), one sees easily that the boundary problems (DT,1, PT,1)
and (DT,4, PT,4) are Fredholm. Furthermore, by (3.11), (3.23) and (3.29), one deduces
that when T is large enough,

(3.45) ker (DT,4, PT,4) = 0.

On the other hand, for T large enough and u ∈ [0, 1], set

(3.46) DY (u) = uDY + (1− u)J−1
T DT,1JT , BY (u) = uBY + (1− u)J−1

T,∂BT,1JT,∂ .

From (3.9) one can proceed as in (3.37)-(3.39) to see that when T is large enough,
BY (u) is invertible for every u ∈ [0, 1].

Let PY (u) be the Atiyha-Patodi-Singer projection associated to BY (u). By (3.9),
(3.21) and the above discussion one sees that when T is large enough, (DY (u), PY (u)),
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u ∈ [0, 1], form a continuous family of formally self-adjoint Fredholm boundary prob-
lems. Thus by the homotopy invariance of the index of Fredholm operators, one
gets

(3.47) Tr
[
τY |ker(DY (0),PY (0))

]
= Tr

[
τY |ker(DY (1),PY (1))

]
= ind(DY,+, PY,+,≥0).

From (3.43)-(3.45) and (3.47) one finds

ind (DT,+, PT,+,≥0) = Tr
[
τX |ker(DT,1,PT,1)

]
+ Tr

[
τX |ker(DT,4,PT,4)

]
(3.48)

= Tr
[
τY |ker(DY (0),PY (0))

]
= ind(DY,+, PY,+,≥0),

which is exactly (2.13).
The proof of Theorem 2.4 is completed.

4. The Atiyah-Patodi-Singer index theorem for Dirac operators. In this
section, we combine Theorems 1.2 and 2.4 with the results in [BZ] to complete our
embedding proof of the Atiyah-Patodi-Singer index theorem [APS1, (4.3)] for Dirac
operators.

This section is organized as follows. In a), we use Theorem 2.4 to refine the main
result in [BZ] so that the mod Z term in [BZ, Theorem 2.2] can now be made specific
in our situation. In b), we apply the results proved in a) to the case where X is a ball
to obtain the Atiyah-Patodi-Singer index theorem for Dirac operators on Y .

a). Real embeddings and η-invariants. Following [BZ, (1.27)], under the
geometric assumptions in Section 2a), let γX be the Chern-Simons current on X
defined by

(4.1) γX =
∫ +∞

0

Trs

[
V exp

(
−

(
∇ξ + T 1/2V

)2
)]

dT

2T 1/2
.

Also, if D is a formally self-adjoint Dirac type operator on a closed odd dimen-
sional spin manifold, we define the reduced η-invariant to be

(4.2) η̄(D) =
dim(kerD) + η(D)

2
,

where η(D) is the η-invariant of D in the sense of Atiyah-Patodi-Singer [APS1].
Let D

ξ±
+,APS (resp. Dµ

+,APS) denote the Atiyah-Patodi-Singer boundary problems

associated to D
ξ±
+ (resp. Dµ

+). Let B
ξ±
+ (resp. Bµ

+) be the induced Dirac operators
on ∂X (resp. ∂Y ) associated to D

ξ±
+ (resp. Dµ

+).
Let RTX , RTY denote the curvature of ∇TX , ∇TY respectively.
We can now state the main result of this subsection, which has been announced

in [DZ1, Theorem 2.3], as follows.

Theorem 4.1. The following identity holds,

ind
(
D

ξ+
+,APS

)
+ η̄

(
B

ξ+
+

)
− ind

(
D

ξ−
+,APS

)
− η̄

(
B

ξ−
+

)
(4.3)

= ind
(
Dµ

+,APS

)
+ η̄

(
Bµ

+

)
+

(
1

2π
√−1

) dim X
2

∫

∂X

det1/2

(
RTX/2

sinh (RTX/2)

)
γX .
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Remark 4.2. A weaker mod Z version of Theorem 4.1 has been previously proved
in [BZ, Theorem 2.2].

The rest of this subsection is devoted to a proof of Theorem 4.1 by making precise
the mod Z contribution in [BZ].

For any T ≥ 0, let Dξ
T,+,APS be the Dirac type operator

(4.4) Dξ
+ + TV : Γ

((
S(TX)⊗̂ξ

)
+

)
−→ Γ

((
S(TX)⊗̂ξ

)
−

)

verifying the Atiyah-Patodi-Singer boundary condition [APS1]. Let Bξ
T,+ be the as-

sociated boundary operator on ∂X in the sense of (1.4).
We start with the following result which was announced in [DZ1, Prop. 2.1].

Proposition 4.3. The quantity ind(Dξ
T,+,APS) + η̄(Bξ

T,+) does not depend on
T ≥ 0.

Proof. From Theorem 1.2 and a direct counting argument in using the definition
of the reduced η-invariant, one sees easily that ind(Dξ

T,+,APS) + η̄(Bξ
T,+) depends

smoothly on T . Proposition 4.3 then follows from the local variation formula [BC3,
Theorem 2.7] of Bismut and Cheeger.

Remark 4.4. To be more precise, in [BC3, Theorem 2.7], Bismut and Cheeger
considered the operators of the form Bξ

+τ ξ + TV acting on Γ((S+(TX) ⊗ ξ)|Y ),
where τ ξ is the Z2-grading operator of ξ. However, one sees easily that the map
U : Γ((S+(TX) ⊗ ξ)|Y ) → Γ((S+(TX) ⊗ ξ+)|Y ⊕ (S−(TX) ⊗ ξ−)|Y ) defines by U :
u⊗(v++v−) 7→ u⊗v+−c( ∂

∂t )u⊗v− is unitary and verifies that U(Bξ
+τ ξ +TV )U−1 =

Bξ
T,+. This makes it clear that one can apply the results in [BC3] and [BZ] to the

present situation.

We can now proceed as in [BZ]. The key observation is that the geometric assump-
tions in [BZ, Sect. 1b)] correspond almost exactly to the geometric assumptions on ∂X
in the current situation, with the minor diffference that we here use −c( ∂

∂r )c̃(Z)τN∗

to replace
√−1c̃(Z) in [BZ, (1.10)]. As a result, we will use here Theorem A.3 in

the Appendix to replace [BZ, Theorem 4.5] in obtaining the analogues of the analytic
results of [BZ, Theorems 3.7-3.12].

We now examine the arguments in [BZ, Sect. 3e)]. In order to get the required
result, we must find out where the mod Z terms in [BZ, Sect. 3e)] arise, and replace
them by the exact formulas.

In fact, one finds that this integer term is given by

(4.5) −]
{

λ ∈ Spec
(
Bξ

T0,+

)
: −a0 ≤ λ < 0

}

with a0 > 0 such that Bµ
+ has no non-zero eigenvalues in [−2a0, 2a0]. This term must

be added in the right hand side of the analogue of [BZ, (3.30)].
Secondly, one uses Proposition 4.3 instead of a direct analogue of [BZ, (3.44)].
With the help of these two observations, by proceeding as in [BZ, Sect. 3e)], one

finally finds, in our situation, the following refinement of a direct analogue of [BZ,
(3.65)] when T0 > 0 is large enough:

− ]
{

λ ∈ Spec
(
Bξ

T0,+

)
: −a0 ≤ λ < 0

}
+ ind

(
Dξ

T0,+,APS

)
− ind

(
Dξ

0,+,APS

)
(4.6)

− η̄
(
Bξ

0,+

)
+ η̄

(
Bµ

+

)
+

(
1

2π
√−1

) dim X
2

∫

∂X

det1/2

(
RTX/2

sinh (RTX/2)

)
γX = 0.
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We now prove two lemmas which together with (4.6) will give (4.3). The first
lemma follows easily from the definitions of the operators under consideration, the
definition of the reduced η-invariant as well as the classical Agranovič-Dynin type
formula (cf. [BoW, Chap. 21]).

Lemma 4.5. The following identity holds,
(4.7)
ind

(
Dξ

0,+,APS

)
+ η̄

(
Bξ

0,+

)
= ind

(
D

ξ+
+,APS

)
+ η̄

(
B

ξ+
+

)
− ind

(
D

ξ−
+,APS

)
− η̄

(
B

ξ−
+

)
.

An equivalent form of the next lemma has been announced in [DZ1, Theorem
2.2].

Lemma 4.6. The following identity holds when T0 > 0 is sufficiently large,

(4.8) −]
{

λ ∈ Spec
(
Bξ

T0,+

)
: −a0 ≤ λ < 0

}
+ ind

(
Dξ

T0,+,APS

)
= ind

(
Dµ

+,APS

)
.

Proof. Let f : X → R be a smooth function such that f ≡ 1 on Uα/3 and f ≡ 0
outside of U2α/3.

Let DT0,−a0,+ be the Dirac type operator defined by

(4.9) DT0,−a0,+ = Dξ
T0,+ − a0fc

(
∂

∂r

)
: Γ

((
S(TX)⊗̂ξ

)
+

)
−→ Γ

((
S(TX)⊗̂ξ

)
−

)
.

Let DY,−a0,+ be the Dirac type operator defined by

(4.10) DY,−a0,+ = Dµ
+ − a0fc

(
∂

∂r

)
: Γ (S+(TY )⊗µ) −→ Γ (S(TY )−⊗µ) .

Let DT0,−a0,+,APS , DY,−a0,+,APS be the associated operators verifying the Atiyah-
Patodi-Singer boundary condition [APS1].

Since −a0 is not an eigenvalue of Bµ
+, one sees that the Assumption 2.3 is verified

by the boundary operator associated to DY,−a0,+. Thus one can apply Theorem 2.4
to get that when T0 is sufficiently large, one has

(4.11) ind (DT0,−a0,+,APS) = ind (DY,−a0,+,APS) .

Now by using Theorem 1.2 and the definition of the spectral flow [APS2], one
verifies easily that
(4.12)

ind (DT0,−a0,+,APS) = ind
(
Dξ

T0,+,APS

)
− ]

{
λ ∈ Spec

(
Bξ

T0,+

)
: −a0 ≤ λ < 0

}

and that

(4.13) ind (DY,−a0,+,APS) = ind
(
Dµ

+,APS

)
.

From (4.11)-(4.13), one gets (4.8).

From (4.6)-(4.8), one gets (4.3). The proof of Theorem 4.1 is now completed.

b). A proof of the Atiyah-Patodi-Singer index theorem. We first state
an easy consequence of a direct analogue in our situation of [BZ, Theorem 1.4].
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Lemma 4.7. The following identity holds,
(

1
2π
√−1

) dim X
2

∫

X

det1/2

(
RTX/2

sinh (RTX/2)

)
Trs

[
exp

(
− (∇ξ

)2
)]

(4.14)

−
(

1
2π
√−1

) dim Y
2

∫

Y

det1/2

(
RTY /2

sinh (RTY /2)

)
Tr

[
exp

(
− (∇µ)2

)]

=
(

1
2π
√−1

) dim X
2

∫

∂X

det1/2

(
RTX/2

sinh (RTX/2)

)
γX .

Finally, we are in a position to give a proof of the Atiyah-Patodi-Singer Thorem.
Namely, we apply these results to the case where X = D2n, the 2n dimensional ball
with n sufficiently large. That any compact manifold with boundary can be embedded
into a large ball in such a fashion is an elementary result from differential topology.

Since D2n is contractable, both ξ± are topologically trivial over D2n. Thus one
can deform the metric gξ+ to gξ− by g(u) = (1− u)gξ+ + ugξ− , 0 ≤ u ≤ 1. One thus
obtains easily a smooth deformation of twisted Dirac operators moving from Dξ+ to
Dξ− . By using Theorem 1.2 as well as the standard local variation formula of the η
invariants (cf. [APS2] and [BF, Sect. 2]), one gets easily the following identity

ind
(
D

ξ+
+,APS

)
+ η̄

(
B

ξ+
+

)
− ind

(
D

ξ−
+,APS

)
− η̄

(
B

ξ−
+

)
(4.15)

=
(

1
2π
√−1

) dim X
2

∫

X

det1/2

(
RTX/2

sinh (RTX/2)

)
Trs

[
exp

(
− (∇ξ

)2
)]

.

From (4.3), (4.14) and (4.15), one finds

ind
(
Dµ

+,APS

)
(4.16)

=
(

1
2π
√−1

) dim Y
2

∫

Y

det1/2

(
RTY /2

sinh (RTY /2)

)
Tr

[
exp

(
− (∇µ)2

)]
− η̄

(
Bµ

+

)
,

which is exactly the Atiyah-Patodi-singer index theorem [APS1, (4.3)] for Dµ
+,APS .

This completes our embedding proof of the Atiyah-Patodi-Singer index theorem
[APS1, (4.3)] for Dirac operators on manifolds with boundary.

Appendix A. Dirac operators and harmonic oscillators. Let E be a real
oriented Euclidean vector space of even dimension. Let S(E) = S+(E) ⊕ S−(E) be
the Z2-graded Hermitian vector space of E-spinors.

If e ∈ E, let e∗ ∈ E∗ corresponds to e by the scalar product. Let c(e) denote the
Clifford action of e on S(E). Let c̃(e) denote the corresponding Clifford action of e
on S∗(E) = S∗+(E)⊕ S∗−(E).

Let τ be the Z2-grading operator of S(E), that is, τ |S±(E) = ±idS±(E). Let τ∗

be the transpose of τ . Then σ = τ ⊗ τ∗ is the Z2-grading operator on ∧(E∗).
Recall the identification of the Z2-graded vector spaces,

(A.1) ∧(E∗) ' S(E)⊗̂S∗(E).

For any e ∈ E, let c(e) (resp. c̃(e)) acts on ∧(E∗) as c(e)⊗̂1 (resp. 1⊗̂c̃(e)). Then,
under the identification (A.1), c(e), c̃(e) acts on ∧(E∗) as

c(e) = e∗ ∧ −ie,

c̃(e)τ∗ = e∗ ∧+ie(A.2)
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respectively (Compare with [BZ, (4.5)]).
Let e1, . . . , edim E be an oriented orthonormal base of E. Let e∗1, . . . , e

∗
dim E be the

dual base of E∗.
Let Γ(∧(E∗)) be the vector space of smooth sections of ∧(E∗) over E.

Definition A.1. Let D∧(E∗) be the operator acting on Γ(∧(E∗)),

(A.3) D∧(E∗) =
dim E∑

i=1

c(ei)∇ei
,

where ∇ is the canonical flat connection acting on Γ(∧(E∗)).

Let Z be the generic point of E. Then c̃(Z)τ∗ acts on Γ(∧(E∗)).

Proposition A.2. For any T ∈ R, the following identity holds,

(A.4)
(
D∧(E∗) + T c̃(Z)τ∗

)2

= −
dim E∑

i=1

∇2
ei

+ T 2|Z|2 + T

(
dimE − 2

dim E∑

i=1

ieie
∗
i∧

)
.

Proof. From (A.2), one gets (A.4) by a direct calculation.

Now one verifies easily that the lowest eigenvalue of −∑dim E
i=1 ieie

∗
i∧ is −dimE

with the corresponding eigenspace being one dimensional and spanned by 1. From
this and from the standard property of the harmonic oscillator, one gets

Theorem A.3. The kernel of the operator D∧(E∗) +T c̃(Z)τ∗ is one demensional
and is spanned by

(A.5) β = exp
(
−T |Z|2

2

)
.

Furthermore, there exists C > 0 such that D∧(E∗)+T c̃(Z)τ∗ has no nonzero eigenvalue
in [−C

√
T , C

√
T ].
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