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soutenue le 10 octobre 2008 devant le Jury composé de :
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Abstract. This thesis consists of several topics centered around index the-

ory. These topics include the study of the Ray-Singer analytic torsion, the

Atiyah-Patodi-Singer η invariant, spectral flow and its families generalization,

the Guillemin-Sternberg geometric quantization conjecture and its various ex-

tensions, the index theorems for Dirac operators on even and odd dimensional

manifolds with boundary, the analytic espects of the Kervaire semi-characteritic,

elliptic genus, Rohklin congruences and its higher dimensional generalizations,

Bergman kernels in geometric quantization, etc.

Résumé. Cette thèse contient des résultats relatifs à la théorie de l’indice.

On considère en particulier: la torsion analytique de Ray-Singer, l’invariant η

d’Atiyah-Patodi-Singer, le flot spectral et sa généralisation en famille, la con-

jecture de la quantification géométrique de Guillemin-Sternberg et ses diverses

extensions, le théorème de l’indice de l’opérateur de Dirac pour les variétés à bord

en dimension paire ou impaire, les aspects analytiques de la semi-caractéristique

de Kervaire, le genre elliptique, les congruences de Rohklin et leur généralisation

en dimension supérieure, le noyau de Bergman en quantification géométrique, etc.
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au texte de l’habilitation.

1 Métrique de Reidemeister et métrique de Ray-Singer 35

2 Spinc-manifolds and Rokhlin congruences 43

3 Symplectic reduction and quantization 47

4 Rigidity and vanishing theorems in K-theory 53

5 Spinc-manifolds and elliptic genera 59

6 Circle actions and Z/k-manifolds 63

7 Bergman kernels and symplectic reduction 67

8 Superconnection and family Bergman kernels 73

9 Higher spectral flow 77

10 Heat kernels and the index theorems 87



PRÉSENTATION DES TRAVAUX:

ANALYTIC ASPECTS OF INDEX THEORY

1. Earlier works

These are the papers I wrote before coming to France to pursue my Ph. D.

study.

In [1], we gave a slight generalization of the Bott residue formula on complex

manifolds, where the zeroes of the holomorphic vector field are allowed to be non-

degenerate complex submanifolds (instead of points as in Bott’s original formula).

The proof is inspired by Bismut’s Gaussian proof of the famous Duistermaat-

Heckman and Berline-Vergne localization formulas.

In the joint work with Lafferty and Yanlin Yu [4] and [59], we gave a direct

geometric proof of the Atiyah-Bott-Segal-Singer equivariant index theorem for

Dirac operators. Comparing with Bismut’s proof using probability as well as

Berline-Vernge’s proof using frame bundles, our proof is closer in spirit to the

heat kernel proofs of the local index theorem for Dirac operators due to Getzler

and Yanlin Yu respectively.

In paper [2], we proved a regularity result for the equivariant η-function of Dirac

operators by using the method in [4]. Our result generalizes the corresponding

result in the non-equivariant case due to Bismut and Freed.

In [10], we gave an alternate proof without using probability of the local index

theorem due to Bismut for Dirac operators associated with certain non torsion-

free connections.

There is another paper [58] in which we made an effort to understand Bismut’s

local index theorem for a family of Dirac operators.

2. Reidemeister torsion and Ray-Singer analytic torsion

Reidemeister torsion is a classical concept in topology associated to orthogonal

representations of the fundamental group of a CW complex.

Inspired by the Atiyah-Singer index theory, Ray and Singer studied in 1970

an analogue of the Reidemeister torsion for the de Rham complex on a smooth

manifold. They called this analogue the analytic torsion and discovered that

it has a lot of similar properties like that of Reidemeister torsion. They further
2
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made the conjecture that their analytic torsion (now widely called the Ray-Singer

torsion) equals to the Reidemeister torsion.

The above Ray-Singer conjecture was proved in 1978, independently by Cheeger

and Müller. The Cheeger-Müller theorem holds for orthogonal representations

of the fundamental group. Later, Müller extended it to the case of unimoduler

representations.

The proofs of Cheeger and Müller use many ideas in topology and reduce the

problem to that on spheres.

In [3] and [6], jointly with Bismut, we extended the Cheeger-Müller theorem

to the case of arbitrary representations of the fundamental group. Moreover,

the method we used is purely analytic and is quite different from what used by

Cheeger and Müller. It uses the Witten deformation for the de Rham complex by

a Morse function and relies on the analytic techniques developed in the long paper

of Bismut-Lebeau on complex immersions and Quillen metrics. An adaptation

of Helffer-Sjöstrand’s rigorous proof of Witten’s proposal of deriving the Thom-

Smale complex through the Witten deformation also plays an important role in

this proof.

In [12], again jointly with Bismut, we further generalized the results in [3] and

[6] to the case where the manifold under consideration admits a finite group ac-

tion. The results obtained generalize the earlier results in this direction obtained

by Lott-Rothenberg and Lück. Moreover, this paper also contains an alternate

treatment of the relationship between the Thom-Smale complex and the Witten

complex, simpler than that of Helffer and Sjöstrand.

In [46], we generalized the main result in [3], [6] to the case of infinite Galois

covering of a smooth manifold. Here one deals with the L2-torsions, introduced

first by Lott and Mathai, which are defined with the help of the von Neumann

trace associated to the covering group. Our main result is stated for extended

cohomologies and thus generalizes the L2 generalization, due to Burghelea et al, of

the Cheeger-Müller theorem, in that we do not assume the so-called determinant

class condition. It also extends the corresponding result of Braverman-Carey-

Farber-Mathai to the case of general representations. An important anomaly for

L2-analytic torsions was established in [46] during the process of the proof.

In the joint paper [61] with Xiaonan Ma, we proved an anomaly formula for L2-

analytic torsions on manifolds with boundary. It generalizes the anomaly formula

in [46] as well as the anomaly formula for the usual analytic torsion on manifolds

with boundary established by Brünning and Ma.

Paper [54], which is a joint work with Guangxiang Su, deals with the complex

analytic torsion introduced by Burghelea and Haller. In it, we solved a conjec-

ture of Burghelea and Haller, identifying the complex analytic torsion with the
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corresponding complex Reidemeister torsion. The statement and proof in [54]

are parallel to what in [6]. The key difference is that in dealing with complex

torsions, one deals with the non-self-adjoint Laplacians instead of the self-adjoint

ones in [6]. However, we showed that the main method in [6] still applies in

the current situation, with necessary modifications. Burghelea and Haller proved

their conjecture, up to sign, around the same time as ours. Their proof is different

from ours.

In the joint papers [49], [63] with Weiping Li, we introduced what we call the

L2-Alexander-Conway invariant for knots. These invariants can be interpreted

as the twisted L2-Reidemeister torsion of the knot complement. A surprising

rigidity in the twisted U(1)-representation case was established.

3. The adiabatic limits of η-invariants and Rokhlin congruences

It is well-known that the η-invariant, introduced by Atiyah-Patodi-Singer in

their study of the index theorem for manifolds with boundary, appears in many

places in geometry, topology as well as mathematical physics. For example,

Witten proposed that the adiabatic limit of the η-invariant associated to Dirac

operators on a fibered manifold over a circle is closely related to the anomaly in

physics (This conjecture of Witten was proved independently by Bismut-Freed

and Cheeger). Later on, Bismut-Cheeger and Xianzhe Dai studied systemati-

cally the adiabatic limits of η-invariants of Dirac operators on general fibered

manifolds.

In [5] and [11], we applied the above results of Bismut-Cheeger and Dai to circle

bundles and obtained an explicit expression of the adiabatic limit of η-invariants

for Dirac operators on circle bundles (This result was also obtained independently

in an unpublished work of Dai). We then applied this computation to establish

a higher dimensional Rokhlin type congruence and studied various extensions.

We state a special case of the general result in [11] as follows.

Let K be an 8k + 4 dimensional compact oriented Spinc-manifold. Let c be a

closed two form on K such that the corresponding de Rham class [c] ∈ H2(K)

verifies that [c] ≡ w2(K) mod 2, where w2(K) is the second Stiefel-Whitney class

of K.

Let B be an oriented 8k + 2 dimensional closed submanifold of K such that

[B] ⊂ H8k+2(K) is dual to [c]. Then K \ B is a spin manifold, and every spin

structure on K \ B induces naturally a spin structure on B. Moreover, all the

induced spin structures on B lie in the same spin cobordism class.

Let Â(B) ∈ Z2 be the Atiyah-Milnor-Singer invariant determined by this spin

cobordism class on B.
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A classical theorem due to Atiyah-Hirzebruch states that 〈Â(TK) exp( c
2
), [K]〉

is an integer. The following result in [11] refines this result.

Theorem 3.1. The following identity holds,〈
Â(TK) exp

( c
2

)
, [K]

〉
≡ Â(B) mod 2Z.(3.1)

Corollary 3.2. (Atiyah-Hirzebruch) If K is an 8k + 4 dimensional compact

oriented spin manifold, then 〈Â(TK), [K]〉 is an even number.

Corollary 3.3. (Rokhlin) If K is as in Theorem 3.1 and dimK = 4, then

sign(B ·B)− sign(K)

8
≡ Â(B) mod 2Z.(3.2)

Both Corollaries 3.2 and 3.3 generalize the following classical Rokhlin divisi-

bility theorem: the signature of a smooth closed oriented spin four dimensional

manifold is divisible by 16.

Indeed the result established in [11] is still valid for the case where B is

non-orientable. In this case, the obtained result generalizes the congruences of

Guillou-Marin and Kirby-Taylor in four dimension to higher dimensions.

It might be worth to mention that the congruences of Rokhlin (3.2), Guillou-

Marin and Kirby-Taylor have important applications in real algebraic geometry

(related to Hilbert’s 17th problem) and low dimensional topology.

As an application of the Rokhlin type congruence (3.1), we computed in [18]

the Atiyah-Milnor-Singer invariant of spin complex hypersurfaces of dimension

4k + 1 (k ≥ 1). Combining this computation with a well-known result of Stolz,

we determined in [18] when a spin complex hypersurfaces of dimensional 4k + 1

(k ≥ 1) admits a Riemannian metric with positive scalar curvature.

In another paper [15], which is joint with Dai, the computation of the adia-

batic limit of the Dirac operator on circle bundles is applied to get an analytic

computation of a cobordism invariant of Kreck-Stolz.

Paper [9] contains a K-theoretic proof of Theorem 3.1, as well as a generaliza-

tion of it to the case of arbitrary twisted bundles.

On the other hand, we proposed in [11] that there should be an intrinsic relation

between the KO-characteristic class and the Hirzebruch L-class. This problem

was later solved by Kefeng Liu who generalized the 12 dimensional ”miraculous

cancellation” formula due to Alvarez-Gaumé and Witten to arbitrary 8k + 4

dimensional manifolds.

In the joint paper [13] with Liu, we applied Liu’s above result to give an analytic

interpretation of the Finashin invariant, by using ideas in elliptic genus.

In joint papers [41] and [44] with Fei Han, we further extended Liu’s result

to the case where an extra twisted complex line bundle shows up. Combining
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with earlier results in [11] and [13], we get direct geometric proofs of the higher

dimensional Rokhlin type congruences due to Ochanine and Finashin.

4. Real embedding, η-invariant and index theory on manifolds

with boundary

In the joint paper with Bismut [7], we applied the analytic techniques developed

by Bismut-Lebeau to study the η-invariant of Atiyah-Patodi-Singer.

To be more precise, let i : Y → X be an embedding between two closed oriented

spin odd dimensional Riemannian manifolds. Let N be the normal bundle to Y

in X carrying the induced metric. Then for any Hermitian vector bundle µ on

Y carrying a Hermitian connection, we can give a geometric construction of the

direct image i!µ ∈ K̃(X) of Atiyah-Hirzebruch. The main result of [7] states that

when mod Z, the η-invariant of Dµ, the Dirac operator twisted by µ on Y , can

be expressed by the η-invariant of Di!µ, the Dirac operator twisted by i!µ on X,

plus some extra purely geometric terms.

The proof in [7] relies heavily on the techniques of Bismut-Lebeau developed for

a problem in complex geometry. In view of the more flexible nature of η-invariants

(with respect to the holomorphic analytic torsion in the paper of Bismut-Lebeau),

it is nature to ask whether one can prove the above embedding formula for η-

invariants in more geometric ways.

In [45], we made a first step in this direction. We started with a simple ob-

servation that if X is taken to be a sphere, then with the help of the Bott peri-

odicity, one gets a purely geometric formula of the analytically defined invariant

η(Dµ) mod Z. Then by using the Freed-Melrose mod k index theorem as well as

the original Atiyah-Patodi-Singer index theorem, we showed that for any µ on Y ,

there always exists an embedding of Y to a higher dimensional sphere for which

the embedding formula in [7] can be proved without using the Bismut-Lebeau

techniques.

The geometric proof of the remaining general case was later carried out in the

joint paper [55] with Huitao Feng and Guangbo Xu. A notable feature in [55] is

that a Riemann-Roch type theorem for the Chern-Simons currents constructed

in [7], under successive embeddings, is established.

The methods and results developed in [7] have some further applications:

In [8], we used them to give a new proof of the Atiyah-Singer mod 2 index

theorem for Dirac operators.

In [16], we used them to give a new proof of the mod k index theorem of

Freed-Melrose for Dirac operators, and obtained some mod 2 refinement in the

real case.
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In [14] and [34], which were joint with Dai, we applied the method in [7] to

give a new proof of the Atiyah-Patodi-Singer index theorem for Dirac operators

on manifolds with boundary. There are two more features in this works with

respect to what in [7]. First, since the formula in [7] is only stated in a mod

Z version, we need to be more careful in dealing with the missing ”mod Z”

terms by examine the spectral flows appeared in the context. Secondly, we need

to establish a Riemann-Roch type theorem under embeddings for the indices of

Dirac operators on manifolds with boundary (thus carrying the Atiyah-Patodi-

Singer boundary conditions).

In [42], we applied the techniques in [34] to prove a generalization of the fa-

mous Atiyah-Hirzebruch vanishing theorem for circle actions to the case of Z/k-

manifolds.

5. Families index theory for Dirac operators

We describe some joint works with Xianzhe Dai on families index theory in

this section.

In [20], we established a splitting formula for the families index of Dirac oper-

ators. It solves a question of Bismut-Cheeger and generalizes the corresponding

splitting theorem of Atiyah-Patodi-Singer to the case of families.

In [17], [24], we generalized the concept of spectral flow due to Atiyah-Patodi-

Singer to the family case and introduced what we call the higher spectral flow.

As is well-known, the concept of spectral flow was introduced by Atiyah-Patodi-

Singer in their study of the index theory on manifolds with boundary. It appeared

later in many places in mathematics as well as in mathematical physics, and

became an important invariant for elliptic operators.

Bismut-Cheeger and Melrose-Piazza studied the families generalizations of the

Atiyah-Patodi-Singer index theorem, and obtained the families index theorem in

the sense of taking Chern characters.

It is nature to ask whether the concept of spectral flow can also be extended

to the family case and this is what we did in [17], [24].

We first obtained a new formula for the spectral flow, so that the original

(discrete) definition by counting eigenvalues now admits a continuous version.

With this continuous version at hand one then gets a natural generalization of

the concept of spectral flow to the family case. Several basic properties of the

higher spectral flow just defined were studied in [17], [27], showing that it is the

”right” generalization of the classical concept of Atiyah-Patodi-Singer. Moreover,

we used our spectral flow to give a heat kernel proof of the families index theorem

for Toeplitz operators. The later can be viewed as an odd dimensional analogue

of the Bismut local families index theorem for Dirac operators.
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Our concept of higher spectral flow was later generalized by Fangbing Wu to

the non-commutative case, which in turn plays roles in a series of papers by

Leichtnam-Piazza on the Atiyah-Patodi-Singer type index theorem on covering

spaces.

6. Geometric quantization conjecture and holomorphic Morse

inequalities

6.1. Analytic approach of the geometric quantization conjecture. The

famous Guillemin-Sternberg geometric quantization conjecture in symplectic ge-

ometry, in roughly speaking, says that ”geometric quantization commutes with

symplectic reduction”.

To be more precise, let (M,ω) be a compact symplectic manifold. Let J be an

almost complex structure on TM such that

gTM(v, w) = ω(v, Jw)

defines a Riemmannian metric on TM .

Let G be a compact connected Lie group. Let g be the Lie algebra of G.

Assume G acts on (M,ω) in a Hamiltonian way, and preserves J . Then there

exists a G-equivariant moment map

µ : M → g∗

such that for any V ∈ g, one has

iVM
ω = d〈µ, V 〉,

where VM ∈ Γ(TM) denotes the vector field on M generated by V ∈ g. Clearly,

G preserves µ−1(0).

Definition 6.1. The Marsden-Weinstein symplectic reduction space MG is de-

fined to be

MG = µ−1(0)/G.

Basic assumption: 0 ∈ g∗ is a regular value of the moment map µ : M → g∗.

Then µ−1(0) is a closed manifold. For simplicity, we also assume that G acts

on µ−1(0) freely, then MG is a closed manifold and carries an induced symplectic

form ωG. Moreover, J induces an almost complex structure JG on TMG such

that ωG(v, JGw) determines a Riemannian metric gTMG on TMG.

Remark 6.2. If (M,ω, J) is Kähler, then (MG, ωG, JG) is also Kähler.



PRÉSENTATION DES TRAVAUX: ANALYTIC ASPECTS OF INDEX THEORY 9

Now, let L be an Hermitian line bundle over M carrying an Hermitian connec-

tion ∇L such that √
−1

2π

(
∇L
)2

= ω.

When such an L exists, we call (M,ω) pre-quantizable, and call L the pre-

quantized line bundle. We assume the existence of L now.

We make the assumption that the Hamiltonian G action lifts to an action on

L, which preserves the Hermitian metric and Hermitian connection on L. Then

L descends to a pre-quantized line bundle LG over MG carrying a canonically

induced Hermitian metric and Hermitian connection ∇LG .

Remark 6.3. When (M,ω, J) is Kähler and L is a holomorphic line bundle over

M , then LG is also holomorphic over MG.

Let DL be the Spinc-Dirac operator (twisted by L) acting on Γ(Λ(0,∗)(T ∗M)⊗
L). Then it commutes with the induced G-action on Γ(Λ(0,∗)(T ∗M)⊗ L). Thus,

G preserves kerDL
±, which are the restrictions of DL on Γ(Λ(0, even

odd
)(T ∗M) ⊗ L)

respectively.

Let (kerDL
±)G denote the G-invariant part in kerDL

±.

Define the reduction of the quantization space

Q(L) =
(
kerDL

+

)
−
(
kerDL

−
)

of L to be

Q(L)G =
(
kerDL

+

)G − (kerDL
−
)G
.

Let

Q (LG) =
(
kerDLG

+

)
−
(
kerDLG

−
)
.

be the quantization space of LG on MG.

The Guillemin-Sternberg conjecture:

dimQ(L)G = dimQ (LG) . (∗)

Remark 6.4. Guillemin-Sternberg first proved in 1982 that when (M,ω, J) is

Kähler and L is holomorphic,

dimH(0,0)(M,L)G = dimH(0,0) (MG, LG)

and proposed (*) as a conjecture.

When G is abelian, (*) was first proved by Guillemin (1995) in a special case,

and later in general by Meinrenken (JAMS 1996) and Vergne (DMJ 1996) inde-

pendently. The remaining non-abelian case was proved by Meinrenken (Adv. in

Math. 1998) by using the technique of symplectic cut of Lerman.
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There are also approaches of Duistermaart-Guillemin-Meinrenken-Wu (for cir-

cle actions) and Jeffrey-Kirwan (for non-abelian group actions with certain extra

conditions).

Remark 6.5. All of the above proofs use the Atiyah-Bott-Segal-Singer equivari-

ant index theorem in an essential way: first relate dimQ(L)G to quantities on the

fixed point set of the G-action, and then try to relate the later to quantities on

the symplectic quotient (through symplectic cut or through the Jeffrey-Kirwan-

Witten non-abelian localization formulas).

Natural question. Whether there is an approach relating dimQ(L)G directly

to dimQ(LG)?

In the joint papers [21] and [23] with Youliang Tian, we gave a direct ana-

lytic proof of the Guillemin-Sternberg conjecture, answering the above natural

question.

The main idea is to introduce a deformation of the Spinc Dirac operator DL by

using the Hamiltonian vector field associated to the norm square of the moment

map µ.

More precisely, we equip with g∗ an AdG-invariant metric and set H = |µ|2.
Let XH be the associated Hamiltonian vector field, i.e.,

iXHω = dH.

For any T ∈ R, we introduce the following deformation of DL,

DL
T = DL +

√
−1T

2
c
(
XH
)

: Γ
(
Λ0,∗(T ∗M)⊗ L

)
→ Γ

(
Λ0,∗(T ∗M)⊗ L

)
.

Remark 6.6. If (M,ω, J) is Kähler and L is holomorphic, then one has

DL
T =
√

2
(
e
−TH

2 ∂
L
e

TH
2 + e

TH
2

(
∂
L
)∗
e
−TH

2

)
.

This might be thought of as an analogue of the Witten deformation in Morse

theory, but now in a holomorphic non-abelian context.

By using this deformation, one can then apply the analytic localization tech-

nique of Bismut-Lebeau to complete the proof of the Guillemin-Sternberg con-

jecture. In particular, a direct relation between dimQ(L)G and dimQ(LG) is

obtained.

Several immediate extensions of the geometric quantization formula were also

obtained in [23] by using our analytic method. First of all, we showed that the

line bundle L can be replaced by any Hermitian vector bundle verifying certain



PRÉSENTATION DES TRAVAUX: ANALYTIC ASPECTS OF INDEX THEORY 11

”positivity” condition. We also showed that when µ−1(0) is not empty, then

Todd(M) = Todd(MG),

a result also obtained independently by Meinrenken and Sjamaar. On the other

hand, when (M,ω, J) is Kähler, we showed that the quantization formula can be

refined to a series of Morse type inequalities.

The analytic method developed in [21] and [23] allows us to obtain further

generalizations of the geometric quantization formula. Here we list a few of

them.

1). In the joint paper [25] with Tian, we generalized the holomorphic Morse

inequalities in [23] to the case of singular reductions;

2). In the joint paper [26] with Tian, we generalized the results of Meinrenken

and Vergne, in the case where G is abelian, to a series of weighted quantization

formulas;

3). In the joint paper [28] with Tian, we extended the quantization formula to

the case of symplectic manifolds with boundary. As a consequence, we obtained

an analytic version of the residue formula of Guillemin-Kalkman-Martin;

4). In [29], we showed that in the Kähler case, the holomorphic Morse inequal-

ities in [23] are indeed equalities, our results were stated for singular reductions

and were thus stronger than similar results proposed earlier by Braverman;

5). In [30], we generalized the quantization formula to the family case;

6). In the joint paper [38] with Huitao Feng and Wenchuan Hu, we further

generalized the results in [30] to the case of manifolds with boundary. The result

obtained is a common generalization of the main results in [28] and [30];

7). More recently, in the joint paper [56] with Mathai, we generalized the

Guillemin-Sternberg geometric quantization conjecture to the case where both

M and G are allowed to be non-compact. This will be discussed in more details

in Subsection 6.4.

6.2. Equivariant holomorphic Morse inequalities in the sense of Witten.

It is now well-known that Witten’s analytic proof of (real) Morse inequalities has

had wide range influence in mathematics. In a paper appeared shortly after Wit-

ten’s paper on his proof of (real) Morse inequalities, Witten wrote another paper

concerning holomorphic circle actions on Kähler manifolds and proposed what

he called the homomorphic More inequalities. As usual, Witten only outlined his

proof based on physics ideas and he only stated precisely his inequalities in the

case where the fixed points of the circle action are isolated.

In 1996, Mathai and Wu gave a first rigorous proof of Witten’s equivariant

holomorphic Morse inequalities, in the case where the fixed points are isolated,

by using heat kernel method.
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In the joint paper [22] with Siye Wu, by using the localization techniques

developed by Bismut-Lebeau, we proved the generalized version of the Witten

holomorphic Morse inequalities where the fixed point set need not be discrete.

Relations with the Guillemin-Sternberg geometric quantization conjecture were

also discussed.

6.3. An application of the quantization formula on manifolds with bound-

ary. In the joint paper [28] with Tian about the quantization formula on man-

ifolds with boundary, as an application, we proved a universal geometric quan-

tization formula which holds for the case where the symplectic reduction might

be singular, while the total symplectic manifold is closed. The contribution near

the symplectic reduction is expressed by an (analytic) invariant index of Atiyah-

Patodi-Singer type. Here, we will show this APS type index can actually be

interpreted as an invariant index of certain transversally elliptic operator in the

sense of Atiyah, Paradan and Vergne. Thus it acquires a natural topological

interpretation.

We will first recall the above mentioned analytic result from [28].

Following the notation in Section 6.1, it is clear that there exists δ > 0 small

enough such thatH−1((0, δ]) does not contain any critical point ofH = |µ|2. Thus

for any c ∈ (0, δ], a regular value of H, H−1(c) is a G-invariant hypersurface of

M , cutting M into two parts M = M c
+ ∪M c

− with M c
+ = H−1([0, c]) and the

common boundary M c
+ ∩M c

− = H−1(c).

Now for any T ∈ R, let DL
Mc

+,T
denote the restriction of DL

T on M c
+. Let

DL
Mc

+,T,±,APS
be the corresponding elliptic operators verifying the Atiyah-Patodi-

Singer boundary condition (here since the product nature no longer holds near

boundary, one need to modify the induced boundary operator a little bit, see [28]

for more details).

It is clear that both DL
Mc

+,T,±,APS
are G-equivariant. Moreover, since there is

no critical point of H on ∂M c
+ = H−1(c), one verifies easily that when T ≥ 0

is large enough, DL
Mc

+,T,−,APS
is the formal adjoint of DL

Mc
+,T,+,APS

, thus one can

define the quantization space

QAPS,T

(
M c

+, L|Mc
+

)
=
(

KerDL
Mc

+,T,+,APS

)
−
(

KerDL
Mc

+,T,−,APS

)
.

We can now state the universal quantization formula proved in [28, Theorem

6.1] as follows.

Theorem 6.7. There exists T0 ≥ 0 such that for any T ≥ T0, the following

identity holds,

dimQ(M,L)G = dimQAPS,T

(
M c

+, L|Mc
+

)G
.
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From the above theorem, one sees that dimQAPS,T

(
M c

+, L|Mc
+

)G
does not

depend on T when T ≥ 0 is large enough. Indeed, if 0 ∈ g∗ is a regular value of

µ, one can further identify dimQAPS,T

(
M c

+, L|Mc
+

)G
, when T ≥ 0 is large enough,

with dimQ(LG), thus getting the original Guillemin-Sternberg conjecture.

Now in general, 0 ∈ g∗ might not be a regular value of µ. However, by an

observation due to Paradan and Vergne, since XH is a G-invariant vector field

on M c
+ tangent to the orbits of the G-action and µ−1(0) is the only zero set of

XH in M c
+, one has a well-defined transversally elliptic Dirac operator associated

to XH and the prequantized line bundle L, denoted by cXH,L. And its index

can be interpreted as a distribution on G. We denote its G-invariant index by

indG(cXH,L).

The following proposition identifies indG(cXH,L) and dimQAPS,T

(
M c

+, L|Mc
+

)G
for large enough T ≥ 0.

Proposition 6.8. There exists T0 ≥ 0 such that for any T ≥ T0, the following

identity holds,

indG
(
cXH,L

)
= dimQAPS,T

(
M c

+, L|Mc
+

)G
.

Proof. One first deforms in a G-invariant way the metrics and connections

near the boundary of M c
+ to the situation of product nature. Then extend these

geometric data to the complete manifold obtained by attaching a cylinder to the

boundary.

By using a standard argument going back to Atiyah-Patodi-Singer, one sees

that when T ≥ 0 is large enough, one can interpret dimQAPS,T (M c
+, L|Mc

+
)G by

the corresponding G-invariant L2-index of the extended operator on the complete

cylindrical manifold.

On the other hand, a result due to Braverman shows that the above G-invariant

L2-index equals exactly to indG(cXH,L).

By combining the above two observations, one completes the proof of the

Proposition. Q.E.D.

By combining Theorem 6.7 and Proposition 6.8, one gets analytically the fol-

lowing result, which should be contained in Paradan’s paper on his proof of the

Guillemin-Sternberg conjecture.

Proposition 6.9. The following identity holds,

dimQ(M,L)G = indG
(
cXH,L

)
.

Note that the right hand side now admits a purely topological interpretation.
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6.4. Quantization formula for proper actions. In this subsection, we de-

scribe a recent joint work with Mathai [56], where a generalization of the Guillemin-

Sternberg conjecture to the case of non-compact groups and manifolds is estab-

lished. This essentially solves a conjecture of Hochs and Landsman.

So from now on we assume that G and M are non-compact. The quantization

formula we proved is for the case where G acts on M properly with compact

quotient M/G. Note that in this case MG = µ−1(0)/G is still compact. Thus,

if we still assume that everything is G-invariant1 and that 0 ∈ g∗ is a regular

value of the moment map µ with G acting on µ−1(0) freely, then the quantity

dimQ(LG) is still well-defined.

The first difficulty one encounters in stating a possible quantization formula

in this situation is that since here M is non-compact, KerDL
± need not be finite

dimensional, so tautologically dim(KerDL
±)G might not be well-defined.

Nevertheless, Hochs and Landsman, by making use of theKK-theory, proposed

to define an integer which in the case where both G and M are compact, coincides

with dimQ(L)G. Then they made the conjecture that in the case where G is

unimodular, the integer they defined equals to dimQ(LG). Moreover, they proved

that their conjecture holds in the case where G admits a normal discrete subgroup

Γ such that G/Γ is compact.

In the joint work with Mathai [56], we first defined, in a direct analytic way,

what we call a G-invariant index (denoted by indG(DL
+)) associated to DL

+, and

then show that for this index, the following generalization of the Guillemin-

Sternberg conjecture holds.

Theorem 6.10. In the general case where G is merely assumed to be locally

compact, there exists p0 > 0 such that for any integer p ≥ p0,

indG
(
DLp

+

)
= ind

(
D
Lp

G
+

)
.(6.1)

Moreover, if g∗ admits an AdG-invariant metric, then one can take p = 1 in

(6.1).

In particular, in the case considered by Hochs and Landsman where G admits a

normal discrete subgroup Γ such that G/Γ is compact, G admits an AdG-invariant

metric so that one can take p = 1 in (6.1).

For completeness we now briefly recall our definition of indG(DL
+).

Since M/G is compact, one sees easily that there exists a compact subset Y of

M such that G(Y ) = M .

1This can always be achieved with the help of a cut-off function which is a smooth nonneg-
ative function c on M such that c has compact support and

∫
G
c(gx)2dg = 1 for any x ∈M .
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Let U , U ′ be two open subsets of M such that Y ⊂ U and that the closures

U and U ′ are both compact in M , and that U ⊂ U ′. The existence of U , U ′ is

clear.

Then one can construct a smooth function f : M → [0, 1] such that f |U = 1

and Supp(f) ⊂ U ′.2

We now consider the space Γ(Λ(0,∗)(T ∗M)⊗ L)G, the subspace of G-invariant

sections of Γ(Λ(0,∗)(T ∗M)⊗ L).

By using the property that G(Y ) = M , it is easy to see that there exists a

positive constant C > 0 such that for any s ∈ Γ(Λ(0,∗)(T ∗M)⊗ L)G,

‖s‖U,0 ≤ ‖fs‖0 ≤ ‖s‖U ′,0 ≤ C‖s‖U,0,(6.2)

where for V = U or U ′,

‖s‖2V,0 =

∫
V

〈s(x), s′(x)〉 dx.(6.3)

Let H0
f (M,L)G be the completion of the space {fs : s ∈ Γ(Λ(0,∗)(T ∗M)⊗L)G}

under the standard L2-norm ‖ · ‖0. Let H1
f (M,L)G be the completion of {fs :

s ∈ Γ(Λ(0,∗)(T ∗M)⊗ L)G} under a (fixed) G-invariant first Sobolev norm ‖ · ‖1.
Let Pf be the orthogonal projection from L2(M,L) to its subspace H0

f (M,L)G.

It is clear that PfD
L maps an element of H1

f (M,L)G into H0
f (M,L)G

Proposition 6.11. The induced operator

PfD
L : H1

f (M,L)G → H0
f (M,L)G(6.4)

is a Fredholm operator.

Proof. For any s ∈ Γ(Λ(0,∗)(T ∗M)⊗ L)G, one has

DL(fs) = fDLs+ c(df)s,(6.5)

where we identify the one form df with its metric dual (df)∗.

It is clear that Pf (fD
Ls) = fDLs, while in view of (6.2),

‖Pf (c(df)s)‖0 ≤ ‖c(df)s‖0 ≤ C1‖fs‖0(6.6)

for some constant C1 > 0.

From (6.2), (6.5) and (6.6), one verifies easily that∥∥PfDL(fs)
∥∥

0
≥ C2‖fs‖1 − C3‖fs‖0,(6.7)

for some constants C2, C3 > 0.

Since f is of compact support, from the Gärding type inequality (6.7) one

completes the proof of Proposition 6.11. Q.E.D.

2With this function, one can construct the cut-off function c by c(x) = f(x)
(
R

G
f(gx)2dg)1/2 for

any x ∈M .
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Remark 6.12. Besides the Fredholm property in Proposition 6.11, the following

self-adjoint property also holds: for any s, s′ ∈ Γ(Λ(0,∗)(T ∗M)⊗ L)G, one has〈
PfD

L(fs), fs′
〉

=
〈
fs, PfD

L (fs′)
〉
.(6.8)

Remark 6.13. If (Ũ , Ũ ′, f̃) is another triple of open subsets and the cut-off

function as above, then by taking the deformation ft = (1 − t)f + tf̃ , one gets

easily a continuous family of Fredholm operators PftD
L.

Now let DL
± : Γ(Λ(0, even

odd
)(T ∗M)⊗L)→ Γ(Λ(0, odd

even
)(T ∗M)⊗L) be the restriction

of DL on Γ(Λ(0, even
odd

)(T ∗M)⊗ L).

Let Hi
f,±(M,L)G (i = 0, 1) be the subspaces of Hi

f (M,L)G obtained by com-

pleting the even
odd

forms.

By Proposition 6.11 and (6.8), the induced operator PfD
L
+ : H1

f,+(M,L)G →
H0
f,−(M,L)G is Fredholm. Moreover its index, ind(PfD

L
+), does not depend on

the choice of f , in view of Remark 6.13. Similarly, it is also easy to see that

this index does not depend on the choices of G-invariant metrics and connections

involved.

Definition 6.14. We call ind(PfD
L
+) defined above the G-invariant index asso-

ciated to DL
+ and denote it by indG(DL

+).

In particular, one can show that in the case where both G and M are compact,

one has ind(PfD
L
+) = dimQ(L)G. Thus, tautologically ind(PfD

L
+) should be the

right generalization of dimQ(L)G in the non-compact case.

Now since both G and M are non-compact, one can not apply the Atiyah-Bott-

Segal-Singer equivariant index theorem to compute ind(PfD
L
+). Instead, we will

adapt the analytic approach developed in [23] to the current situation.

However, since now G is non-compact, there need not exist AdG-invariant

metrics on g∗. Thus the function H = |µ|2 as well as the Hamiltonian vector

field XH need not be G-invariant, and consequently, the deformed operator DL
T

defined in Subsection 6.1 need not be G-equivariant.

In order to get a G-equivariant deformation of DL, we set

XHG =

∫
G

c(gx)2XHg dg,(6.9)

where XHg denotes the pullback of XH by g ∈ G.

It is clear that XHG is G-invariant, and we can define the following deformed

operator of DL,

DL
T = DL +

√
−1T

2
c
(
XHG
)
,(6.10)

which is G-equivariant.
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However, the appearance of the cut-off function c in the definition of XHG makes

it difficult for the pointwise localization argument in [23, Section 2] to proceed

here. This is why we need to replace L by Lp for positive integer p.

More precisely, for any open neighborhood W of µ−1(0) in M , we can show

that the following analogue of [23, Theorem 2.1] holds.

Proposition 6.15. There exists p0 ≥ 1 such that for any integer p ≥ p0, there

exist C > 0, b > 0 verifying the following property: for any T ≥ 1 and s ∈
Ω0,∗(M,Lp)G with Supp(s) ∩ U ′ ⊂ U ′ \W , one has∥∥PfDLp

T (fs)
∥∥2

0
≥ C

(
‖fs‖21 + (T − b)‖fs‖20

)
.(6.11)

Moreover, if g∗ admits an AdG-invariant metric, then one can take p0 = 1.

This key localization property allows us to reduce the proof of Theorem 6.10

to sufficiently small neighborhoods of µ−1(0), on which one can apply the known

analytic technique (which goes back to Bismut-Lebeau) to complete the proof of

Theorem 6.10.

Remark 6.16. In the Appendix in [56], Bunke showed that our G-invariant index

indG(DL
+) actually admits a KK-theoretic interpretation, which implies that our

Theorem 6.10 indeed resolves the Hochs-Landsman conjecture essentially.

Remark 6.17. Indeed, one can show that both (KerDL
±)G are of finite dimension.

Moreover, in the case where G is unimodular, we showed in [56] that

indG
(
DL
)

= dim
(
KerDL

+

)G − dim
(
KerDL

−
)G
,(6.12)

which further justifies that Theorem 6.10 is a ”right” extension of the Guillemin-

Sternberg conjecture in the non-compact case.

7. Vector fields on manifolds, Poincaré-Hopf formula and the

Kervaire semi-characteristic number

The famous Poincaré-Hopf index formula for vector fields states that for any

vector field with isolated zeros on a closed manifold, one can define an integer

at each zero, called the index of the vector field at this zero, such that the Euler

characteristic number of the manifold equals to the sum of these indices.

The Poincaré-Hopf theorem is interesting mainly for even dimensional man-

ifolds, as a classical result of Hopf says that on any odd dimensional manifold

their always exists a vector field without any zero.

In his paper on the analytic proof of Morse inequalities, Witten also proposed

an analytic proof of the Poincaré-Hopf formula. But his proof holds only for the

case where the isolated zeros are non-degenerate.
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In [60], we gave an analytic proof of the Poincaré-Hopf formula which holds

without the non-degenerate assumption. It is based on an old idea due to Atiyah

in 1970’s and makes use of the η-invariant.

Another natural question relating to the Poincaré-Hopf formula is that whether

there is an odd dimensional analogue of Euler characteristic as well as a cor-

responding Poincaré-Hopf type formula for them. A natural candidate is the

Kervaire semi-characteristic defined in what follows.

Let M be a 4q + 1 dimensional closed oriented manifold. Then its Kervaire

semi-characteristic is defined by

k(M) ≡
2q∑
i=0

dimH2i(M ; R) mod 2Z,(7.1)

where H2i(M ; R) is the 2i-th cohomology of M .

An important property of k(M) is that it can be expressed through the mod

2 index of skew-adjoint elliptic operators in the sense of Atiyah-Singer. On the

other hand, it is not multiplicative under coverings. Thus it is more subtle in

some sense than the Euler characteristic.

In 1969, Atiyah proved his famous vanishing result for k(M): if there exist two

nowhere linearly dependent vector fields on M , then k(M) = 0.

Inspired by this vanishing result, Atiyah and Dupont proved a counting formula

for k(M) which is of Poincaré-Hopf type: let V1, V2 be two vector fields on M ,

and V1 and V2 are linearly dependent only at a finite number of points on M (we

call these points the singular points of {V1, V2}), then for any singular point x

one can define a mod 2 index indV1,V2(x) ∈ Z2. The formula of Atiyah-Dupont

then states

k(M) ≡
∑

indV1,V2(x) mod 2Z.(7.2)

However, the condition in formula (7.2) needs that V1 and V2 are linearly

dependent only at a finite number of points, while this condition does not hold

for all manifolds (indeed, it requires that the 4q-th Stiefel-Whitney class of M

vanishes). Thus a natural question is whether there is a generic counting formula

for k(M) which holds for all 4q + 1 oriented manifolds.

In [32], we proposed a positive answer to the above question. Our starting

point is the Hopf theorem we mentioned: on any 4q+ 1 closed oriented manifold

M there exists at least one nowhere zero vector field V . Let E be the normal

bundle to V in TM , then the generic self-intersection of E is a one dimensional

manifold consisting of a union of disjoint circles. For any such circle F , one can

define canonically a real line bundle oF (V ). The counting formula established in
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[32] can now be stated as follows,

k(M) ≡ # {F : oF (V ) is orientable on F} mod 2Z.(7.3)

Clearly, (7.3) holds for any 4q+1 manifolds, thus it can be viewed as a universal

counting formula for k(M). Moreover, a difference between (7.3) and the Atiyah-

Dupont formula (7.2) is that here we count the number of circles instead of

points.

The proof we gave in [32] for (7.3) is purely analytic. It is based on an analytic

interpretation of k(M) given in [27].

To be more precise, let gTM be a Riemannian metric on TM . Let d : Ω∗(M)→
Ω∗(M) be the exterior differential operator and d∗ : Ω∗(M)→ Ω∗(M) the formal

adjoint of d with respect to the inner product on Ω∗(M) naturally induced from

gTM . Let DV be defined by

DV = ĉ(V ) (d+ d∗)− (d+ d∗) ĉ(V ) : Ωeven(M)→ Ωeven(M).(7.4)

Then one verifies that DV is skew-adjoint and elliptic. Moreover, the following

formula is proved in [27],

k(M) = ind2 (DV ) ,(7.5)

where ind2 is the mod 2 index in the sense of Atiyah and Singer.

Now let E be the normal bundle to V in TM such that V is perpendicular to

E with respect to gTM . Let X be a transversal section of E. Then the zero set

of X, zero(X), represents the self-intersection of E.

For any T ∈ R, the following deformation of DV is introduced in [32],

DV,T = ĉ(V ) (d+ d∗ + T ĉ(X))− (d+ d∗ + T ĉ(X)) ĉ(V ),(7.6)

which may be thought of as a Witten type deformation for DV . Then one still

has

k(M) = ind2 (DV,T )(7.7)

for any T ≥ 0.

One then lets T → +∞ to get (7.3) by applying the analytic localization tech-

niques developed by Bismut-Lebeau. The line bundle oF (V ) shows up naturally

in the process.

A more topological proof of (7.3), as well as a more topological interpretation

of oF (V ), was later given by Zizhou Tang.

In [31], we extended the main result in [32] to the twisted bundle case. We

call the obtained result the mod 2 index theorem for twisted Signature operators.

It can be thought of as an odd dimensional analogue of the classical Hirzebruch

Signature theorem. It also generalizes a result of Farber and Turaev.
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On the other hand, besides giving an analytic interpretation of k(M), [27] also

contains an odd dimensional analogue of the Gauss-Bonnet-Chern formula.

In another paper [39], which is joint with Tang, we extended the Atiyah-Dupont

theory for vector fields on tangent bundles to the case of vector bundles. As

an application, we get the following non-existence theorem of almost complex

structures.

Theorem 7.1. (Tang-Zhang [39]) Let CP
2k

denote the ”negative” complex pro-

jective space which carries the opposite orientation with respect to the standard

complex projective space CP 2k. Then for any k > 1, CP
2k

admits no almost

complex structure.

8. Elliptic genus: vanishing and rigidity results in K-theory

A famous vanishing theorem of Atiyah-Hirzebruch states that if a closed ori-

ented spin manifold M admits a nontrivial circle action, then Â(M) = 0. This

vanishing result was applied by Witten formally on the loop space LM , and ob-

tained what we now call the Witten rigidity theorem. Here, the Â-genus of LM
was interpreted as the elliptic genus on M . This is the way Witten derived his

rigidity result for elliptic genus. Natually, this proof is still a physics proof.

The first rigorous proof of the Witten rigidity was given by Taubes by analytic

method. Later, Bott and Taubes simplified Taubes’ proof by using the Lefschetz

fixed point theorem. An even simpler proof was in turn found by Kefeng Liu

who used effectively the properties of modular forms involved. Moreover, Liu

also obtained along his proof several vanishing results concerning elliptic genus.

From the point of view of index theory, a natural question is whether one can

generalize the Witten rigidity to the family case. The positive answer to this ques-

tion appeared in 1999, when Liu and Xiaonan Ma proved such a generalization

by extending Liu’s method accordingly.

The key feature of the theorem of Liu-Ma is that they proved the rigidity of

the Chern character of the index bundle under consideration. Thus, the natural

question still remained whether the index bundle itself admits certain rigidity

property.

In the joint papers [33], [40] with Liu and Ma, we solved the above problem

by establishing the rigidity theorem for the index bundle associated to elliptic

genus in the K-theoretic sense. Our proof generalizes in principle the original

proof of Taubes, in which we applied the techniques developed in [22] to simplify

many treatment. In particular, the K-theoretic generalization to families of the

Atiyah-Bott-Segal-Singer equivariant index theorem was established at the very

beginning of the proof.
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In [35], a generalization of the above K-theoretic rigidity to Spinc-manifolds is

given.

9. Vanishing theorems on foliations

In the joint paper [36] with Kefeng Liu, we gave a geometric interpretation of

the Bott connection of foliation by using the idea of adiabatic limits. Our original

motivation is to give a more geometric proof of the following vanishing theorem

of Connes.

Theorem 9.1. If M is an oriented closed manifold. Let F ⊂ TM be an oriented

spin integrable subbundle of TM . We assume that there is a metric on F such

that it induces pointwise positive scalar curvature on any leaf induced by F . Then

Â(M) = 0.

When F = TM , this is the classical theorem of Lichnerowicz.

The original proof of Connes is highly noncommutative. In [36], we applied

our geometric interpretation of the Bott connection to give a geometric proof of

the Connes vanishing theorem for what we called almost Riemannian foliation

which contains Riemannian foliations as special cases. The general case seems

still lacks a purely geometric proof.

In another paper [37], jointly with Liu and Ma, we proved certain generaliza-

tions of the vanishing theorem of Liu for elliptic genus to the case of foliations.

As a special case, we proved the following generalization of the famous Atiyah-

Hirzebruch vanishing theorem to foliations.

Theorem 9.2. If M is an oriented closed manifold. Let F ⊂ TM be an oriented

spin integrable subbundle of TM . We assume that F admits a nontrivial circle

action. Then Â(M) = 0.

10. Sub-signature operators and applications

In [19], for any oriented subbundle E of the tangent bundle TM of an oriented

closed manifold M , we constructed an elliptic operator DE, such that

indDE =
〈
L̂(E)e(TM/E), [M ]

〉
.(10.1)

In particular, by taking E to be zero or TM , we get the Gauss-Bonnet-Chern

theorem and the Hirzebruch Signature theorem respectively.

The key point of the above construction is that it does not use any spin con-

dition. Moreover, the local index computation still applies to DE.

It turns out that the main idea involved in the above construction has certain

applications, for examples, in [27], [31], [32], [36], [37].
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On another direction of application, we applied DE to fibered manifolds and

extended the Atiyah-Patodi-Singer invariant associated with unitary flat vector

bundles to the non-unitary case, and established a Riemann-Roch type theorem,

under fibration, for these invariants. The main technique here is the computation

of the adiabatic limit of the η-invariants of the involved operators.

In the joint paper [52] with Xiaonan Ma, we applied these techniques to give an

alternate proof of Bismut-Lott’s Riemann-Roch formula for flat vector bundles.

In doing so, we introduced the following deformation for flat vector bundles.

Let (F,∇F ) be a complex flat vector bundle over a manifold M . Let gF be a

Hermitian metric on F . Set

ω
(
F, gF

)
=
(
gF
)−1∇FgF .(10.2)

Then

∇F,u = ∇F +
1

2
ω
(
F, gF

)
(10.3)

is a unitary connection on F .

For any a ∈ R, we introduced in [52] the following deformation

∇F,u(a) = ∇F,u +

√
−1a

2
ω
(
F, gF

)
.(10.4)

Then we get a family of unitary connections on F . By studying the η-invariants

of Dirac operators associated to these connections, we can get a new proof of the

Bismut-Lott theorem. Moreover, an extension of the Bismut-Lott theorem from

the original R version to the C/Q version is also obtained in this framework.

In two other papers [48], [65], also jointly with Ma, we applied the above defor-

mation to get new properties of η-invariants associated to non-unitary connections

on twisted bundles, by identifying the real and imaginary parts respectively. In

particular, we showed analytically that one can define a holomorphic function on

the representation space of the fundamental group of a smooth manifold which

has the Ray-Singer analytic torsion as its absolute value.

In a recent joint paper [57] with Dai, we showed how the Bismut-Lott real an-

alytic torsion form can show up by considering the adiabatic limit of the Bismut-

Freed connection associated to certain families of sub-signature operators.

11. An index theorem for Toeplitz operators on manifolds with

boundary

The classical Toeplitz operator on circle, as well as the corresponding index

theorem due to Gohberg-Krein, has a natural extension to odd dimensional man-

ifolds, described as follows.
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Let M be an odd dimensional closed oriented spin manifold. Let gTM be a

metric on TM . Let D : Γ(S(TM)) → Γ(S(TM)) be the Dirac operator acting

on the spinor bundle S(TM). Then D is elliptic and formally self-adjoint.

Let

L2
≥0(S(TM)) =

⊕
λ≥0

Eλ

be the direct sum of the eigenspaces associated to nonnegative eigenvalues of D.

Let P≥0 be the orthogonal projection from L2(S(TM)) to L2
≥0(S(TM)).

Let CN |M be the trivial vector bundle on M carrying the trivial metric and

connection.

Let g ∈ Aut(CN |M) be an automorphism of CN |M .

The associated Toeplitz operator Tg can be defined as follows,

(11.1) Tg =
(
P≥0 ⊗ IdCN |M

)
IdS(TM) ⊗ g

(
P≥0 ⊗ IdCN |M

)
:

L2
≥0(S(TM))⊗CN |M → L2

≥0(S(TM))⊗CN |M .

One can prove that Tg is a Fredholm operator. Its index is computed by

Baum-Douglas as an application of the Atiyah-Singer index theorem for elliptic

pseudo-differential operators.

Index Theorem for Tg. The following identity holds,

indTg =
〈
Â(TM)ch(g), [M ]

〉
,(11.2)

where ch(g) is the odd Chern character associated to g.

There is also a heat kernel proof of the above index theorem through η-

invariants. In such a proof, one first identifies indTg with certain spectral flow,

then computes this spectral flow by evaluating the variation of η-invariants.

In the joint paper [50] with Xianzhe Dai, we established a generalization of

the above index theorem to the case of manifolds with boundary. Our result can

be thought of as an odd dimensional analogue of the Atiyah-Patodi-Singer index

theorem for Dirac operators on manifolds with boundary.

In the process, we also constructed an η-invariant associated to g on even

dimensional manifolds, which is of independent interests.

We now briefly summarize our main result in the following subsections.

11.1. Toeplitz operators on manifolds with boundary. Let M be an odd

dimensional oriented spin manifold with boundary ∂M . We assume that M car-

ries a fixed spin structure. Then ∂M carries the canonically induced orientation

and spin structure. Let gTM be a Riemannian metric on TM such that it is of
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product structure near the boundary ∂M . That is, there is a tubular neighbor-

hood, which, without loss of generality, can be taken to be [0, 1)×∂M ⊂M with

∂M = {0} × ∂M such that

gTM
∣∣
[0,1)×∂M = dx2 ⊕ gT∂M ,

where x ∈ [0, 1) is the geodesic distance to ∂M and gT∂M is the restriction of

gTM on ∂M . Let ∇TM be the Levi-Civita connection of gTM . Let S(TM) be

the Hermitian bundle of spinors associated to (M, gTM). Then ∇TM extends

naturally to a Hermitian connection ∇S(TM) on S(TM).

Let E be a Hermitian vector bundle over M . Let∇E be a Hermitian connection

on E. We assume that the Hermitian metric gE on E and connection ∇E are of

product structure over [0, 1)× ∂M . That is, if we denote π : [0, 1)× ∂M → ∂M

the natural projection, then

gE
∣∣
[0,1)×∂M = π∗

(
gE
∣∣
∂M

)
, ∇E

∣∣
[0,1)×∂M = π∗

(
∇E
∣∣
∂M

)
.

For any X ∈ TM , we extend the Clifford action c(X) of X on S(TM) to an

action on S(TM)⊗E by acting as identity on E, and still denote this extended

action by c(X). Let ∇S(TM)⊗E be the tensor product connection on S(TM)⊗E
obtained from ∇S(TM) and ∇E.

The canonical (twisted) Dirac operator DE is defined by

DE =
dimM∑
i=1

c(ei)∇S(TM)⊗E
ei

: Γ(S(TM)⊗ E) −→ Γ(S(TM)⊗ E),

where e1, . . . , edimM is an orthonormal basis of TM . One verifies easily that over

[0, 1)× ∂M , one has

DE = c

(
∂

∂x

)(
∂

∂x
+ π∗DE

∂M

)
,

where DE
∂M : Γ((S(TM) ⊗ E)|∂M) → Γ((S(TM) ⊗ E)|∂M) is the induced Dirac

operator on ∂M . The later is elliptic and self-adjoint.

We now introduce the APS type boundary conditions for DE.

Let L2
+((S(TM) ⊗ E)|∂M) be the space of the direct sum of eigenspaces of

positive eigenvalues of DE
∂M . Let P∂M denote the orthogonal projection operator

from L2((S(TM)⊗ E)|∂M) to L2
+((S(TM)⊗ E)|∂M) (for simplicity we suppress

the dependence on E).

As is well known, the APS projection P∂M is an elliptic global boundary condi-

tion for DE. However, to get self adjoint boundary conditions, we need to modify

it by a Lagrangian subspace of kerDE
∂M , namely, a subspace L of kerDE

∂M such

that c( ∂
∂x

)L = L⊥∩(kerDE
∂M). Since ∂M bounds M , by the cobordism invariance

of the index, such Lagrangian subspaces always exist.
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The modified APS projection is obtained by adding the projection onto the

Lagrangian subspace. Let P∂M(L) denote the orthogonal projection operator

from L2((S(TM)⊗ E)|∂M) to L2
+((S(TM)⊗ E)|∂M)⊕ L:

P∂M(L) = P∂M + PL,

where PL denotes the orthogonal projection from L2((S(TM)⊗ E)|∂M) to L.

The pair (DE, PE
∂M(L)) forms a self-adjoint elliptic boundary problem, and

P∂M(L) is called an Atiyah-Patodi-Singer boundary condition associated to L.

We will also denote the corresponding elliptic self-adjoint operator by DE
P∂M (L).

Let L2,+
P∂M (L)(S(TM)⊗E)) be the space of the direct sum of eigenspaces of non-

negative eigenvalues of DE
P∂M (L). This can be viewed as an analog of the Hardy

space. We denote by PP∂M (L) the orthogonal projection from L2(S(TM)⊗E) to

L2,+
P∂M (L)(S(TM)⊗ E)).

Let N > 0 be a positive integer, let CN be the trivial complex vector bundle

over M of rank N , which carries the trivial Hermitian metric and the trivial

Hermitian connection. Then all the above construction can be developed in the

same way if one replaces E by E ⊗ CN . And all the operators considered here

extend to act on CN by identity. If there is no confusion we will also denote them

by their original notation.

Now let g : M → GL(N,C) be a smooth automorphism of CN . With simple

deformation, we can assume that g is unitary. That is, g : M → U(N). Further-

more, we make the assumption that g is of product structure over [0, 1) × ∂M ,

that is,

g|[0,1)×∂M = π∗ (g|∂M) .

Clearly, g extends to an action on S(TM)⊗ E ⊗CN by acting as identity on

S(TM)⊗ E. We still denote this extended action by g.

Since g is unitary, one verifies easily that the operator gP∂M(L)g−1 is again an

orthogonal projection on L2((S(TM) ⊗ E ⊗ CN)|∂M), and that gP∂M(L)g−1 −
P∂M(L) is a pseudodifferential operator of order less than zero. Moreover, the

pair (DE, gP∂M(L)g−1) forms a self-adjoint elliptic boundary problem. We denote

its associated elliptic self-adjoint operator by DE
gP∂M (L)g−1 . Thus DE

gP∂M (L)g−1 has

the boundary condition which is the conjugation by g of the previous APS type

condition.

The necessity of using the conjugated boundary condition here is from the fact

that, if s ∈ L2(S(TM) ⊗ E ⊗ CN) verifies P∂M(L)(s|∂M) = 0, then gs verifies

gP∂M(L)g−1((gs)|∂M) = 0.

Thus, consider also the analog of Hardy space for the conjugated boundary

value problem, L2,+
gP∂M (L)g−1(S(TM)⊗E⊗CN) which is the space of the direct sum
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of eigenspaces of nonnegative eigenvalues of DE
gP∂M (L)g−1 . Let PgP∂M (L)g−1 denote

the orthogonal projection from L2(S(TM) ⊗ E ⊗CN) to L2,+
gP∂M (L)g−1(S(TM) ⊗

E ⊗CN).

Definition 11.1. The Toeplitz operator TEg (L) is defined by

TEg (L) = PgP∂M (L)g−1 ◦ g ◦ PP∂M (L) :

L2,+
P∂M (L)

(
S(TM)⊗ E ⊗CN

)
→ L2,+

gP∂M (L)g−1

(
S(TM)⊗ E ⊗CN

)
.

One verifies that TEg (L) is a Fredholm operator.

11.2. Perturbation. The analysis of the conjugated elliptic boundary value

problem DE
gP∂M (L)g−1 turns out to be surprisingly subtle and difficult. To cir-

cumvent this difficulty, we now construct a perturbation of the original problem.

Let ψ = ψ(x) be a cut off function which is identically 1 in the ε-tubular

neighborhood of ∂M (ε > 0 sufficiently small) and vanishes outside the 2ε-tubular

neighborhood of ∂M . Consider the Dirac type operator

Dψ = (1− ψ)DE + ψgDEg−1.

The effect of this perturbation is that, near the boundary, the operator Dψ

is actually given by the conjugation of DE, and therefore, the elliptic boundary

problem (Dψ, gP∂M(L)g−1) is now the conjugation of the APS boundary problem

(DE, P∂M(L)).

All previous consideration applies to (Dψ, gP∂M(L)g−1) and its associated self-

adjoint elliptic operatorDψ
gP∂M (L)g−1 . In particular, we have the perturbed Toeplitz

operator

(11.3) TEg,ψ(L) = Pψ
gP∂M (L)g−1 ◦ g ◦ PP∂M (L) :

L2,+
P∂M (L)

(
S(TM)⊗ E ⊗CN

)
→ L2,+,ψ

gP∂M (L)g−1

(
S(TM)⊗ E ⊗CN

)
,

where Pψ
gP∂M (L)g−1 is the APS projection associated to Dψ

gP∂M (L)g−1 .

We will also need to consider the conjugation of Dψ:

Dψ,g = g−1Dψg = DE + (1− ψ)g−1[DE, g].(11.4)

11.3. An invariant of η type for even dimensional manifolds. Given an

even dimensional closed spin manifold X, we consider the cylinder [0, 1]×X with

the product metric. Let g : X → U(N) be a map from X into the unitary group

which extends trivially to the cylinder. Similarly, E → X is an Hermitian vector

bundle which is also extended trivially to the cylinder. We make the assumption

that indDE
+ = 0 on X.
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Consider the analog of Dψ,g as defined in (11.4), but now on the cylinder

[0, 1]×X and denote it by Dψ,g
[0,1]. We equip it with the boundary condition PX(L)

on one of the boundary component {0} × X and the boundary condition Id −
g−1PX(L)g on the other boundary component {1}×X (Note that the Lagrangian

subspace L exists by our assumption of vanishing index). Then (Dψ,g
[0,1], PX(L), Id−

g−1PX(L)g) forms a self-adjoint elliptic boundary problem. For simplicity, we will

still denote the corresponding elliptic self-adjoint operator by Dψ,g
[0,1].

Let η(Dψ,g
[0,1], s) be the η-function of Dψ,g

[0,1] which, when Re(s) >> 0, is defined

by

η(Dψ,g
[0,1], s) =

∑
λ 6=0

sgn(λ)

|λ|s
,

where λ runs through the nonzero eigenvalues of Dψ,g
[0,1].

One knows that the η-function η(Dψ,g
[0,1], s) admits a meromorphic extension to

C with s = 0 a regular point (and only simple poles). One then defines the

η-invariant of Dψ,g
[0,1], denoted by η(Dψ,g

[0,1]), to be the value at s = 0 of η(Dψ,g
[0,1], s),

and the reduced η-invariant by

η(Dψ,g
[0,1]) =

dim kerDψ,g
[0,1] + η(Dψ,g

[0,1])

2
.

Definition 11.2. We define an invariant of η type for the complex vector bun-

dle E on the even dimensional manifold X (with vanishing index) and the K1

representative g by

η(X, g) = η(Dψ,g
[0,1])− sf

{
Dψ,g

[0,1](s); 0 ≤ s ≤ 1
}
,(11.5)

where ”sf” is the notation for spectral flow and Dψ,g
[0,1](s) is a path connecting

g−1DEg with Dψ,g
[0,1] defined by

Dψ,g(s) = DE + (1− sψ)g−1[DE, g]

on [0, 1]×X, with the boundary condition PX(L) on {0}×X and the boundary

condition Id− g−1PX(L)g at {1} ×X.

We proved in [50, Section 5] that η(X, g) does not depend on the cut off function

ψ and is thus a well-defined analytic invariant.

In our application, we will apply this construction to the cylinder [0, 1]× ∂M .

i.e., X = ∂M is a boundary.
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11.4. An index theorem for TEg (L). Recall that g : M → U(N). Thus g−1dg

defines a Γ(End(CN))-valued 1-form on M . Let ch(g) denote the odd Chern

character form of g defined by (cf. [66, Chap. 1])

ch(g) =

dim M−1
2∑

n=0

n!

(2n+ 1)!
Tr
[(
g−1dg

)2n+1
]
.

Recall also that ∇TM is the Levi-Civita connection associated to the Riemann-

ian metric gTM , and ∇E is the Hermitian connection on E. Let RTM = (∇TM)2

(resp. RE = (∇E)2) be the curvature of ∇TM (resp. ∇E).

Let PM denote the Calderón projection associated to DE⊗CN
on M . Then PM

is an orthogonal projection on L2((S(TM)⊗E⊗CN)|∂M), and that PM−P∂M(L)

is a pseudodifferential operator of order less than zero.

Let τµ(gP∂M(L)g−1, P∂M(L),PM) ∈ Z be the Maslov triple index in the sense

of Kirk and Lesch.

We can now state our main result as follows.

Theorem 11.3. The following identity holds,

(11.6)

indTEg (L) = −
(

1

2π
√
−1

)(dimM+1)/2 ∫
M

Â
(
RTM

)
Tr
[
exp

(
−RE

)]
ch(g, d)

− η(∂M, g) + τµ
(
gP∂M(L)g−1, P∂M(L),PM

)
.

Remark 11.4. The formula (11.6) is closely related to the so called WZW theory

in physics. When ∂M = S2 or a compact Riemann surface and E is trivial,

the local term in (11.6) is precisely the Wess-Zumino term, which allows an

integer ambiguity, in the WZW theory. Thus, our eta invariant η(∂M, g) gives an

intrinsic interpretation of the Wess-Zumino term without passing to the bounding

3-manifold. In fact, for ∂M = S2, it can be further reduced to a local term on

S2 by using Bott’s periodicity.

The following immediate consequence is of independent interests.

Corollary 11.5. The number(
1

2π
√
−1

)(dimM+1)/2 ∫
M

Â
(
RTM

)
Tr
[
exp

(
−RE

)]
ch(g, d) + η(∂M, g)

is an integer.

Our proof of Theorem 11.3 given in [50] divides into two steps. In the first

step, we proved by using heat kernel method an index theorem for the perturbed

Toeplitz operator defined in (11.3). Then in the second step we connected the
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index of the perturbed Toeplitz operator and that of the (un-perturbed) Toeplitz

operator by using spectral flow.

11.5. A conjectural relation between two cylindrical η-invariants. We

have pointed out that the eta type invariant η(X, g), which we introduced in

Subsection 11.3 using a cut off function, is in fact independent of the cut off

function. This leads naturally to the question of whether η(X, g) can actually be

defined directly. We now state a conjecture for this question.

Let D[0,1] be the Dirac operator on [0, 1]×X. We equip the boundary condition

gPX(L)g−1 at {0} ×X and the boundary condition Id− PX(L) at {1} ×X.

Then (D[0,1], gPX(L)g−1, Id − PX(L)) forms a self-adjoint elliptic boundary

problem. Let D
[0,1]

gPX(L)g−1,PX(L) denote the corresponding elliptic self-adjoint oper-

ator.

Let η(D
[0,1]

gPX(L)g−1,PX(L), s) be the η-function of D
[0,1]

gPX(L)g−1,PX(L). By results due

to Grubb and Kirk-Lesch, one knows that the η-function η(D
[0,1]

gPX(L)g−1,PX(L), s)

admits a meromorphic extension to C with poles of order at most 2. One then

defines the η-invariant of D
[0,1]

gPX(L)g−1,PX(L), denoted by η(D
[0,1]

gPX(L)g−1,PX(L)), to be

the constant term in the Laurent expansion of η(D
[0,1]

gPX(L)g−1,PX(L), s) at s = 0.

Let η(D
[0,1]

gPX(L)g−1,PX(L)) be the associated reduced η-invariant.

Conjecture 11.6. The following identity holds,

η(X, g) = η
(
D

[0,1]

gPX(L)g−1,PX(L)

)
.

If this conjecture would be correct, then the result stated in [62, Theorem 5.2]

would also be correct. A previous version of [50] was devoted to a proof of [62,

Theorem 5.2], and a referee pointed out a gap in that version. This is why we

later introduced a new η-type invariant, which makes the picture clearer.
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Abstract .  We present a direct analytic proof of the Guillemin-Sternberg geometric quantization 
conjecture [2]. Further extensions are also obtained. 

R~sum~. 

Ri~duc t i on  s y m p l e c t i q u e  et  q u a n t i f i c a t i o n  

Nous prdsentons une preuve analytique d'une conjecture de Guillemin-Sternberg [2], 
ainsi que des extensions de ce rdsultat. 

Version f ranfa ise  abr$g~e 

Soit G un groupe de Lie compact connexe agissant sur une vari6t6 symplectique compacte 
(M, ~v) par une action hamiltonienne. Soit (L, V L) un fibr6 en droites hermitien muni d'une 
connexion hermitienne, suppos6 G-6quivariant, et tel que V z'2 - 2~ w. Soit # : M ~ g* 
l'application moment associ6e. Soit J u n e  structure presque complexe G-invariante sur T M ,  telle 
que 9TM (u, V) = w (u, Jv)  est une m6trique riemannienne sur T M .  

Soit D z : [2 0, * (M, L) ~ ~o, .  (M, L) l'op6rateur Spin c de Dirac associ6 (voir [4]). Alors, on a 
une repr6sentation virtuelle R R  (M, L) de G donn6e par 

R R  (M, L) = f/o, pair (M, L) N ker D L - f~o, impair (M, L) n ker D g. 

Supposons que 0 E g* soit une valeur r6guli~re de #, et que G agisse librement sur #-1  (0). On note 
M c  = 1 ~-1 (O)/G la r6duction symplectique de Marsden-Weinstein. Le fibr6 L c  = (LI~-I (o)/G) est 
un fibr6 hermitien en droites sur Me .  On obtient ainsi un espace virtuel R R  (MG, Lc) .  

Conjecture (Guillemin-Sternberg, [2]) On a 

dim R R  (M, L) ~ = dim R R  (Me,  Lc ) .  

Note pr~sentc~e par Jean-Michel BISMUT. 
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Dans cette Note, nous pr6sentons une preuve analytique de cette conjecture et on obtient 6galement 
des extensions de ce r6sultat. Ainsi, si (M, w) est kahl6rienne, on montre des in6galit6s de type 
Morse relative h la partie invariante de la cohomologie de L 

In this Note, we present a direct analytic proof of the Guillemin-Sternberg geometric quantization 
conjecture [2]. Besides deriving an alternative proof of this conjecture in the full nonabelian group 
action case, our methods also lead to immediate generalizations in various contexts. Details and 
further applications will appear in [7]. 

1. The Guillemin-Sternberg conjecture 

Let (M, w) be a closed symplectic manifold such that there is a Hermitian line bundle L over M 
admitting a Hermitian connection ~TL with the property that ~7L, 2 27r = ./-=2-W. Let J be an almost 

complex structure on T M  so that gTU (U, V) = 03 (U, Jr)  defines a riemannian metric on TM.  
With these data, one can construct canonically a SpinC-Dirac operator (see [4, Appendix D]) 

(1.1) D L : f~o,, (M, L) ---* ~o, ,  (M, L), 

which gives rise to the finite dimensional virtual vector space 

(1.2) R R  (M, L) = flo . . . . .  (M, L) N ker D L - ~o, odd (M, L) N ker D L. 

Now suppose that a compact connected Lie group G acts on (M, w) in a Hamiltonian way, which 
lifts to L naturally and preserves J ,  V L, etc. Let # : M ~ g* be the corresponding moment map. 
We assume that 0 E g* is a regular value of #, and for simplicity, that G acts on #-1  (0) freely. Then 
MG = #-1 (O)/G is a smooth manifold. On the other hand, w descends to a symplectic form WG on 
MG. Thus we get the Marsden-Weinstein symplectic reduction space (MG, WG). The pair (L, V L) 
also descends to a pair (LG, V LG ) over MG. Then one defines the corresponding SpinC-Dirac operator 
and in particular the virtual vector space RR(MG,  LG). 

Since G preserves everything, it commutes with D L. Thus R R  (M, L) is a virtual representation 
space of G. Denote by R R  (M, L) G the G-trivial representation component of R R  (M, L). 

THEOREM 1.1. -- dim R R ( M ,  L) G = dim R R ( M a ,  LG). 

Theorem 1.1 was first proved by Guillemin-Sternberg [2] in the holomorphic category when 
(M, 9 TM) is K~ihler. They raised it as a conjecture for general symplectic manifolds. When G is 
abelian, this conjecture was proved by Meinrenken [5] and Vergne ([8], [9]). A proof for the full 
nonabelian case was given by Meinrenken [6]. 

2. Quantized Witten deformation and its Laplacian 

For any X 6 F ( T M )  with complexification X = X1 + X2 6 F ( T ( I ' ° ) M  ® T(° ' I )M) ,  set 
c (X) = x/2X~" A - x / 2 i x 2 ,  where X~' E F (T* (o, 1)M) is the metric dual of X1 (see [1], Section 5). 
Then c (X) extends to an action on f~o,. (M, L). 

Let g and thus g* be equipped with an Ad G-invariant metric. Let 1#]2 be the norm square of the 
moment map. Let Jdlltl 2 6 F (T 'M)  ~_ F (TM) be the 1-form introduced by Witten [10]. 
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DEFINITION 2.1. -- For any T E R, the quantized Witten symplectic deformation operator DT is the 
formally self-adjoint first order elliptic differential operator given by 

(2.1) DT = D L ~-]-Y2 c(Jdl#lZ) : a °,* (M, L) ~ f~o,, (M, L). 

Remark 2.2. - If J is integrable, so that (M, 9 TM) is K~ihler, one has 

(2.2) DT = V/2(e -Tlu12/2 0 n e TI~'[~/2 4- e TI~'I~/2 (OL)* e-T[,12/2). 

Also, a similar deformation has been used by Vergne [9] on the symbol level. 
• ~ . v ~ d i r n  G 

Let hi,  .. hdimG be an orthonormal base of g* Then It has the expression /z = z-,i=1 #4hi, 
where each #i is a real function on M. Let Vi be the killing vector field on M induced by the dual 
of hi. Using (2.1) and the Kostant formula [3] for the infinitesimal action of G on L, one obtains 
the following Bochner type formula. 

THEOREM 2.3. -- The following identity holds, 

(2.3) 
d i m  G d i m  G 2 

D~= DL'2 + V/-L-TT Z c(dm)c(~)+4~rTIp[2 +T2[ ~ mV~ 
4=1  4=1 

d i m  G d i m  g l  

-~- ~/I"~T Z 1~4 (~ E ~(~J)C(~cJ Vi)-- Tr [~7(1'0)V4IT(I'°)M]- 2Lgi) ' 
i = 1  j = l  

where Lt: denotes the infinitesimal action of Vi on [2 0, * (M, L), and V (1' o) denotes the connection 
on T O ' ° )M induced from the Levi-Civita connection V of 9 TM. 

3. Localization to neighbourhoods of  p-1 (0) 

In this section, we show that the proof of Theorem 1.1 can be localized to arbitrary small 
neighbourhoods of p-1 (0). The main difficulty arises from the fact that the nonzero critical point 
set of I#l 2 may not be nondegenerate in the sense of Bott. We overcome this difficulty by doing 
pointwise estimates instead of global estimates used in the standard analytic Morse theory. 

Let f ~  * (M, L) denote the G-invariant part of [2 0, * (M, L). 

THEOREM 3.1. -- For any open neighbourhood U of p -1 (0), there exist constants C > O, b > 0 such 
that for any T >_ 1 and any s C [2~* (M, L) with Supps C M \ U ,  

(3.1) I IDTsl lg _> C(llsll  + (T - b)118112). 

We prove Theorem 3.1 in two steps. The first step is to prove the following key pointwise estimate• 

PROPOSITION 3.2. -- Let 

d i m  G 

(3.2) QT = P 2 + 2 x /ZI  T E #i Lv, 
i = 1  

act on [2 0, * (M, g). For any x E M \ U ,  there exist an open neighborhood W of x and constants 
Cx > O, bx > 0 such that if s E f~°' * ( M, L) with Supps C W,  then for any T >_ 1, 

(3.3) (QTs, ~) >_ Cx (llsll~ + (T - bx)llsllg). 
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If x is not a critical point of l/z[ 2, the proof of (3.3) is trivial. We now assume that x is a nonzero 
critical point of [#l 2. Then one can find an orthonormal basis f l ,  . . . ,  fdimM of T~M with the 
corresponding normal coordinates yl, . . . ,  YdlmM such that near x, Ittl 2 can be written as 

dim AI 

(3.4) l# (V)I 2 -- It' (x)l 2 + ajyy + O (Iv13), 
j = l  

where the constants aj's may possibly be zero. 
From (3.4), one can see directly that at x, 

dim G dim G 

i=1 i=1 
dimM 

_ > -  ~ laj[. 
j= l  

dim M 

E c(fj)c(Vfj Yi) -- T r [ ~  7(1'0) W/]) 
j = l  

From (3.5), (3.4), (3.2) and (2.3), one gets (3.3). 
The second step of the proof of Theorem 3.1 is to glue together the pointwise estimates in 

Proposition 3.2. The key point is that when restricted to ft~* (M, L), one has L~, = o. Thus 
D~ -= QT on ft~ * (M, L). On the other hand, since M \ U  is compact, finitely many glueing suffice. 

4. The analysis n e a r  /Z -1  (0)  and a proof of Theorem 1.1 

Theorem 3.1 allows us to reduce the proof of Theorem 1.1 to a sufficiently small open neighbourhood 
U of #-1 (0). We take U to be equivariant. 

Since 0 E g* is a regular value of #, #-1  (0) is a nondegenerate critical submanifold of I#12 
in the sense of Bott. One can then apply directly here methods and techniques of the paper of 
Bismut-Lebeau [1, Sections 8, 9] and localize everything at #-1  (0). As G acts on #-1  (0) freely, 
G ~ tt -1 (0) -L Mc = M / G  is a principal fibration. Furthermore, the vertical G-direction covariant 
derivatives are bounded operators when restricted to G-invariant subspaces. This eventually pushes 
everything down to Me.  

In summary, we get a self-adjoint SpinC-Dirac type operator DQ on M a  acting on [2 0, *(Mc,  LG), 
having the properties given in Theorem 4.1. To our surprise, it turns out to be non identical to the 
SpinC-Dirac operator D zC. 

THEOREM 4.1. -- There exist c > O, To > 0 such that there are no nonzero eigenvalues of D~ in 
[0, c], and such that for any T > To, the number of eigenvalues of D~.]~. (M,L) in [0, c] is equal 

to dim (ker DQ). 

Now, all arguments used to prove Theorem 4.1 preserve the Z2-grading of the Spine-bundles. 
Theorem 1.1 then follows from Theorem 4.1 easily. 

Remark 4.2. - For a precise form of DQ in the holomorphic category, see (6.1). 

Remark 4.3. - If G does not act freely on tt -1 (0), then M c  is an orbifold. In this case, the above 
arguments can be modified easily to prove the orbifold version of Theorem 1.1. 

Remark 4.4. - Alternatively, one can first take the principal fibration G --~ U --~ U/G and then 
apply [1] to U/G to prove Theorem 4.1. 
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5. Two immediate extensions 

Arguments  in Sections 2 to 4 also lead immediately to further extensions of  Theorem 1.1. Here we 
only state two of  them. The first is a dual version of  Theorem 1.1. 

THEOREM 5.1. - The following identity holds: 

d im R R ( M ,  L -1 ® det  ( T ( ° ' I ) M ) )  C = (--1)  dimG d im RR(MG, L~ ~ ® det  (T(° '  1 )Me)) .  

The second result can be viewed as an invariance property of  symplectic quotients. It has also been 
obtained independently by Meinrenken and Sjamaar. 

THEOREM 5.2. - - / f # - X  (0) is not empty, then we have the equality of Todd genus, (Td  (TM),  [M]) = 
(Td  (TMG), [MG]). 

6. Holomorphic Morse inequalities 

We now assume that (M,  w) is Kiihler and work in the holomorphic category. Then (MG, we) is 
also Kiihler. The line bundle L (resp.  L c )  is now holomorphic over  M (resp. MG). 

Let h : MG ~ R +  be defined by h (x) = vol (Gx)  = vol (Tr -1 (z)) .  Then the Dirac type operator 
DQ in Section 4 can be written precisely here as 

(6.1) DO " = x/~ (hi /2 ~Lc h-1/2 + h-1/2 (OLG)* hl /2) .  

From (2.2), (6.1), and proceeding as in Sections 2 through 4, one actually gets a Z-graded refined 
version of  Theorem 4.1. This culminates in the following refinement of  Theorem 1.1, which is stated 
for Dolbeault  cohomologies,  where we use the upperscript G to denote the G-invariant  part. 

THEOREM 6.1. -- The following Morse type inequalities hold: 
(i) For any 0 < p < dim M 

d im H °'p (M,  L) a < d im H °'p (MG, LG); 

(ii) For any 0 < p < dim M 
- -  - -  2 ' 

p p 

( - 1 )  i d im  H °'p-i (M,  L) c _< Z ( -1 )~  d im H °'p-i (MG, LG). 
i=o i=0 
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Abstract. In this Note we announce some new rigidity and vanishing results in the equivariantK-
theory. These results generalize the famous Witten rigidity theorems. 2000 Académie
des sciences/Éditions scientifiques et médicales Elsevier SAS

Théorèmes de rigidité et d’annulation dans laK-théorie

Résumé. Dans cette Note, nous annonçons des résultats de rigidité et d’annulation dans laK-théorie
équivariante. Ces résultats étendent les théorèmes de rigidité de Witten dans le contexte
de la K-théorie équivariante. 2000 Académie des sciences/Éditions scientifiques et
médicales Elsevier SAS

Version française abrégée

SoitX une variété compacte, orientée et de dimension paire. On suppose queX admet une action deS1

et queX est munie d’une structure spinorielleS1-invariante.
Soit gTX une métriqueS1-invariante surTX . SoitS(TX) = S+(TX)⊕ S−(TX) le fibré des spineurs

Z2-gradués sur(TX,gTX). Suivant Witten [9], on pose

Θ′q(TX) =

∞⊗
n=1

Λqn(TX ⊗R C)

∞⊗
n=1

Symqn(TX ⊗R C) =

+∞∑
n=0

Rnq
n,

avecRn ∈K(X).
Witten a conjecturé dans [9] que pour toutn ∈N, le nombre de LefschetzL(g)n de l’opérateur de Dirac

twisté, qui envoitΓ(S+(TX)⊗ S(TX)⊗Rn) dansΓ(S−(TX)⊗ S(TX)⊗Rn), ne dépend pasg ∈ S1.
La conjecture de Witten a été démontrée par Taubes [8], Bott–Taubes [2] et Liu [5] etc.

Note présentée par Jean-Michel BISMUT .
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Dans [6], Liu et Ma ont étendu la conjecture de Witten à une situation en famille. Ils ont démontré des
résultats de rigidité et d’annulation au niveau du caractère de Chern équivariant pour la famille d’opérateurs
de Dirac twistés décrit ci-dessus.

Dans cette Note, nous annonçons des résultats de rigidité et d’annulation au niveau de laK-théorie
équivariante, qui raffinent les résultats de Liu–Ma [6]. Les détails de la preuve et les extensions sont
développés dans [7].

In this Note, we announce the proofs of theK-theory versions of the famous rigidity and vanishing
theorems for elliptic genera. Details and further extensions will be developed in [7].

1. A family rigidity theorem for the Witten elements

For simplicity, we will focus on the discussion of the rigidity for one of the elliptic genera. For more
general rigidity and vanishing results, we refer the reader to [7].

Let π :M → B be a smooth fibration of compact manifolds with fibreX anddimX = 2`. Let TX be
the vertical tangent bundle of the fibrationπ :M →B. We make the assumption thatS1 acts fiberwise on
M , and thatTX admits anS1-equivariant spin structure. LetgTX be anS1-invariant metric onTX . Let
S(TX) = S+(TX)⊕ S−(TX) be theZ2-graded bundle of spinors of(TX,gTX).

For a complex (resp. real) vector bundleE overM , let

Symt(E) = 1 + tE + t2Sym2E + · · · ,
Λt(E) = 1 + tE + t2Λ2E + · · ·

be the symmetric and exterior power operations ofE (resp.E⊗R C) in K(M)[[t]] respectively. Following
Witten [9], set

Θ′q(TX) =
∞⊗
n=1

Λqn(TX)
∞⊗
n=1

Symqn(TX) =
+∞∑
n=0

Rnq
n, (1.1)

with eachRn ∈K(M).
For anyn ∈N, b ∈ B, let DX

b ⊗ Rn denote the twistedsignatureoperator onXb = π−1(b) mapping
from Γ

(
(S+(TX)⊗ S(TX)⊗Rn)|Xb

)
to Γ

(
(S−(TX)⊗ S(TX)⊗Rn)|Xb

)
. Then{DX

b ⊗Rn}b∈B is a
smooth family of twisted signature operators which we denote byDX ⊗Rn. The family operatorDX ⊗Rn
is clearlyS1-equivariant. Thus, its index bundleInd(DX ⊗Rn), in the sense of Atiyah and Singer [1], lies

in KS1(B). Let
(
Ind(DX ⊗Rn)

)S1

∈K(B) denote theS1-invariant part ofInd(DX ⊗Rn). We say that

DX ⊗Rn is rigid on the equivariantK-theory levelif Ind(DX ⊗Rn) =
(
Ind(DX ⊗Rn)

)S1

.
We can now state the main result of this Note as follows:

THEOREM 1.1. –For anyn ∈N, the family operatorDX ⊗ Rn is rigid on the equivariantK-theory
level.

Remark1.2. – WhenB is a point, Theorem 1.1 was conjectured by Witten [9] and was proved by
Taubes [8], Bott–Taubes [2] and Liu [5], etc. WhenB is not a point, Theorem 1.1 refines a result of Liu–Ma
[6] to the equivariantK-theory level.

In order to outline a proof of Theorem 1.1, we will first state in the next section aK-theory version of
the equivariant family index theorem for the considered operators.
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2. An equivariant family index theorem for circle actions

Let F be the fixed point set of theS1-action onM . Thenπ : F → B is a fibration with compact fibre
denoted byY . One has the following splitting ofTX overF ,

TX |F = TY
⊕
v 6=0

Nv,R, (2.1)

whereNv,R denotes the underlying real bundle of the complex vector bundleNv on which S1 acts by
sendingg to gv. Since we can choose eitherNv or Nv as the complex vector bundle forNv,R, in what
follows we may and we will assume that

TX |F = TY
⊕
0<v

Nv, (2.2)

whereNv is the complex vector bundle on whichS1 acts by sendingg to gv (hereNv can be zero).
Let TY carry the orientation induced from those ofTX and theNv ’s via (2.2). LetDY be the family

signature operator along the fibersY . If E is anS1-equivariant Hermitian vector bundle overF carrying
with anS1-invariant Hermitian connection, we denote byDY ⊗E the associated family twisted signature
operator. Then the index bundle ofDY ⊗E lies inKS1(B). For anyh ∈Z, let Ind(DY ⊗E,h) denote the
component ofInd(DY ⊗E) of weighth with respect to the inducedS1-representation. In what follows, if
R(q) =

∑
m∈ZRmq

m ∈KS1(M)[[q]], we will also denoteInd(DX ⊗Rm, h) by Ind(DX ⊗R(q),m,h).
The main result of this section can be stated as follows:

THEOREM 2.1. –For m, h ∈ Z, we have the following identity inK(B),

Ind
(
DX ⊗Θ′q(TX),m,h

)
=
∑
α

(−1)Σ0<v dimNv Ind

(
DYα ⊗Θ′q(TX)⊗ Sym

(⊕
0<v

Nv

)
⊗Λ

(⊕
0<v

Nv

)
,m,h

)
, (2.3)

whereα runs over the connected components ofF .

Proof. –Theorem 2.1 is proved in [7] by using the analytic arguments in [10] and [11].2
3. Proof of Theorem 1.1

Forp ∈N, we define the following elements inKS1(F )[[q]]:

Fp(X) =
⊗
0<v

( ∞⊗
n=1

Symqn(Nv)
⊗
n>pv

Symqn(Nv)

) ∞⊗
n=1

Symqn(TY ),

F ′p(X) =
⊗
0<v

06n6pv

(
Symq−n(Nv)⊗ detNv

)
,

F−p(X) =Fp(X)⊗F ′p(X)⊗Λ

(⊕
0<v

Nv

)
⊗
(

det

(⊕
0<v

Nv

))−1 ∞⊗
n=1

Λqn(TX). (3.1)

Then

F0(X) = Θ′q(TX)⊗ Sym

(⊕
0<v

Nv

)
⊗Λ

(⊕
0<v

Nv

)
.
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Set

e(N) =
∑
0<v

v2 dimNv, d′(N) =
∑
0<v

v dimNv. (3.2)

We now state two intermediate results on the relations between the family indices on the fixed point set.

PROPOSITION 3.1. –For h, p, m ∈ Z, p > 0, we have the following identity inK(B),∑
α

(−1)Σ0<v dimNv Ind

(
DYα ⊗Θ′q(TX)⊗ Sym

(⊕
0<v

Nv

)
⊗Λ

(⊕
0<v

Nv

)
,m,h

)

=
∑
α

(−1)Σ0<v dimNv Ind

(
DYα ⊗F−p(X),m+

1

2
p2e(N) +

1

2
pd′(N), h

)
. (3.3)

PROPOSITION 3.2. –For h, p ∈ Z, p > 0, m ∈ Z, on each connected componentFα of F , we have the
following identity inK(B),

Ind

(
DYα ⊗F−p(X),m+

1

2
p2e(N) +

1

2
pd′(N), h

)
= Ind(DYα ⊗F0(X),m+ ph,h).

Propositions 3.1 and 3.2 are proved in [7], where, inspired by Taubes [8], we introduce certain shifting
operations for vector bundles overF and study the behaviour of the involved family indices under the
shifting operations. Moreover, in the proof of Proposition 3.1, we make use a key idea in [8] to reduce the
problem to the fixed point set of the inducedZn-actions. For more details,see[7].

Proof of Theorem1.1. – By (3.1), Theorem 2.1 and Propositions 3.1, 3.2, forp ∈ Z, p > 0, we get the
following identity inK(B),

Ind
(
DX ⊗Θ′q(TX),m,h

)
= Ind(DX ⊗Θ′q(TX),m′, h), (3.4)

with

m′ =m+ ph. (3.5)

Note that by (1.1), ifm< 0, for h ∈ Z, we have

Ind
(
DX ⊗Θ′q(TX),m,h

)
= 0 in K(B). (3.6)

Letm0, h ∈Z with h 6= 0 be fixed:
(i) if h > 0, we takem′ =m0, then whenp is big enough, we getm< 0;
(ii) if h < 0, we takem=m0, then asp is big enough we getm′ < 0.

From (3.4), (3.6) and the above discussion, we get Theorem 1.1.2
4. Vanishing results and further remarks

In some sense, our proof given in [7] may be considered as aK-theory version of the proof given by
Bott–Taubes [2] of the Witten rigidity theorem, which was also inspired by the ideas in Taubes’ proof [8].
While on the other hand, the proof in [7] is self-contained and the arguments in [7], even in the case
where the baseB is a point, are different from the ones in the papers of Bott–Taubes [2], Liu [5] and
Taubes [8]. Moreover, our method in [7] is quite general and allows us to deal with systematically more
general situations than what was described in this note. We refer to [7] for more results and discussions.
Here, for the conclusion of this Note, we only state one of the vanishing results, which follows from our
techniques together with an observation of Dessai [3].
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THEOREM 4.1. –Assume thatM is connected and that12 p1(TX) = 0, wherep1(TX) is the first
Pontryagin class ofTX . If the S1-action onM is non-trivial, and is induced from a fiberwiseS3-action
onM which also preserves the spin structure onTX , then the index bundle of the family twistedDirac
operatorDX

⊗∞
n=1 Symqn(TX) is identically zero inKS1(B).
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Abstract

We present an extension of the “miraculous cancellation” formulas of Alvarez-Gaumé, Witten and Kefeng Liu to a
version where an extra complex line bundle is involved. Relations to the Ochanine congruence formula on 8k + 4 dimensional
Spinc manifolds are discussed.To cite this article: F. Han, W. Zhang, C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Variétés Spinc et genre elliptique. Nous présentons une extension de formules d’annulation d’Alvarez-Gaumé, Wit
Liu lorsqu’on tensorise les fibrés considérés par un fibré en droites complexe. On discute le lien entre nos formu
formules de congruence d’Ochanine pour les variétés Spinc de dimension 8k + 4. Pour citer cet article : F. Han, W. Zhang,
C. R. Acad. Sci. Paris, Ser. I 336 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

Let M be a Riemannian manifold. Let∇TM be the associated Levi-Civita connection, and letRTM = ∇TM,2 be
the curvature of∇TM. Then∇TM extends canonically to a Hermitian connection∇TCM onTCM = TM ⊗ C.

Let Â(TM,∇TM), L̂(TM,∇TM) be the Hirzebruch characteristic forms defined by

Â
(
TM,∇TM)= det1/2

(
(
√−1/4π)RTM

sinh((
√−1/4π)RTM)

)
, L̂(TM,∇TM) = det1/2

(
(
√−1/2π)RTM

tanh((
√−1/4π)RTM)

)
, (1)

and let ch(TCM,∇TCM) denote the Chern character form associated to(TCM,∇TCM) (cf. [9, Section 1.6]).
When dimM = 12, the following equation for 12-forms was proved by Alvarez-Gaumé and Witten in [1], w

they called “miraculous cancellation”,{
L̂
(
TM,∇TM)}(12) = {

8Â
(
TM,∇TM)ch

(
TCM,∇TCM)− 32Â

(
TM,∇TM)}(12)

. (2)

These authors also discussed the applications of such formulas to physics.

E-mail addresses:hanfeiycg@yahoo.com.cn (F. Han), weiping@nankai.edu.cn (W. Zhang).
1631-073X/03/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/S1631-073X(03)00241-3
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In [5], Kefeng Liu generalized (2) to arbitrarily 8k+4 dimensional manifolds by developing modular invarian
properties of characteristic numbers.

In this Note, we present an extension of Liu’s formula in the presence of an extra complex line bun
equivalently, a rank two real oriented vector bundle). In dimension 12, this extension can be described as fo
ξ be a rank two real oriented Euclidean vector bundle, equipped with a Euclidean connection∇ξ , let c = e(ξ,∇ξ )

be the associated Euler form (cf. [9, Section 3.4]). Then the following equation for 12-forms holds,{
L̂(TM,∇TM)

cosh2(c/2)

}(12)

=
{[

8Â
(
TM,∇TM)ch

(
TCM,∇TCM

)− 32Â
(
TM,∇TM)

− 24Â
(
TM,∇TM)(ec + e−c − 2

)]
cosh

(
c

2

)}(12)

. (3)

Clearly, whenξ is trivial andc = 0, (3) reduces to the formula (2) of Alvarez-Gaumé and Witten. Our work
motivated by the Ochanine congruence formula [7].

2. Main results

Let M be a 8k + 4 dimensional Riemannian manifold. Let∇TM be the associated Levi-Civita connection. L
V be a rank 2l real Euclidean vector bundle overM equipped with a Euclidean connection∇V . Let ξ be a rank
two real oriented Euclidean vector bundle overM carrying with a Euclidean connection∇ξ . Let c = e(ξ,∇ξ ) be
the Euler form ofξ canonically associated to∇ξ .

SetVC = V ⊗ C and ξC = ξ ⊗ C. ThenVC and ξC are complex vector bundles overM, each of which is
equipped with a Hermitian metric, and a unitary connection.

If W is a Hermitian vector bundle overM equipped with a Hermitian connection∇W , we denote by ch(W,∇W)

the associated Chern character form (cf. [9, Section 1.6]). Also, for any complex numbert , set Λt(W) =
C|M + tW + t2Λ2(W) + · · · andSt (W) = C|M + tW + t2S2(W) + · · · , where for any integerj � 1, Λj (W)

(resp.Sj (W)) is thej -th exterior (resp. symmetric) power ofW . SetW̃ =W − Crk(W).
Let q = e2π

√−1τ with τ ∈ H, the upper half plane. Set

Θ1(M,VC, ξC)=
∞⊗
n=1

Sqn
(
T̃CM

)⊗
∞⊗

m=1

Λqm
(
ṼC − 2ξ̃C

)⊗
∞⊗
r=1

Λqr−1/2(ξ̃C)⊗
∞⊗
s=1

Λ−qs−1/2

(
ξ̃C
)
, (4)

Θ2(M,VC, ξC)=
∞⊗
n=1

Sqn
(
T̃CM

)⊗
∞⊗

m=1

Λ−qm−1/2

(
ṼC − 2ξ̃C

)⊗
∞⊗
r=1

Λqr−1/2

(
ξ̃C
)⊗

∞⊗
s=1

Λqs
(
ξ̃C
)
. (5)

Clearly,Θ1(M,VC, ξC) andΘ2(M,VC, ξC) admit formal Fourier expansion inq1/2 as

Θ1(M,VC, ξC)=A0(M,VC, ξC)+A1(M,VC, ξC)q
1/2 + · · · , (6)

Θ2(M,VC, ξC)= B0(M,VC, ξC)+B1(M,VC, ξC)q
1/2 + · · · , (7)

where theAj ’s andBj ’s are elements in the semi-group generated by Hermitian vector bundles overM. These
vector bundlesAj,Bj are naturally equipped with Hermitian metrics and unitary connections∇Aj , ∇Bj .

Let RV = ∇V,2 denote the curvature of∇V . We can now state our main result as follows.

Theorem 2.1. If the equality for the first Pontryagin formsp1(TM,∇TM) = p1(V,∇V ) holds, then one has th
equation for(8k + 4)-forms,{

Â(TM,∇TM)det1/2(2 cosh((
√−1/4π)RV ))

cosh2(c/2)

}(8k+4)

= 2l+2k+1
k∑

2−6r
{
br cosh

(
c

2

)}(8k+4)

, (8)

r=0
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where eachbr, 0 � r � k, is a finite canonical integral linear combination of the characteristic for
Â(TM,∇TM)ch(Bj ,∇Bj ), j � 0.

Whenξ = R2 andc = 0, Theorem 2.1 is exactly Liu’s result in [5, Theorem 1].
If we takeV = TM and∇V = ∇TM in (8), we get{

L̂(TM,∇TM)

cosh2(c/2)

}(8k+4)

= 8
k∑

r=0

26k−6r
{
br cosh

(
c

2

)}(8k+4)

. (9)

In the case wherek = 1, one obtains (3) from (9).
Now assume thatM is closed, oriented and carries a Spinc structure with[c] ≡w2(TM) mod 2, wherew2(TM)

is the second Stiefel–Whitney class ofTM. Let B be a connected closed oriented 8k + 2 submanifold inM such
that[B] ∈H8k+2(M,Z) is Poincaré dual to[c]. LetB ·B be the self-intersection ofB in M which can be though
of as a closed oriented 8k manifold. Then by [7], we know that∫

M

L̂(TM,∇TM)

cosh2(c/2)
= Sign(M)− Sign(B ·B). (10)

On the other hand, by [2], we know that each
∫
M br cosh( c2), 0 � r � k, is an integer. Combining this argume

with (9) and (10), we deduce that

Sign(M)− Sign(B ·B)
8

≡
∫
M

bk cosh

(
c

2

)
mod 64. (11)

By combining (11) with the Rokhlin type congruences proved in [8], one can give a direct proof of the an
version of the Ochanine congruence formula [7] stated in [6]. Moreover, ifM is spin, then using (11), the Ochani
divisibility result (cf. [7]) and [2], we get

Sign(B ·B)≡ 0 mod 8, (12)

a result which seems to be of interest by itself.
On the other hand, there are twisted cancellation formulas similar to (8), (9) on 8k manifolds, generalizing th

(untwisted) cancellation formulas stated in [5, p. 32].
More details and further applications will be given in [4].

3. Proof of Theorem 2.1

The methods of [5, Section 3] can be adapted here, with obvious modifications which take into acco
presence ofξ andc. Here, we only indicate the main steps of the proof.

First, since (8) is a local assertion, we may and we will assume that bothTM andV are oriented. As in [5]
we use the notation of formal Chern roots{±2π

√−1yv} and {±2π
√−1xj } for (VC,∇C) and (TCM,∇TCM)

respectively. We also setc = 2π
√−1u.

For τ ∈ H andq = e2π
√−1τ , set

P1(τ )=
{
Â(TM,∇TM)det1/2(2 cosh((

√−1/4π)RV ))

cosh2(c/2)
ch
(
Θ1(M,VC, ξC),∇Θ1(M,VC,ξC)

)}(8k+4)

, (13)

P2(τ )=
{
Â
(
TM,∇TM)ch

(
Θ2(M,VC, ξC),∇Θ2(M,VC,ξC)

)
cosh

(
c

2

)}(8k+4)

, (14)

where∇Θi(M,VC,ξC), i = 1,2, are the induced Hermitian connections withq1/2-coefficients onΘi(M,VC, ξC) one
gets from the∇Aj , ∇Bj ’s (compare with (6) and (7)). Then a direct computation shows that
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P1(τ )= 2l
{

4k+2∏
j=1

(
xj

θ ′(0, τ )
θ(xj , τ )

)( l∏
v=1

θ1(yv, τ )

θ1(0, τ )

)
θ2

1(0, τ )

θ2
1(u, τ )

θ3(u, τ )

θ3(0, τ )

θ2(u, τ )

θ2(0, τ )

}(8k+4)

, (15)

P2(τ )=
{

4k+2∏
j=1

(
xj

θ ′(0, τ )
θ(xj , τ )

)( l∏
v=1

θ2(yv, τ )

θ2(0, τ )

)
θ2

2(0, τ )

θ2
2(u, τ )

θ3(u, τ )

θ3(0, τ )

θ1(u, τ )

θ1(0, τ )

}(8k+4)

, (16)

whereθ(z, τ ) andθi(z, τ ), i = 1,2,3, are the classical Jacobi theta functions (cf. [3]).
Sincep1(TM,∇TM) = p1(V,∇V ), i.e.,

∑4k+2
j=1 x2

j =∑l
v=1y

2
v , by (15), (16) and by the transformation laws

theta functions (cf. [3]), one verifies directly thatP2(τ ) is a modular form of weight 4k+ 2 overΓ 0(2). Moreover,

P1
(− 1

τ

)= 2lτ4k+2P2(τ ). (17)

On the other hand, following [5], writeθj = θj (0, τ ), 1 � j � 3, and setδ1(τ )= 1
8(θ

4
2 + θ4

3), ε1(τ ) = 1
16θ

4
2θ

4
3 ,

δ2(τ )= −1
8(θ

4
1 + θ4

3) andε2(τ )= 1
16θ

4
1θ

4
3 . They admit Fourier expansion

δ1(τ )= 1
4 + 6q + · · · , ε1(τ )= 1

16 − q + · · · , (18)

δ2(τ )= −1
8 − 3q1/2 + · · · , ε2(τ ) = q1/2 + · · · , (19)

where the “· · ·” terms are higher degree terms all having integral coefficients.
By [5, Lemma 2], we know thatδ2 (resp.ε2) is a modular form of weight 2 (resp. 4) overΓ 0(2), and that 8δ2, ε2

generate the ring of modular forms with integral coefficients overΓ 0(2). Combining this argument with (7), (14
and (19), we obtain

P2(τ )= h0(8δ2)
2k+1 + h1(8δ2)

2k−1ε2 + · · · + hk(8δ2)ε
k
2, (20)

where eachhr , 0 � r � k, is a canonically defined finite integral linear combination of the forms{Â(TM,∇TM)

ch(Bj ,∇Bj )cosh( c2)}(8k+4), j � 0. For example,h0 andh1 can be written explicitly ash0 = −{Â(TM,∇TM)

cosh( c2)}(8k+4) andh1 = {Â(TM,∇TM)[24(2k + 1)− ch
(
B1,∇B1

)]cosh( c2)}(8k+4).

Now recall that by [5, p. 36],δi, εi, i = 1,2, verify the transformation lawsδ2(− 1
τ
) = τ2δ1(τ ), ε2(− 1

τ
) =

τ4ε1(τ ). Using also (17) and (20), we find that

P1(τ )= 2l
[
h0(8δ1)

2k+1 + h1(8δ1)
2k−1ε1 + · · · + hk(8δ1)ε

k
1

]
. (21)

By (6), (13), (18), (21), and takingq = 0, we get (8). ✷
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Abstract

We establish anS1-equivariant index theorem for Dirac operators onZ/k-manifolds. As an application, we generalize t
Atiyah–Hirzebruch vanishing theorem forS1-actions on closed spin manifolds to the case ofZ/k-manifolds.To cite this article:
W. Zhang, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Actions du cercle et Z/k variétés.On établit un théorème d’indiceS1-équivariant pour les opérateurs de Dirac sur desZ/k
variétés. On donne une application de ce résultat, qui généralise le théorème d’Atiyah–Hirzebruch sur les actions dS1 aux
Z/k variétés.Pour citer cet article : W. Zhang, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. S1-actions and the vanishing theorem

Let X be a closed connected smooth spin manifold admitting a non-trivial circle action. A classical th
of Atiyah and Hirzebruch [1] states thatÂ(X) = 0, whereÂ(X) is the HirzebruchÂ-genus ofX. In this Note we
present an extension of the above result to the case ofZ/k-manifolds, which were introduced by Sullivan in h
studies of geometric topology. We recall the basic definition for completeness (cf. [6]).

Definition 1.1. A compact connectedZ/k-manifold is a compact manifoldX with boundary∂X, which admits
a decomposition∂X =⋃k

i=1(∂X)i into k disjoint manifolds andk diffeomorphismsπi : (∂X)i → Y to a closed
manifoldY .

Let π : ∂X → Y be the induced map. In what follows, we will call an objectα (e.g., metrics, connections, etc
of X a Z/k-object if there will be a corresponding objectβ onY such thatα|∂X = π∗β . We make the assumptio
thatX is Z/k oriented,Z/k spin and is of even dimension.

E-mail address: weiping@nankai.edu.cn (W. Zhang).
1 Partially supported by the MOEC and the 973 project.
1631-073X/03/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/S1631-073X(03)00279-6
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Let gTX be aZ/k Riemannian metric ofX which is of product structure near∂X. Let RTX be the curvature
of the Levi-Civita connection associated togTX . Let E be aZ/k complex vector bundle overX. Let gE be a
Z/k Hermitian metric onE which is a product metric near∂X. Let ∇E be aZ/k connection onE preserving
gE such that∇E is of product structure near∂X. Let RE be the curvature of∇E . Let DE+ :Γ (S+(T X) ⊗ E) →
Γ (S−(T X) ⊗ E) be the associated Dirac operator onX andDE+,∂X (and thenDE

Y ) be its induced Dirac operato

on ∂X (and then onY ). Let η(DE
Y ) be the reducedη-invariant ofDE

Y in the sense of [2]. Then

Â(k)(X,E)=
∫
X

det1/2
( √−1RTX/4π

sinh(
√−1RTX/4π)

)
tr
[
e(

√−1/2π)RE ]− kη̄
(
DE

Y

)
modkZ (1)

does not depend on (gTX,gE,∇E) and determines a topological invariant inZ/kZ (cf. [2] and [6]). Moreover,
Freed and Melrose [7] have proved a modk index theorem, givingÂ(k)(X,E) ∈ Z/kZ a purely topologica
interpretation. WhenE = C is the trivial vector bundle overX, we usually omit the superscriptE.

Theorem 1.2.If X admits a nontrivial Z/k circle action preserving the orientation and the Spin structure on TX,
then Â(k)(X)= 0. Moreover, the equivariant mod k index in the sense of Freed and Melrose vanishes.

It turns out that the original method in [1] is difficult to extend to the case of manifolds with bounda
prove Theorem 1.2. Thus we will instead make use of an extension of the method of Witten [10]. A
localization techniques developed by Bismut and Lebeau [3, Section 9] and their extensions to manifo
boundary developed in [5] play important roles in our proof.

2. A mod k localization formula for circle actions

We make the assumption that theZ/k circle action onX lifts to a Z/k circle action onE. Without
loss of generality, we may and we will assume that thisZ/k circle action preservesgTX, gE and ∇E . Let
DE+,APS :Γ (S+(T X)⊗E)→ Γ (S−(T X)⊗E) be the elliptic operator obtained by imposing the standard Atiy

Patodi–Singer boundary condition [2] onDE+ .
Let H be the Killing vector field onX generated by theS1 action onX. ThenH |∂X ⊂ ∂X induces a Killing

vector fieldHY on Y . Let LH denote the corresponding Lie derivative acting onΓ (S±(T X) ⊗ E). ThenLH

commutes withDE+,APS.

For anyn ∈ Z, let Fn± be the eigenspaces ofΓ (S±(T X) ⊗ E) with respect to the eigenvalue 2πn of 1√−1
LH .

Let DE+,APS(n) :Fn+ → Fn− be the restriction ofDE+,APS onFn+. ThenDE+,APS(n) is Fredholm. We denote its inde

by ind(DE+,APS(n)) ∈ Z.
Let XH (resp.YH ) be the zero set ofH (resp.HY ) onX (resp.Y ). ThenXH is aZ/k-manifold and there is a

canonical mapπXH : ∂XH → YH induced fromπ . We fix a connected componentXH,α of XH , and we omit the
subscriptα if there is no confusion.

We identify the normal bundle toXH in X to the orthogonal complement ofTXH in TX|XH . ThenTX|XH

admits anS1-invariant orthogonal decompositionTX|XH = Nm1 ⊕ · · · ⊕ Nml ⊕ TXH , where eachNγ , γ ∈ Z,
is a complex vector bundle on whichg ∈ S1 ⊂ C acts by multiplication bygγ . By using the same notatio
as in [8, (1.8)], we simply write thatTX|XH = ⊕

v �=0Nv ⊕ TXH . Similarly, let E|XH admits theS1-invariant
decompositionE|XH =⊕

v Ev.

Let S(T XH , (detN)−1) be the complex spinor bundle overXH associated to the canonically induced Spc

structure onTXH . It is a Z/k Hermitian vector bundle and carries a canonically inducedZ/k Hermitian
connection.

Recall that by [1, 2.4], one has
∑

v v dimNv ≡ 0 mod 2Z. Following [8, (1.15)], set

R(q)= q1/2
∑

v |v|dimNv
⊗(

Symqv (Nv)⊗ detNv

)⊗
Symq−v (�Nv)⊗

∑
v

qvEv =
⊕
n

Rnq
n,
v>0 v<0
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R′(q)= q−1/2
∑

v |v|dimNv
⊗
v>0

Symq−v (�Nv)
⊗
v<0

(
Symqv (Nv)⊗ detNv

)⊗
∑
v

qvEv =
⊕
n

R′
nq

n.

Then eachRn (resp.R′
n) is aZ/k Hermitian vector bundle overXH carrying a canonically inducedZ/k Hermitian

connection. For anyn ∈ Z, let DRn

XH ,+ :Γ (S+(T XH , (detN)−1) ⊗ Rn) → Γ (S−(T XH , (detN)−1) ⊗ Rn) be the

canonical twisted Spinc Dirac operator onXH . LetDRn

XH ,+,APS be the corresponding elliptic operator associate
the Atiyah–Patodi–Singer boundary condition [2]. We will use similar notation forR′

n.

Theorem 2.1.For any integer n ∈ Z, the following identities hold,

indDE+,APS(n) ≡
∑
α

(−1)
∑

0<v dimNv indDRn

XH,α,+,APS modkZ, (2)

indDE+,APS(n) ≡
∑
α

(−1)
∑

v<0 dimNv indD
R′
n

XH,α+,APS modkZ. (3)

Proof. For anyT ∈ R, following Witten [10], letDE
T,+ :Γ (S+(TX) ⊗ E) → Γ (S−(TX) ⊗ E) be the Dirac type

operator defined byDE
T,+ =DE+ + √−1T c(H). LetDE

T,+,APS be the corresponding elliptic operator associate

the Atiyah–Patodi–Singer boundary condition [2]. Clearly,DE
T,+,APS also commutes with theS1-action. For any

integern, let DE
T,+,APS(n) be the restriction ofDE

T,+,APS onFn+. ThenDE
T,+,APS(n) is still Fredholm. By an eas

extension of [5, Theorem 1.2] to the current equivariant andZ/k situation, one sees that ind(DE
T,+,APS(n)) modkZ

does not depend onT ∈ R (compare with [9, Theorem 4.2]).
Let DE

T,+,∂X :Γ ((S+(T X) ⊗ E)|∂X) → Γ ((S+(TX) ⊗ E)|∂X) be the induced Dirac type operator ofDE
T,+

on ∂X. For any integern, let DE
T,+,∂X(n) :Fn+|∂X → Fn+|∂X be the restriction ofDE

T,+,∂X on Fn+|∂X. Also, the

induced Dirac operatorsDRn

+,∂XH
andDRn

YH
can be defined in the same way as in Section 1.

Let an > 0 be such that Spec(DRn

YH
) ∩ [−2an,2an] ⊆ {0}. By combining the techniques in [3, Section 9], [

Section 4b]) and [8, Section 1.2], one can prove the following analogue of [4, Theorem 3.9], stating tha
existsT1 > 0 such that for anyT � T1,

#
{
λ ∈ Spect

(
DE

T,+,∂X(n)
)
: −an � λ� an

}= dim
(
kerDRn

+,∂XH

)= k dim
(
kerDRn

YH

)
. (4)

If dim(kerDRn

YH
)= 0, then by (4), one sees that whenT � T1, DE

T,+,∂X(n) is invertible. Then ind(DE
T,+,APS(n))

itself does not depend onT � T1. Moreover, by combining the techniques in [8, Section 1.2] and [5, Sectio
one can further prove that there existsT2 > 0 such that whenT � T2,

ind
(
DE

T,+,APS(n)
)=

∑
α

(−1)
∑

0<v dimNv indDRn

XH,α,+,APS (5)

(compare with [5, (2.13)]). From (5) and the modk invariance of ind(DE
T,+,APS(n)) with respect toT ∈ R, one

gets (2).
In general, dim(kerDRn

YH
) need not be zero, and the eigenvalues ofDE

T,+,∂X(n) lying in [−an, an] are not easy

to control. Thus the above arguments no longer apply directly. Instead, we observe that dim(ker(DRn

YH
− an)) = 0,

and we use the method in [5] to perturb the Dirac type operators under consideration.
To do this, letε > 0 be sufficiently small so thatgTX , gE and∇E are of product structure on[0, ε] × ∂X ⊂X.

Let f :X → R be anS1-invariant smooth function such thatf ≡ 1 on [0, ε/3] × ∂X and f ≡ 0 outside
of [0,2ε/3] × ∂X. Let r denote the parameter in[0, ε]. Let DRn

XH ,−an,+ be the Dirac type operator actin

on Γ (S+(TXH , (detN)−1) ⊗ Rn) defined byDRn

XH ,−an,+ = D
Rn

XH ,+ − anf c(
∂
∂r
). Let D

Rn

XH ,−an,+,APS be the
corresponding elliptic operator associated to the Atiyah–Patodi–Singer boundary condition [2]. By a
extension of [5, Theorem 1.2] (compare with [9, Theorem 4.2]), we see that,
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∑
α

(−1)
∑

0<v dimNv indDRn

XH,α,−an,+,APS ≡
∑
α

(−1)
∑

0<v dimNv indDRn

XH,α,+,APS modkZ. (6)

For anyT ∈ R, let DE
T,−an,+ :Γ (S+(TX) ⊗ E) → Γ (S−(T X) ⊗ E) be the Dirac type operator defined

DE
T,−an,+ = DE

T,+ − anf c(
∂
∂r
). LetDE

T,−an,+,APS be the corresponding elliptic operator associated to the Atiy

Patodi–Singer boundary condition. LetDE
T,−an,+,APS(n) be its restriction onFn+. ThenDE

T,−an,+,APS(n) is still
Fredholm. By another extension of [5, Theorem 1.2], one has

indDE
T,−an,+,APS(n)≡ indDE

T,+,APS(n) modkZ. (7)

Moreover, sinceDRn

YH
−an, which is the induced Dirac type operator fromDRn

XH ,−an,+ throughπXH , is invertible,
by combining the arguments in [8, Section 1.2] with those in [5, Section 3], one deduces that there existsT3 > 0
such that for anyT � T3, the following analogue of (5) holds,

indDE
T,−an,+,APS(n)=

∑
α

(−1)
∑

0<v dimNv indDRn

XH,α,−an,+,APS. (8)

From (6)–(8) and the modk invariance of ind(DE
T,+,APS(n)) with respect toT ∈ R, one gets (2).

Similarly, by takingT → −∞, one gets (3). ✷
3. Proof of Theorem 1.2

We apply Theorem 2.1 to the caseE = C.
First, if XH = ∅, by Theorem 2.1, it is obvious that for eachn ∈ Z,

ind
(
D+,APS(n)

)≡ 0 modkZ. (9)

WhenXH �= ∅, we see that
∑

v |v|dimNv > 0 (i.e., at least one of theNv ’s is nonzero) on each connect
component ofXH . Then by (2) and by the definition of theRn’s, we deduce that for any integern � 0, (9) holds.
Similarly, by (3) and by the definition of theR′

n’s, one deduces that (9) holds for any integern � 0.
In summary, for anyn ∈ Z, (9) holds.
From (1) and (9), by the Atiyah–Patodi–Singer index theorem [2], and using the obvious fact that ind(D+,APS)=∑
n ind(D+,APS(n)), one getsÂ(k)(X) = 0. ✷

Remark 1. By combining Theorem 2.1 with the arguments in [8, Sections 2–4], one should be able to pr
extension of the Witten rigidity theorem, of which aK-theoretic version has been worked out in [8], toZ/k-
manifolds. This, together with some other consequences of Theorem 1.2, will be carried out elsewhere.
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Abstract

We present several results concerning the asymptotic expansion of the invariant Bergman kernel of the spinc Dirac operator
associated with high tensor powers of a positive line bundle on a compact symplectic manifold.To cite this article: X. Ma,
W. Zhang, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Noyaux de Bergman et réduction symplectique. Nous annonçons des résultats sur le développement asymptotiq
noyau de BergmanG-invariant de l’opérateur de Dirac spinc associé à une puissance tendant vers l’infini d’un fibré en dr
positif sur une variété symplectique compacte.Pour citer cet article : X. Ma, W. Zhang, C. R. Acad. Sci. Paris, Ser. I 341
(2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Soit (X,ω) une variété symplectique compacte, et soit(L,hL) un fibré en droites hermitien muni d’un

connexion hermitienne∇L telle que
√−1
2π

(∇L)2 = ω. Soit (E,hE) un fibré vectoriel hermitien surX muni d’une
connexion hermitienne∇E . Soit gT X une métrique riemannienne surX, et soitJ une structure presque com
plexe compatible séparément àgT X etω. Alors les données géométriques ci-dessus définissent canoniquem
opérateur de Dirac spinc Dp agissant surΩ0,•(X,Lp ⊗ E), l’espace de(0,•)-formes à valeurs dansLp ⊗ E.

Soit G un groupe de Lie compact connexe et soitg son algèbre de Lie. On suppose queG agit surX, et que
son action se relève àL et E en préservantJ , les métriques et les connexions ci-dessus. Alors KerDp est une
G-représentation de dimension finie. Soit(KerDp)G la partieG-invariante de KerDp. Le noyau de Bergma
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1631-073X/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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G-invariantP G
p (x, x′) (x, x′ ∈ X) est le noyauC ∞ de la projection orthogonaleP G

p de Ω0,•(X,Lp ⊗ E) sur
(KerDp)G associé à la forme de volume riemannienne dvX(x′).

Dans cette Note, nous annonçons des résultats sur le développement asymptotique deP G
p (x, x′) quandp tend

vers l’infini. Le détail des démonstrations et des applications de nos résultats est donné dans [6].

1. Introduction

Let (X,ω) be a compact symplectic manifold of real dimension 2n. Assume that there exists a Hermitian li

bundleL overX endowed with a Hermitian connection∇L with the property that
√−1
2π

RL = ω, whereRL = (∇L)2

is the curvature of(L,∇L). Let (E,hE) be a Hermitian vector bundle onX with Hermitian connection∇E and its
curvatureRE .

Let gT X be a Riemannian metric onX. Let J :T X → T X be the skew-adjoint linear map which satisfies
relationω(u, v) = gT X(Ju,v) for u,v ∈ T X. Let J be an almost complex structure such thatgT X(Ju,Jv) =
gT X(u, v), ω(Ju,Jv) = ω(u, v), and thatω(·, J ·) defines a metric onT X. Then J commutes withJ, thus
J = J(−J2)−1/2. Let ∇T X be the Levi-Civita connection on(T X,gT X) with curvatureRT X and scalar cur
vaturerX . Then∇T X induces a natural connection∇det on det(T (1,0)X) with curvatureRdet, and the Clifford
connection∇Cliff on the Clifford moduleΛ(T ∗(0,1)X) with curvatureRCliff . The spinc Dirac operatorDp acts on
Ω0,•(X,Lp ⊗ E) = ⊕n

q=0 Ω0,q (X,Lp ⊗ E), the direct sum of spaces of(0, q)-forms with values inLp ⊗ E.

We denote byD+
p the restriction ofDp on Ω0,even(X,Lp ⊗ E). By [4, Theorem 2.5], whenp is large enough

CokerD+
p vanishes.

Let G be a compact connected Lie group with Lie algebrag and dimG = n0. Suppose thatG acts onX and
its action onX lifts on L,E. Moreover, we assume theG-action preserves the above connections and metric
T X,L,E andJ . Then KerDp is a finite dimensional representation space ofG.

The action ofG on L induces naturally a moment mapµ :X → g∗. Now we assume that 0∈ g∗ is a regular
value ofµ. Then the Marsden–Weinstein symplectic reduction(XG = µ−1(0)/G,ωXG

) is a symplectic manifold
whenG acts freely onµ−1(0). Moreover,(L,∇L), (E,∇E) descend to(LG,∇LG), (EG,∇EG) overXG so that the

corresponding curvature condition
√−1
2π

RLG = ωG holds (cf. [3]). TheG-invariant almost complex structureJ also
descends to an almost complex structureJG on T XG, andhL,hE,gT X descend tohLG , hEG,gT XG respectively.
Thus we can construct the corresponding spinc Dirac operatorDG,p onXG.

Let (KerDp)G denote theG-invariant part of KerDp. Let P G
p be the orthogonal projection fromΩ0,•(X,

Lp ⊗ E) on (KerDp)G. The G-invariant Bergman kernel isP G
p (x, x′) (x, x′ ∈ X), the smooth kernel ofP G

p

with respect to the Riemannian volume form dvX(x′). Let pr1 and pr2 be the projections fromX × X onto the
first and second factorX respectively. ThenP G

p (x, x′) is a smooth section of pr∗
1 Ep ⊗ pr∗2 E∗

p on X × X with

Ep = Λ(T ∗(0,1)X) ⊗ Lp ⊗ E. In particular,P G
p (x, x) ∈ End(Ep)x = End(Λ(T ∗(0,1)X) ⊗ E)x .

TheG-invariant Bergman kernelP G
p (x, x′) is a local analytic version of(KerDp)G.

In this Note, we present several results concerning the asymptotic expansions ofP G
p (x, x′) asp → +∞. More

details will appear in [6].

2. Main results

The first result shows that one can reduce our problem to a problem nearµ−1(0).

Theorem 2.1. For any openG-neighborhoodU of µ−1(0) in X, ε0 > 0, l,m ∈ N, there existsCl,m > 0 (depend
onU , ε0) such that forp � 1, x, x′ ∈ X, d(Gx,x′) � ε0 or x, x′ ∈ X \ U ,
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∣∣P G
p (x, x′)

∣∣
C m � Cl,mp−l , (1)

whereC m is theC m-norm induced by∇L,∇E , ∇T X , hL,hE,gT X .

Assume for simplicity thatG acts freely onµ−1(0). Let U be an open neighborhood ofµ−1(0) such thatG
acts freely onU . For anyG-equivariant bundle(F,∇F ) onU , we denote byFB the bundle onU/G = B induced
naturally byG-invariant sections ofF on U . The connection∇F induces canonically a connection∇FB on FB .
Let RFB be its curvature. We denote also byµF (K) = ∇F

K − LK ∈ End(F ) for K ∈ g. Note thatP G
p ∈ (C ∞(U ×

U,pr∗1 Ep ⊗ pr∗2 E∗
p))G×G, thus we can viewP G

p (x, x′) as a smooth section of(pr∗1 Ep)B ⊗ (pr∗2 E∗
p)B onB × B.

Let gT B be the Riemannian metric onU/G = B induced bygT X. Let ∇T B be the Levi-Civita connection o
(T B,gT B) with curvatureRT B . Let NG be the normal bundle toXG in B. We identifyNG with the orthogona
complement ofT XG in (T B|XG

,gT B). Let P T XG , P NG be the orthogonal projections fromT B|XG
onT XG, NG

respectively. Set

∇NG = P NG
(∇T B |XG

)
P NG, 0∇T B = P T XG

(∇T B |XG

)
P T XG ⊕ ∇NG, A = ∇T B − 0∇T B. (2)

Then∇NG, 0∇T B
are Euclidean connections onNG, T B|XG

on XG, andA is the associated second fundamen
form. We denote by vol(Gx) (x ∈ U) the volume of the orbitGx equipped with the metric induced bygT X .
Following [9, (3.10)], leth(x) be the function onU defined by

h(x) = (
vol(Gx)

)1/2
. (3)

Thenh reduces to a function onB. We denote byIC⊗E the projection fromΛ(T ∗(0,1)X) ⊗ E ontoC ⊗ E under
the decompositionΛ(T ∗(0,1)X) = C ⊕ Λ>0(T ∗(0,1)X), andIC⊗EB

the corresponding projection onB.
For anyx0 ∈ XG, Z ∈ Tx0B, we writeZ = Z0+Z⊥, with Z0 ∈ Tx0XG, Z⊥ ∈ NG,x0. Let τZ0Z⊥ ∈ N

G,exp
XG
x0 (Z0)

be the parallel transport ofZ⊥ with respect to the connection∇NG along the geodesic inXG, [0,1] � t →
expXG

x0 (tZ0). For ε0 > 0 small enough, we identifyZ ∈ Tx0B, |Z| < ε0 with expB

exp
XG
x0 (Z0)

(τZ0Z⊥) ∈ B, then for

x0 ∈ XG, Z,Z′ ∈ Tx0B, |Z|, |Z′| < ε0, the map

Ψ :T B|XG
× T B|XG

→ B × B, Ψ (Z,Z′) = (
expB

exp
XG
x0 (Z0)

(τZ0Z
⊥),expB

exp
XG
x0 (Z′0)

(τZ′0Z′⊥)
)

is well defined. We identify(Ep)B,Z to (Ep)B,x0 by using parallel transport with respect to∇(Ep)B along[0,1] �
u → uZ. Let πB :T B|XG

× T B|XG
→ XG be the natural projection from the fiberwise product ofT B|XG

on XG

ontoXG. From Theorem 2.1, we only need to understandP G
p ◦ Ψ , and under our identification,P G

p ◦ Ψ (Z,Z′) is

a smooth section ofπ∗
B(End(Ep)B) = π∗

B(End(Λ(T ∗(0,1)X) ⊗ E)B) on T B|XG
× T B|XG

. Let | |C m′
(XG)

be the

C m′
-norm onC ∞(XG,End(Λ(T ∗(0,1)X) ⊗ E)B) induced by∇Cliff B , ∇EB , hE andgT X. The norm| |C m′

(XG)

induces naturally aC m′
-norm alongXG onC ∞(T B|XG

× T B|XG
,π∗

B(End(Λ(T ∗(0,1)X)⊗ E)B)), we still denote
it by | |C m′

(XG)
.

Let gT XG , gNG be the metric onT XG,NG induced bygT X. Let dvXG
, dvNG

be the Riemannian volume form
on(XG,gT XG ), (NG,gNG). Letκ ∈ C ∞(T B|XG

,R), with κ = 1 onXG, be defined by that forZ ∈ Tx0B, x0 ∈ XG,

dvB(x0,Z) = κ(x0,Z)dvTx0B(Z) = κ(x0,Z)dvXG
(x0)dvNG,x0

. (4)

Theorem 2.2. Assume thatG acts freely onµ−1(0) and J = J on µ−1(0). Then there existQr (Z,Z′) ∈
End(Λ(T ∗(0,1)X) ⊗ E)B,x0 (x0 ∈ XG, r ∈ N), polynomials inZ,Z′ with the same parity asr , whose coefficient
are polynomials inA, RT B , RCliff B , REB , µE , µCliff (resp.rX , Rdet, RE ; resp.h, RL, RLB ; resp.µ) and their
derivatives atx0 to orderr − 1 (resp.r − 2; resp.r , resp.r + 1), such that if we denote by

P (r)
x (Z,Z′) = Qr (Z,Z′)P (Z,Z′), Q0(Z,Z′) = IC⊗EB

, (5)

0
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with

P(Z,Z′) = exp

(
−π

2

∣∣Z0 − Z′0∣∣2 − π
√−1

〈
Jx0Z

0,Z′0〉)2n0/2 exp
(−π

(|Z⊥|2 + |Z′⊥|2)), (6)

then there existsC′′ > 0 such that for anyk,m,m′,m′′ ∈ N, there existsC > 0 such that forx0 ∈ XG, Z,Z′ ∈ Tx0B,
|Z|, |Z′| � ε0,

(
1+ √

p |Z⊥| + √
p |Z′⊥|)m′′

sup
|α|+|α′|�m

∣∣∣∣∣ ∂ |α|+|α′|

∂Zα∂Z′α′(
p−n+n0/2(hκ1/2)(Z)

(
hκ1/2)(Z′)P G

p ◦ Ψ (Z,Z′) −
k∑

r=0

P (r)
x0

(
√

p Z,
√

p Z′)p−r/2

)∣∣∣∣∣
C m′

(XG)

� Cp−(k+1−m)/2(1+ √
p
∣∣Z0

∣∣+ √
p
∣∣Z′0∣∣)2(n+k+2)+m exp

(−√
C′′ √p |Z − Z′|)+ O

(
p−∞). (7)

Furthermore, the expansion is uniform in the following sense: for any fixedk,m,m′,m′′ ∈ N, assume that the
derivatives ofgT X, hL, ∇L, hE , ∇E , andJ with order� 2n+2k +m+m′ +4 run over a set bounded in theC m′

-
norm taken with respect to the parameters and, moreover,gT X runs over a set bounded below. Then the cons
C is independent ofgT X ; and theC m′

-norm in(7) includes also the derivatives on the parameters.

In (7), the termO(p−∞) means that for anyl, l1 ∈ N, there existsCl,l1 > 0 such that itsC l1-norm is dominated
by Cl,l1p

−l . The kernelP(Z,Z′) is the product of two kernels: alongTx0XG, it is the classical Bergman kernel o
Tx0XG with complex structureJx0, while alongNG, it is the kernel of a harmonic oscillator onNG,x0.

Remark 1. (i) WhenG = {1}, Theorem 2.2 has been proved in [2, Theorem 3.18′].
(ii) If we takeZ = Z′ = 0 in (7), then we get forx0 ∈ XG,

P (0)
x0

(0,0) = 2n0/2IC⊗EB
, (8)

and ∣∣∣∣∣p−n+n0/2h2(x0)P
G
p (x0, x0) −

k∑
r=0

P (2r)
x0

(0,0)p−r

∣∣∣∣∣
C m′

(XG)

� Cp−k−1. (9)

In fact, (8) and (9) can be obtained as direct consequences of the full off-diagonal asymptotic expansio
Bergman kernel proved in [2, Theorem 3.18′].

Remark 2. Assume that(X,ω) is a Kähler manifold andJ = J on X. Assume also that(L,∇L), (E,∇E) are
holomorphic vector bundles with holomorphic Hermitian connections. ThenD2

p preserves theZ-graduation of

Ω0,•(X,Lp ⊗E) and KerDp = H 0(X,Lp ⊗E) whenp is large enough, and soP G
p (x0, x0) ∈ End(E). In particu-

lar P
(0)
x0 (0,0) = 2n0/2IdE in (8). In the special case ofE = C, P G

p (x0, x0) is a function onXG, (9) has been prove

in [7, Theorem 1] without knowing the informations onP (2r)
x0 (0,0), while in [8, Theorem 1], it was claimed tha

P
(0)
x0 (0,0) = 1.

Let Ip be a section of End(Λ(T ∗(0,1)X) ⊗ E)B onXG defined by

Ip(x0) =
∫

h2(x0,Z)P G
p ◦ Ψ

(
(x0,Z), (x0,Z)

)
κ(x0,Z)dvNG

(Z). (10)
Z∈NG, |Z|�ε0
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By Theorem 2.1, moduloO(p−∞), Ip(x0) does not depend onε0, and

dim(KerDp)G =
∫
X

Tr
[
P G

p (y, y)
]
dvX(y) =

∫
XG

Tr
[
Ip(x0)

]
dvXG

(x0) + O
(
p−∞). (11)

A direct consequence of Theorem 2.2 is the following corollary.

Corollary 2.3. TakenZ = Z′ ∈ NG,x0, m = 0 in (7), we get∣∣∣∣∣p−n+n0/2h2(Z)P G
p (Z,Z) −

k∑
r=0

P (r)
x0

(
√

p Z,
√

p Z)p−r/2

∣∣∣∣∣
C m′

(XG)

� Cp−(k+1)/2(1+ √
p |Z|)−m′′ + O

(
p−∞). (12)

In particular, there existΦr ∈ End(Λ(T ∗(0,1)X)⊗E)B,x0 (r ∈ N) which are polynomials inA, RT B , RCliff B , REB ,
µE , µCliff , (resp.rX , Rdet, RE ; resp.h, RLB , RL; resp.µ), and their derivatives atx0 to order 2r − 1 (resp.
2r − 2; resp.2r ; resp.2r + 1), andΦ0 = IC⊗EB

, such that for anyk,m′ ∈ N, there existsCk,m′ > 0 such that for
anyx0 ∈ XG, p ∈ N,∣∣∣∣∣p−n+n0Ip(x0) −

k∑
r=0

Φr(x0)p
−r

∣∣∣∣∣
C m′

� Ck,m′p−k−1. (13)

Theorem 2.4. If (X,ω) is a Kähler manifold andL,E are holomorphic vector bundles with holomorphic He
mitian connections∇L,∇E , J = J on U , and G acts freely onµ−1(0), then in(13), Φr(x0) ∈ End(EG)x0 are
polynomials inA, RT B , REB , µE , RE (resp.h, RLB ; resp.µ) and their derivatives atx0 to order2r − 1 (resp.2r ;
resp.2r + 1), andΦ0 = IdEG

. Moreover

Φ1(x0) = 1

8π
rXG
x0

+ 3

4π
�XG

log(h|XG
) +

√−1

4π
REG

x0

(
e0
j , JGe0

j

)
. (14)

Here rXG is the Riemannian scalar curvature of(T XG,gT XG), �XG
is the Bochner–Laplacian onXG, and{e0

j }
is an orthonormal basis ofT XG.

Still making the same assumptions as in Theorem 2.4, leth̃ denote the restriction toXG of the functionh defined
in (3). In view of [9, (3.11), (3.54)], set̃hEG = h̃2hEG .

Let P̃
XG
p denote the orthogonal projection fromC ∞(XG,L

p
G ⊗ EG) ontoH 0(X,L

p
G ⊗ EG) associated to th

metricshLG , h̃EG , gT XG . Let P̃
XG
p (x0, x

′
0) (x0, x′

0 ∈ XG) denote the corresponding Bergman kernel with res
to dvXG

(x′
0).

Then by [2, Theorem 1.3], we have the following theorem.

Theorem 2.5. Under the assumption of Theorem2.4, there exist smooth coefficients̃Φr(x0) ∈ End(EG)x0 which
are polynomials inRT XG , REG (resp.h), and their derivatives atx0 to order2r − 1 (resp.2r), andΦ̃0 = IdEG

,
such that for anyk, l ∈ N, there existsCk,l > 0 such that for anyx0 ∈ XG, p ∈ N,∣∣∣∣∣p−n+n0P̃ XG

p (x0, x0) −
k∑

r=0

Φ̃r (x0)p
−r

∣∣∣∣∣
C l

� Ck,lp
−k−1. (15)

Moreover, the following identity holds,

Φ̃1(x0) = 1

8π
rXG
x0

+ 1

2π
�XG

logh̃ +
√−1

4π
REG

x0

(
e0
j , JGe0

j

)
. (16)
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Remark 3. From (14) and (16), one sees that in generalΦ1 = Φ̃1, if h̃ is not constant onXG. This reflects a subtle
difference between the Bergman kernel and the geometric quantization.

The proof of the above theorems uses techniques adapted from [1, §11], [2,5], along with a deformatioD2
p

by the Casimir operator (i.e., to considerD2
p − pCas, which plays a key role in proving Theorems 2.1, 2.2).

refer to [6] for more details.
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Abstract

We establish an asymptotic expansion for families of Bergman kernels. The key idea is to use the superconnection formalism as
in the local family index theorem. To cite this article: X. Ma, W. Zhang, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Superconnexion et noyaux de Bergman en famille. Nous annonçons des résultats sur le développement asymptotique du noyau
de Bergman en famille. L’idée principale est d’utiliser le formalisme des superconnexions comme dans la preuve du théorème de
l’indice local en famille. Pour citer cet article : X. Ma, W. Zhang, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit π :W → S une submersion holomorphe de variétés compactes de fibre X, et soit L un fibré en droites ho-
lomorphes sur W qui est positif le long de la fibre X. Soit E un fibré vectoriel holomorphe sur W . Pour p assez
grand, la première classe de Chern du fibré vectoriel holomorphe H 0(X,Lp ⊗ E) est calculé par le théorème de
Grothendieck–Riemann–Roch (G.R.R.).

En considérant la courbure de H 0(X,Lp ⊗E) comme un opérateur agissant le long de la fibre, nous étudions dans
cette Note le développement asymptotique de son noyau quand la puissance p tend vers +∞. Nos résultats raffinent le
développement asymptotique de la première classe de Chern donnée par le théorème de G.R.R. au niveau des formes
différentielles comme dans la version locale du théorème de l’indice en famille. L’idée principale est d’utiliser « un
morceau » de la superconnexion introduite par Bismut dans la preuve du théorème de l’indice local en famille.

Les résultats annoncés dans cette Note sont démontrés dans [12].

1. Introduction

Let W,S be smooth compact complex manifolds. Let π :W → S be a holomorphic submersion with compact fiber
X and dimC X = n. Let E be a holomorphic vector bundle on W . Let L be a holomorphic line bundle on W .

E-mail addresses: ma@math.polytechnique.fr (X. Ma), weiping@nankai.edu.cn (W. Zhang).
1631-073X/$ – see front matter © 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2006.11.013
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We suppose that L is positive along the fiber X.
We will add a subscript R for the corresponding real objects. Thus T X is the holomorphic relative tangent bundle

of π , and TRX is the corresponding real vector bundle. Let J TRX be the complex structure on TRX.
By the Kodaira vanishing theorem, there exists p0 ∈ N such that the higher fiberwise cohomologies vanish and that

H 0(X, (Lp ⊗ E)|X) forms a vector bundle, denoted by H 0(X,Lp ⊗ E), on S for p > p0. From now on, we always
assume p > p0.

By the Grothendieck–Riemann–Roch Theorem, in H 2(S,R), as p → +∞, we have

c1
(
H 0(X,Lp ⊗ E

))= rk(E)

∫
X

c1(L)n+1

(n + 1)! pn+1 +
∫
X

(
c1(E) + rk(E)

2
c1(T X)

)
c1(L)n

n! pn + O
(
pn−1). (1)

Now, in view of the Bismut local family index theorem [2], it is natural to ask whether a local version of (1) still
holds which involves the curvature of the vector bundle H 0(X,Lp ⊗ E).

Let us introduce our geometric data now. Let hL be a Hermitian metric on L such that the restriction of
√−1RL

along the fiber X is a positive (1,1)-form, here RL is the curvature of the holomorphic Hermitian connection ∇L on
(L,hL). Let ω := c1(L,hL) be the Chern–Weil representative of the first Chern class c1(L) of (L,hL), then

ω = c1
(
L,hL

)=
√−1

2π
RL. (2)

Thus ω is a smooth real 2-form of complex type (1,1) on W . Moreover, ω defines a Kähler form along the fiber X,
i.e.

gTRX(u, v) = ω
(
u,J TRXv

)
(3)

defines a Riemannian metric on TRX. We denote by hT X the corresponding Hermitian metric on T X.
Let dvX be the Riemannian volume form on (X,gTRX).
Let hE be a Hermitian metric on E. Let ∇E be the holomorphic Hermitian connection on (E,hE) with its curva-

ture RE .
Let hH 0(X,Lp⊗E) be the L2-metric on H 0(X,Lp ⊗ E) induced by hL,hE and gTRX . Let ∇H 0(X,Lp⊗E) be the

holomorphic Hermitian connection on (H 0(X,Lp ⊗ E),hH 0(X,Lp⊗E)). Let RH 0(X,Lp⊗E) = (∇H 0(X,Lp⊗E))2 be the
curvature of ∇H 0(X,Lp⊗E). Then

RH 0(X,Lp⊗E) ∈ Λ2(T ∗
R
S
)⊗ End

(
H 0(X,Lp ⊗ E

))
.

For s ∈ S, let Pp,s be the orthogonal projection from C ∞(Xs, (L
p ⊗ E)|Xs ) onto H 0(Xs, (L

p ⊗ E)|Xs ). In the
sequel, we write instead Pp .

We will identify RH 0(X,Lp⊗E) to

PpRH 0(X,Lp⊗E)Pp ∈ Λ2(T ∗
R
S
)⊗ End

(
C ∞(X,

(
Lp ⊗ E

)∣∣
X

))
.

Let RH 0(X,Lp⊗E)(x, x′) (x, x′ ∈ Xs, s ∈ S) be the smooth kernel of the operator RH 0(X,Lp⊗E) with respect to
dvXs (x

′). Then

RH 0(X,Lp⊗E)(x, x) ∈ π∗(Λ2(T ∗
R
S
))⊗ End(Ex). (4)

The purpose of this Note is to evaluate the asymptotics as p → ∞ of the kernel of RH 0(X,Lp⊗E).

2. Main result

Let T H W be the orthogonal bundle to T X with respect to ω. Then T H W is a sub-bundle of T W such that

T W = T H W ⊕ T X. (5)

Let P T X be the projection from T W = T H W ⊕ T X onto T X. For U ∈ TRS, let UH ∈ T H
R

W be the horizontal lift
of U .
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Let T ∈ Λ2(T ∗
R
W) ⊗ TRX be the tensor defined in the following way: for U,V ∈ TRS, X,Y ∈ TRX,

T
(
UH ,V H

) := −P T X
[
UH ,V H

]
, T (X,Y ) := 0,

T
(
UH ,X

) := 1

2

(
gTRX

)−1(LUH gTRX
)
X.

(6)

Let RT X be the curvature of the holomorphic Hermitian connection ∇T X on (T X,hT X). Then the Chern–Weil

representative of the first Chern class of (T X,hT X) is c1(T X,hT X) =
√−1
2π

Tr[RT X].
Let {gα} be a frame of T S and {gα} its dual frame.
Clearly, (5) induces canonically a decomposition Λ(T ∗

R
W) = π∗(Λ(T ∗

R
S))⊗̂Λ(T ∗

R
X). We will denote by A(i) the

component in π∗(Λi(T ∗
R
S))⊗̂Λ(T ∗

R
X), of a differential form A on W . Then dvX = (ωn)(0)/n!.

Theorem 2.1. There exist smooth sections b2,r (x) ∈ C ∞(W,Λ2(T ∗
R
S) ⊗ End(Ex)) which are polynomials in RT X ,

T , RE (and RL), and their derivatives of order � 2r − 1 (resp. 2r) along the fiber X such that for any k, l ∈ N, there
exists Ck,l > 0 such that for any p ∈ N, p > p0,∣∣∣∣∣RH 0(X,Lp⊗E)(x, x) −

k∑
r=0

b2,r (x)pn−r+1

∣∣∣∣∣
C l (W)

� Ck,lp
n−k, (7)

with √−1

2π
b2,0 = (ωn+1)(2)

(n + 1)(ωn)(0)
IdE = gα ∧ ḡβω

(
gH

α , ḡH
β

)
IdE,

√−1

2π
b2,1 =

((
1

2
c1
(
T X,hT X

)+
√−1

2π
RE − 1

8π
gα ∧ ḡβ�X

(
ω
(
gH

α , ḡH
β

)))
ωn

)(2)/(
ωn
)(0)

,

(8)

where �X is the (positive) Laplace operator of the fiber Xs .

If we take the trace of this asymptotic (7) on E and integrate along X, we get a refinement of (1) on the level of
differential forms, in the spirit of the local family index theorem.

3. Idea of the proof

Proof. By using the full off-diagonal asymptotic expansion of the Bergman kernel [6] with the parameter s ∈ S, it is
not hard to prove the existence of an expansion with leading term pn+2, but further work is needed to get the vanishing
of the first coefficient, and it is difficult to compute the other coefficients this way.

Our main idea here is to use the superconnection formalism to prove Theorem 2.1. This gives us a conceptually clear
way to get our result: an important feature of our superconnection is that its curvature is a second order differential
operator along the fiber X, while the superconnection itself involves derivatives along the horizontal direction. Just
as in the Bismut local family index theorem [2], this property of our superconnection plays an important role in our
proof.

We now explain briefly the superconnection formalism.
Let ∂̄Lp⊗E,∗ be the formal adjoint of the fiberwise Dolbeault operator ∂̄Lp⊗E on the Dolbeault complex

Ω0,•(X,Lp ⊗ E). Set

Dp = √
2
(
∂̄Lp⊗E + ∂̄Lp⊗E,∗). (9)

Let ∇Ep be the connection on Ep := Λ(T ∗(0,1)X) ⊗ Lp ⊗ E induced by the holomorphic Hermitian connections
∇T X , ∇L, ∇E on T X, L, E respectively.

For U ∈ TRS, if σ is a smooth section of Ω0,•(X,Lp ⊗ E) over S, i.e. σ ∈ C ∞(W,Ep), set

∇Ω
U σ = ∇Ep

UH σ. (10)

Then ∇Ω is a Hermitian connection on Ω0,•(X,Lp ⊗ E) over S. Let Bp be the superconnection on
Λ(T ∗S) ⊗̂ Ω0,•(X,Lp ⊗ E) defined by
R
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Bp = Dp + ∇Ω. (11)

We now describe the explicit geometric construction of ∇H 0(X,Lp⊗E) given in [4, Theorem 3.4] (cf. [3, Theo-
rem 3.11]). Let ∇Lp⊗E be the connection on Lp ⊗E induced by ∇L,∇E . For U ∈ TRS, σ ∈ C ∞(S,H 0(X,Lp ⊗E)),
then

∇H 0(X,Lp⊗E)
U σ = Pp∇Lp⊗E

UH σ, (12)

where σ is considered as a section of Lp ⊗ E on W .
From (11), (12) and the spectral gap property of D2

p (cf. [5,9]), for p large enough, we have

RH 0(X,Lp⊗E) = 1

2π
√−1

[ ∫
|λ|=2πp

(
λ − B2

p

)−1
λdλ

](2)

. (13)

Now, by using the formal power series trick developed in [10], we get a general and algorithmic way to compute
the coefficients in the expansion. More details will appear in [12]. �
Remark 3.1. In this Note, we have only formulated our results in the case of holomorphic line bundles which are
fiberwise positive. Actually, the results hold also for symplectic line bundles. In [12], we also prove the existence of
an off-diagonal asymptotic expansion which implies, for example, that RH 0(X,Lp⊗E) is a Toeplitz operator with values
in Λ2(T ∗

R
S) in the sense of [11, Chapter 7].

By (7), (8), the curvatures RH 0(X,Lp⊗E)(x, x) provide a natural approximation of the Monge–Ampère operator on
the space of Kähler metrics. It should have relations with the existence problem of geodesics on the space of Kähler
metrics (cf. [7,8,14,13]).

From Eq. (8), for large p, we can obtain more precise positivity estimates for H 0(X,Lp ⊗ E) than in [1, §6].
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HIGHER SPECTRAL FLOW

Xianzhe Dai and Weiping Zhang

Abstract. For a continuous curve of families of Dirac type operators we
define a higher spectral flow as a K-group element. We show that this
higher spectral flow can be computed analytically by η̂-forms, and is related
to the family index in the same way as the spectral flow is related to the
index. We also introduce a notion of Toeplitz family and relate its index
to the higher spectral flow.

We introduce the notion of higher spectral flow, generalizing the usual
spectral flow (cf [APS1]). The higher spectral flow is defined for a continu-
ous one parameter family (i.e. a curve) of families of Dirac type operators
parametrized by a compact space and is an element of the K-group of the
parameter space. The (virtual) dimension of this K-group element is pre-
cisely the (usual) spectral flow. The definition makes use of the concept
of spectral section introduced recently by Melrose-Piazza [MP].

We show that this higher version of spectral flow satisfies the basic prop-
erties of spectral flow. For example, its Chern character can be expressed
analytically in terms of a generalization of the η̂ form of Bismut-Cheeger
[BC1]. The higher spectral flow is also related to the family index, in the
same way as the spectral flow is related to the index.

We also introduce a notion of Toeplitz family and relate its index to
the higher spectral flow. This generalizes a result of Booss-Wojciechowski
[BW, Theorem 17.17]. Finally we use higher spectral flow to prove a
generalization of the family index theorem for manifolds with boundary
[BC2], [BC3], [MP].

The details and the proofs will appear in [DZ2].

1. Spectral flow and spectral section

We take the definition of spectral flow as in [APS1]. Thus, if Ds, 0 ≤
s ≤ 1, is a curve of self-adjoint Fredholm operators, the spectral flow
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94 XIANZHE DAI AND WEIPING ZHANG

sf{Ds} counts the net number of eigenvalues of Ds which change sign
when s varies from 0 to 1. (Throughout the paper a family always means
a continuous family, and a curve always means a one parameter family.)

The notion of spectral section can be defined for a family of self adjoint
first order elliptic pseudodifferential operators [MP].
Definition. A spectral section for a family of self adjoint first order elliptic
pseudodifferential operators Dz (z ∈ B) is a family of self adjoint pseudod-
ifferential projections Pz such that for some smooth function R : B −→ R

and every z ∈ B

Dzu = λu ⇒
{

Pzu = u if λ > R(z)
Pzu = 0 if λ < −R(z).

As is proved in [MP], when the parameter space is compact, the exis-
tence of a spectral section is equivalent to the vanishing of the (analytic)
index of the family. Thus the existence for a one parameter family is always
assured.

Now let Ds be a curve of self adjoint elliptic pseudodifferential operators.
Let Qs be the spectral projection onto the direct sum of eigenspaces of Ds

with nonnegative eigenvalues (the APS projection). The following theorem
provides a link between the above two notions.

Theorem 1.1. Let Ps be a spectral section of Ds. Then [Q1 −P1] defines
an element of K0(pt) ∼= Z and so does [Q0 − P0]. Moreover the difference
[Q1 − P1] − [Q0 − P0] is independent of the choice of the spectral section
Ps, and it computes the spectral flow of Ds:

sf{Ds} = [Q1 − P1] − [Q0 − P0].

Proof. The independence of the choice of spectral section follows from a
construction in [MP, Proposition 2]. For (1.1), we use spectral sections to
reduce it to the finite dimensional case, where it can be easily verified.

This leads us to the notion of

2. Higher spectral flow

Let π : X −→ B be a smooth fibration with the typical fiber Z an
odd dimensional closed manifold and B compact. A family of self adjoint
elliptic pseudodifferential operators on Z, parametrized by B, will be called
a B-family. Consider a curve of B-families, Du = {Db,u}, u ∈ [0, 1].

Assuming that the index bundle of D0 vanishes, the homotopy invari-
ance of the index then implies that the index bundle of each Du vanishes.
Let Q0, Q1 be spectral sections of D0, D1 respectively. If we consider
the total family D̃ = {Db,u} parametrized by B × I, then there is a total
spectral section P̃ = {Pb,u}. Let Pu be the restriction of P̃ over B × {u}.
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According to [MP] difference of spectral sections defines K-group element
of the parameter space.
Definition. The (higher) spectral flow sf{(D0, Q0), (D1, Q1)} between the
pairs (D0, Q0), (D1, Q1) is an element in K(B) defined by

sf{(D0, Q0), (D1, Q1)} = [Q1 − P1] − [Q0 − P0] ∈ K(B).

The definition is independent of the choice of the (total) spectral section
P , as it follows again from [MP]. When Du, u ∈ S1 is a periodic family,
we choose Q1 = Q0. In this case the spectral flow turns out to be indepen-
dent of Q0 = Q1 and therefore defines an invariant of the family, denoted
sf{Du}.

For the most part of this paper we are going to restrict our attention to
B-families of Dirac type operators, defined as follows. For simplicity we
assume that the vertical tangent bundle TZ −→ X is spin and carries a
fixed spin structure1. Let gTZ be a metric on TZ. Let E be a complex
vector bundle over X with an hermitian metric gE and compatible connec-
tion ∇E . Corresponding to these geometric data we have a family of Dirac
operators DE

b , b ∈ B. This is a family of self adjoint elliptic operators on
Z parametrized by B.
Definition. By a B-family of self adjoint Dirac type operators we mean
a family of self adjoint elliptic operators D̃b parametrized by B whose
principal symbol is the same as that of DE

b .
Basic assumption. We assume that the family DE

b has vanishing index
bundle.

A typical example satisfying our basic assumption is the family of sig-
nature operators. More generally a B-family whose kernels have constant
dimension will always satisfy the basic assumption. Another class of ex-
amples comes from the boundary family of a family of Dirac operators on
manifolds with boundary.

Now we can speak of the higher spectral flow of a curve of B-families
of Dirac type operators, given the basic assumption.

3. η̂-form and higher spectral flow

By [MP], given a spectral section P = {Pb} of a B-family D = {Db},
there is a family of zeroth order finite rank pseudodifferential operators
A = {Ab} such that each D̃b = Db + Ab is invertible and that Pb is
precisely the APS projection of D̃b. (We will call A a Melrose-Piazza
operator associated to the spectral section.)

1Our discussion extends without difficulty to the more general case when there are
smoothly varying Z2-graded Hermitian Clifford modules over the fibers, with graded
unitary connections.
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96 XIANZHE DAI AND WEIPING ZHANG

For our purpose we define a η̂-form which generalizes both [BC1] and
[MP]. The main point is that we need to use general superconnections,
not just Bismut superconnection [B]. We first introduce some notations.

Let X be the total space of the fibration whose typical fiber is Z and
the base B. Choosing a connection amounts to a splitting

TX = TZ ⊕ THX.

We also have the identification THX = π∗TB.
Endow B with a metric gTB and let gTX be the metric defined by

gTX = gTZ ⊕ π∗gTB .

Let P , P⊥ be the orthogonal projections of TX onto TZ, THX respec-
tively and denote by ∇TX , ∇TB the Levi-Civita connections. Following
Bismut [B], let ∇TZ be the connection on the vertical bundle defined by
∇TZ = P∇TXP . This is a connection compatible with the metric gTZ

and independent of the choice of the metric gTB .
We use S(TZ) to denote the spinor bundle of TZ. Then the connection

lifts to a connection on the spinor bundle. Also following Bismut we view
Γ(S(TZ) ⊗ E) as the space of sections of an infinite dimensional vector
bundle H∞ over B, with fiber

H∞,b = Γ(S(TZb) ⊗ Eb).

Then ∇S(TZ)⊗E determines a connection on H∞ by the prescription:

∇̃Xh = ∇XH h.

Now, let {Db} be a B-family of self adjoint Dirac type operators as de-
fined previously, and A a Melrose-Piazza operator associated to a spectral
section P .
Definition. For any Bi ∈ Ωi(T ∗B) ⊗ Γ(End(S(TZ) ⊗ E)) = Ωi(T ∗B) ⊗
cl(TZ)⊗End(E) odd, and any t > 0, we define the superconnection Bt to
be

Bt = ∇̃ +
√

t(D + ρ(t)A) +
dim B∑
i=0

t
1−i
2 Bi,

where ρ is a cut-off function in t: ρ(t) = 1 when t > 8 and ρ(t) = 0 when
t < 2.
Definition. We define, for �(s) � 0,

η̂(P, A, s) =
1

2
√

π

∫ ∞

0

t
s
2 Treven[

dBt

dt
e−B2

t ]dt.

This defines a differential form on B which depends holomorphically on
s for �(s) � 0. By the standard argument it extends to a meromorphic

80



HIGHER SPECTRAL FLOW 97

function of s in the whole complex plane with only simple poles. Note that
our definition has an extra factor of 1

2 .

Theorem 3.1. The residue of η̂(P, A, s) at s = 0 is exact.

Definition. The η̂-form is defined as

η̂(D, P ) = {η̂(P, A, s) − Ress=0{η̂(P, A, s)}
s

}s=0.

Remark. The η̂-form for a general superconnection is defined in [BC1] in
the finite dimensional case.

A variational argument shows

Proposition 3.2. The value of η̂(D, P ) in Ω∗(B)/dΩ∗(B) is independent
of the choice of the cut-off function ρ and the Melrose-Piazza operator A.

The dependence of η̂-form on the spectral section is also well under-
stood. The following is a slight generalization of a result of [MP].

Theorem 3.3. If P0 and P1 are spectral sections of the family D, then
their difference defines an element [P1 − P0] in K(B). Moreover

ch(P1 − P0) = η̂(D, P1) − η̂(D, P0) in H∗(B).

The following theorem generalizes the well known relationship between
the spectral flow and the eta invariant.

Theorem 3.4. Let Du be a curve of B-families of Dirac type operators
and Q0, Q1 spectral sections of D0, D1 respectively. Let B̃t(u) = ∇̃ +√

t(Du + ρ(t)Ã) +
∑

i≥1 t
1−i
2 Bi(u) be a curve of superconnections. Then

we have the following identity in H∗(B):

ch(sf{(D0, Q0), (D1, Q1)}) = η̂(D1, Q1)− η̂(D0, Q0)−
∫ 1

0

dη̂(Du, Pu)
du

du,

where the last term is a local invariant computable from the asymptotic
expansion

1√
π

∂

∂s
{Treven[exp(−B̃2

t (u) − s
∂B̃t(u)

∂u
)]}|s=0 =

∑
i≥−k

ait
i,

i.e., we have
dη̂(Du, Pu)

du
= a0(u).

This theorem provides a way to compute, analytically, the Chern char-
acter of higher spectral flow. We will use Formula (3.4) to compute the
higher spectral flow of both a periodic family and a Toeplitz family.
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98 XIANZHE DAI AND WEIPING ZHANG

4. Higher spectral flow and family index

We consider a periodic family Db,u, b ∈ B, u ∈ S1 of B-families of Dirac
type operators, where B is a closed manifold. The total family D̃b,u is a
family of Dirac operators on an even dimensional space (the total space
of a fibration over S1 with the typical fiber Z). Thus it defines an index
bundle ind(D̃) ∈ K(B). The following theorem generalizes the well known
relationship between the spectral flow and the index.

Theorem 4.1. We have

ch(ind(D̃)) = ch(sf{Du}) in H∗(B).

Proof. We apply Theorem 3.4 to compute the higher spectral flow and
show that the result agrees with the Atiyah-Singer formula [AS] for the
family index.
Remark. It is very likely that the higher spectral flow and the family index
actually equal as K-group elements, but at the moment we do not see how
to prove this.

As a consequence, we deduce the following relation between the spectral
flow and higher spectral flow.

Corollary 4.2. Let DZ
u be a periodic family of B-families of Dirac oper-

ators and let DX
u be the one parameter family of the total Dirac operators.

Then we have

sf{DX
u } =

∫
B

Â(B)ch(sf{DZ
u }).

5. Higher spectral flow and Toeplitz family

Now letCN be a trivial vector bundle over X with its canonical (trivial)
metric and connection. Let

g : X −→ GL(N, C).

Then g acts on the trivial bundle. Moreover it extends in the obvious way
to an operator

gb : L2(S(TZb) ⊗ Eb) ⊗ C
N −→ L2(S(TZb) ⊗ Eb) ⊗ C

N .

Let P be a spectral section of the B-family D. Then P also extends to
an operator

Pb : L2(S(TZb) ⊗ Eb) ⊗ C
N −→ L2(S(TZb) ⊗ Eb) ⊗ C

N

by acting as identity on the factor CN . Let LP,b be the image space of
L2(S(TZb) ⊗ Eb) ⊗ CN under Pb.
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Definition. For any b ∈ B, define T (g)b to be the bounded linear operator

T (g)b = Pbgb : LP,b −→ LP,b.

This is a generalization of the notion of Toeplitz operator. T (g) is
a continuous family of Fredholm operators parametrized by B, and by
Atiyah-Singer [AS], it defines an element

inda(T (g)) ∈ K(B),

its index bundle. The index bundle of the Toeplitz family does not depend
on the geometric data and the spectral section.

Without loss of generality, we now assume that g is unitary. Extend D
to L2(S(TZb) ⊗ Eb) ⊗ CN in the obvious way. Then P is still a spectral
section for D. Moreover, gPg−1 is a spectral section for gDg−1. Connect-
ing D and gDg−1 by the linear path, we have the following generalization
of [BW, Theorem 17.17].

Theorem 5.1. We have an equality

ch(inda(T (g))) = ch(sf{(D, P ), (gDg−1, gPg−1)}).

Remark. In this theorem one can verify directly that the right hand side
does not depend on P .
Proof. Once again we apply Theorem 3.4 to compute the higher spectral
flow. On the other hand one can still use the argument of [BD] to compute
the family index of the Toeplitz family. The computations show that they
are equal. We point out that we shall use a special modification of the
Bismut superconnection to make sure that the local index type calculation
can be carried out.

As an interesting example we can take D a B-family of signature op-
erators. In this case the higher spectral flow in Theorem 5.1 is usually
nontrivial, although the higher spectral flow of a one parameter family of
B-families of signature operators is always zero.

Theorem 5.1 is in fact true in K-theory, see [DZ2] for detail2.

6. An extension of family index theorem

An important property of the spectral flow is that it measures the
change of the index for manifolds with boundary under continuous de-
formation [DZ1]. We show that higher spectral flow measures the change
of the family index for manifolds with boundary under continuous defor-
mation.

2We thank Krysztof Wojciechowski for helpful discussions.
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Let π : M −→ B be a smooth fibration with the typical fiber Y an
even dimensional manifold with boundary Z. For simplicity3 we assume
that the vertical tangent bundle TY −→ M is spin and carries a fixed
spin structure. Let gTY be a metric on TY which is of product type
near the boundary. Let E be a complex vector bundle over M with an
hermitian metric gE and compatible connection ∇E . Corresponding to
these geometric data we have a family of Dirac operators DE

b , b ∈ B.
This is a family of elliptic operators on the manifold with boundary Y ,
parametrized by B.
Definition. By a B-family of Dirac type operators on the manifold with
boundary Y we mean a family of elliptic operators D̃b parametrized by B
which is of product type near the boundary and whose principal symbol is
the same as that of DE

b . Moreover, we assume that the boundary family
is also a B-family of Dirac type operators.

It follows that spectral sections always exist for the boundary family.
Choosing a spectral section, we can then define the family index for this
B-family of Dirac type operators on the manifold with boundary as in
[MP].

Theorem 6.1. Let D̃b,u be a one parameter family of B-families of Dirac
type operators on the manifold with boundary Y . Let D̃∂

b,u denote the
boundary family. Let Qb,0, Qb,1 be spectral sections for D̃∂

b,0, D̃∂
b,1 respec-

tively. Then

ind(D̃1, Q1) − ind(D̃0, Q0) = −sf{(D̃∂
0 , Q0), (D̃∂

1 , Q1)} in K(B).

This is a generalization of [DZ1, Theorem 1.1]. Using this result we
can prove the following generalization of the family index theorem for
manifolds with boundary [BC2], [BC3], [MP].

Theorem 6.2. Let D̃ be a B-family of Dirac type operators on the man-
ifold with boundary Y and D̃∂ its boundary family. Let Q be a spectral
section of D̃∂ . Then

ch(ind(D̃, Q)) =
∫

Y

a0 − η̂(D̃∂ , Q),

where a0 is the constant term in the asymptotic expansion of

Trs[exp(−B̃2
t )] =

∑
i≥− dim Y

2 −[ dim B
2 ]

ait
i,

3Once again our discussion extends to the more general case.
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HIGHER SPECTRAL FLOW 101

with an arbitrary total superconnection B̃t now extended to the double of
the fibration, while η̂(D̃∂ , Q) is the η̂-form defined using the boundary su-
perconnection induced from B̃t.

Proof. We use the family index theorem of [MP] for the Dirac family and
flow to the more general Dirac type family.
Remark. This is the analogue in the family case for the general index
formula of Atiyah-Patodi-Singer for manifold with boundary [APS2].
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Heat Kernels and the Index Theorems on
Even and Odd Dimensional Manifolds∗

Weiping Zhang†

Abstract

In this talk, we review the heat kernel approach to the Atiyah-Singer index

theorem for Dirac operators on closed manifolds, as well as the Atiyah-Patodi-

Singer index theorem for Dirac operators on manifolds with boundary. We also

discuss the odd dimensional counterparts of the above results. In particular,

we describe a joint result with Xianzhe Dai on an index theorem for Toeplitz

operators on odd dimensional manifolds with boundary.
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operators.

1. Introduction

As is well-known, the index theorem proved by Atiyah and Singer [AS1] in
1963, which expresses the analytically defined index of elliptic differential operators
through purely topological terms, has had a wide range of implications in mathe-
matics as well as in mathematical physics. Moreover, there have been up to now
many different proofs of this celebrated result.

The existing proofs of the Atiyah-Singer index theorem can roughly be divided
into three categories:

(i) The cobordism proof: this is the proof originally given in [AS1]. It uses
the cobordism theory developed by Thom and modifies Hirzebruch’s proof of his
Signature theorem as well as his Riemann-Roch theorem;

(ii) The K-theoretic proof: this is the proof given by Atiyah and Singer in
[AS2]. It modifies Grothendieck’s proof of the Hirzebruch-Riemann-Roch theorem
and relies on the topological K-theory developed by Atiyah and Hirzebruch. The
Bott periodicity theorem plays an important role in this proof;

∗Partially supported by the MOEC and the 973 Project.
†Nankai Institute of Mathematics, Nankai University, Tianjin 300071, China. E-mail:

weiping@nankai.edu.cn
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(iii) The heat kernel proof: this proof originates from a simple and beautiful
formula due to Mckean and Singer [MS], and has closer relations with differential
geometry as well as mathematical physics. It also lead directly to the important
Atiyah-Patodi-Singer index theorem for Dirac operators on manifolds with bound-
ary.

In this article, we will survey some of the developments concerning the heat
kernel proofs of various index theorems, including a recent result with Dai [DZ2]
on an index theorem for Toeplitz operators on odd dimensional manifolds with
boundary.

2. Heat kernels and the index theorems on even

dimensional manifolds

We start with a smooth closed oriented 2n-dimensional manifold M and two
smooth complex vector bundles E, F over M , on which there is an elliptic differential
operator between the spaces of smooth sections, D+ : Γ(E) → Γ(F ).

If we equip TM with a Riemannian metric and E, F with Hermitian metrics
repectively, then Γ(E) and Γ(F ) will carry canonically induced inner products.

Let D− : Γ(F ) → Γ(E) be the formal adjoint of D+ with respect to these
inner products. Then the index of D+ is given by

indD+ = dim (kerD+) − dim (kerD−) . (2.1)

It is a topological invariant not depending on the metrics on TM , E and F .

The famous Mckean-Singer formula [MS] says that indD+ can also be com-
puted by using the heat operators associated to the Laplacians D−D+ and D+D−.
That is, for any t > 0, one has

indD+ = Tr [exp (−tD−D+)] − Tr [exp (−tD+D−)] . (2.2)

By introducing the Z2-graded vector bundle E ⊕ F and setting D =
(

0 D−

D+ 0

)
,

we can rewrite the difference of the two traces in the right hand side of (2.2) as a
single “supertrace” as follows,

indD+ = Trs

[
exp

(
−tD2

)]
, for any t > 0. (2.2)′

Let Pt(x, y) be the smooth kernel of exp(−tD2) with respect to the volume
form on M . For any f ∈ Γ(E ⊕ F ), one has

exp
(
−tD2

)
f(x) =

∫

M

Pt(x, y)f(y)dy. (2.3)

In particular,

Trs

[
exp

(
−tD2

)]
=

∫

M

Trs [Pt(x, x)] dx. (2.4)
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Now, for simplicity, we assume that the elliptic operator D is of order one.
Then by a standard result, which goes back to Minakshisundaram and Pleijiel [MP],
one has that when t > 0 tends to 0,

Pt(x, x) =
1

(4πt)n
(a−n + a−n+1t + · · · + a0t

n + ox (tn)) , (2.5)

where ai ∈ End((E ⊕ F )x), i = −n, . . . , 0.
By (2.2)’, (2.4) and (2.5), and by taking t > 0 small enough, one deduces that

∫

M

Trs[ai]dx = 0, −n ≤ i < 0,

indD+ =

(
1

4π

)n ∫

M

Trs[a0]dx. (2.6)

Mckean and Singer conjectured in [MS] that for certain geometric operators,
there should be some “fantastic cancellation” so that the following far reaching
refinement of (2.6) holds,

Trs[ai] = 0, −n ≤ i < 0,

and moreover, Trs[a0] can be calculated simply in the Chern-Weil geometric theory
of characteristic classes.

In fact, as a typical example, let M be an even dimensional compact smooth
oriented spin manifold carrying a Riemannian metric gTM . Let RTM be the cur-
vature of the Levi-Civita connection associated to gTM . Let S(TM) = S+(TM)
⊕S−(TM) be the Hermitian vector bundle of (TM, gTM )-spinors, and
D+ : Γ(S+(TM)) → Γ(S−(TM)) the associated Dirac operator.

One then has the formula (cf. [BGV, Chap. 4, 5]),

lim
t→0

Trs [Pt(x, x)] dx =

{
Â

(
RTM

2π

)}max

:=




det1/2




√
−1
4π RTM

sinh
(√

−1
4π RTM

)










max

,

(2.7)
which implies the Atiyah-Singer index theorem [AS1] for D+:

indD+ = Â(M) :=

∫

M

Â

(
RTM

2π

)
. (2.8)

A result of type (2.7) is called a local index theorem. The first proof of such a
local result was given by V. K. Patodi [P] for the de Rham-Hodge operator d + d∗.
Other direct heat kernel proofs of (2.7) have been given by Berline-Vergne, Bismut,
Getzler and Yu respectively. We refer to [BGV] and [Yu] for more details.

The heat kernel proof of the local index theorem leads to a generalization of
the index theorem for Dirac operators to the case of manifolds with boundary. This
was achieved by Atiyah, Patodi and Singer in [APS], and will be reviewed in the
next section.
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3. The index theorem for Dirac operators on even

dimensional manifolds with boundary

Let M be a smooth compact oriented even dimensional spin manifold with
(nonempty) smooth boundary ∂M . Then ∂M is again oriented and spin.

Let gTM be a metric on TM . Let gT∂M be its restriction on T∂M . We
assume for simplicity that gTM is of product structure near the boundary ∂M .
Let S(TX) = S+(TX) ⊕ S−(TX) be the Z2-graded Hermitian vector bundle of
(TX, gTX)-spinors.

Since now M has a nonempty boundary ∂M , the associated Dirac operator
D+ : Γ(S+(TM)) → Γ(S−(TM)) is not elliptic. To get an elliptic problem, one
needs to introduce an elliptic boundary condition for D+, and this was achieved by
Atiyah, Patodi and Singer in [APS]. It is remarkable that this boundary condition,
to be described right now, is global in nature.

First of all, the Dirac operator D+ induces canonically a formally self-adjoint
first order elliptic differential operator

D∂M : Γ (S+(TM)|∂M ) → Γ (S+(TM)|∂M ) ,

which is called the induced Dirac operator on the boundary ∂M .
Clearly, the L2-completion of S+(TM)|∂M admits an orthogonal decomposi-

tion
L2 (S+(TM)|∂X) =

⊕

λ∈Spec(D∂M )

Eλ, (3.1)

where Eλ is the eigenspace of λ.
Let L2

≥0(S+(TM)|∂M ) denote the direct sum of the eigenspaces Eλ associ-
ated to the eigenvalues λ ≥ 0. Let P≥0 denote the orthogonal projection from
L2(S+(TM)|∂M ) to L2

≥0(S+(TM)|∂M ). We call P≥0 the Atiyah-Patodi-Singer pro-

jection associated to D∂M , to emphasize its role in [APS].
Then by [APS], the boundary problem

(D+, P≥0) : {u : u ∈ Γ(S+(TM)), P≥0 (u|∂M ) = 0} → Γ(S−(TM)), (3.2)

is Fredholm. We call this elliptic boundary problem the Atiyah-Patodi-Singer
boundary problem associated to D+. We denote by ind (D+, P≥0) the index of
the Fredholm operator (3.2).

The Atiyah-Patodi-Singer index theorem The following identity holds,

ind (D+, P≥0) =

∫

M

Â

(
RTM

2π

)
− η (D∂M ) . (3.3)

The boundary correction term η(D∂M ) appearing in the right hand side of
(3.3) is a spectral invariant associated to the induced Dirac operator D∂M on ∂M .
It is defined as follows: for any complex number s ∈ C with Re(s) > dimM , define

η (D∂M , s) =
∑

λ∈Spec(D∂M )

sgn(λ)

|λ|s . (3.4)
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By using the heat kernel method, one can show easily that η(D∂M , s) can be ex-
tended to a meromorphic function on C, which is holomorphic at s = 0. Following
[APS], we then define

η (D∂M ) =
dim (kerD∂M ) + η (D∂M , 0)

2
(3.5)

and call it the (reduced) eta invariant of D∂M .
The eta invariants of Dirac operators have played important roles in many

aspects of topology, geometry and mathematical physics.
In the next sections, we will discuss the role of eta invariants in the heat kernel

approaches to the index theorems on odd dimensional manifolds.

4. Heat kernels and the index theorem on odd di-

mensional manifolds

Let M be now an odd dimensional smooth closed oriented spin manifold. Let
gTM be a Riemannian metric on TM and S(TM) the associated Hermitian vector
bundle of (TM, gTM)-spinors.1 In this case, the associated Dirac operator D :
Γ(TM) → Γ(TM) is (formally) self-adjoint.2 Thus, one can proceed as in Section
3 to construct the Atiyah-Patodi-Singer projection

P≥0 : L2(S(TM)) → L2
≥0(S(TM)).

Now consider the trivial vector bundle CN over M . We equip CN with the
canonical trivial metric and connection. Then P≥0 extends naturally to an orthog-
onal projection from L2(S(TM)⊗CN) to L2

≥0(S(TM)⊗CN) by acting as identity

on CN . We still denote this extension by P≥0.
On the other hand, let

g : M → U(N)

be a smooth map from M to the unitary group U(N). Then g can be interpreted
as automorphism of the trivial complex vector bundle CN . Moreover g extends
naturally to an action on L2(S(TM) ⊗ CN ) by acting as identity on L2(S(TM)).
We still denote this extended action by g.

With the above data given, one can define a Toeplitz operator Tg as follows,

Tg = P≥0gP≥0 : L2
≥0

(
S(TM) ⊗ CN

)
−→ L2

≥0

(
S(TM)⊗ CN

)
. (4.1)

The first important fact is that Tg is a Fredholm operator. Moreover, it is
equivalent to an elliptic pseudodifferential operator of order zero. Thus one can
compute its index by using the Atiyah-Singer index theorem [AS2], as was indicated
in the paper of Baum and Douglas [BD], and the result is

indTg = −
〈
Â(TM)ch(g), [M ]

〉
, (4.2)

1Since now M is of odd dimension, the bundle of spinors does not admit a Z2-graded structure.
2In fact, if M bounds an even dimensional spin manifold, then D can be thought of as the

induced Dirac operator on boundary appearing in the previous section.
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where ch(g) is the odd Chern character associated to g.
There is also an analytic proof of (4.2) by using heat kernels. For this one

first applies a result of Booss and Wojciechowski (cf. [BW]) to show that the
computation of indTg is equivalent to the computation of the spectral flow of the
linear family of self-adjoint elliptic operators, acting of Γ(S(TM) ⊗ CN ), which
connects D and gDg−1. The resulting spectral flow can then be computed by
variations of η-invariants, where the heat kernels are naturally involved.

The above ideas have been extended in [DZ1] to give a heat kernel proof of a
family extension of (4.2).

5. An index theorem for Toeplitz operators on odd

dimensional manifolds with boundary

In this section, we describe an extension of (4.2) to the case of manifolds with
boundary, which was proved recently in my paper with Xianzhe Dai [DZ2]. This
result can be thought of as an odd dimensional analogue of the Atiyah-Patodi-Singer
index theorem described in Section 3.

This section is divided into three subsections. In Subsection 4.1, we extend the
definition of Toeplitz operators to the case of manifolds with boundary. In Subsec-
tion 4.2, we define an η-invariant for cylinders which will appear in the statement
of the main result to be described in Subsection 4.3.

5.1. Toeplitz operators on manifolds with boundary

Let M be an odd dimensional oriented spin manifold with (nonempty) bound-
ary ∂M . Then ∂M is also oriented and spin. Let gTM be a Riemannian metric on
TM such that it is of product structure near the boundary ∂M . Let S(TM) be the
Hermitian bundle of spinors associated to (M, gTM ). Since ∂M 6= ∅, the Dirac op-
erator D : Γ(S(TM)) → Γ(S(TM)) is no longer elliptic. To get an elliptic operator,
one needs to impose suitable boundary conditions, and it turns out that again we
will adopt the boundary conditions introduced by Atiyah, Patodi and Singer [APS].

Let D∂M : Γ(S(TM)|∂M ) → Γ(S(TM)|∂M ) be the canonically induced Dirac
operator on the boundary ∂M . Then D∂M is elliptic and (formally) self-adjoint.
For simplicity, we assume here that D∂M is invertible, that is, kerD∂M = 0.

Let P∂M,≥0 denote the Atiyah-Patodi-Singer projection from L2(S(TM)|∂M )
to L2

≥0(S(TM)|∂M ). Then (D, P∂M,≥0) forms a self-adjoint elliptic boundary prob-
lem. We will also denote the corresponding elliptic self-adjoint operator by DP∂M,≥0

.
Let L2

P∂M,≥0,≥0(S(TM)) be the space of the direct sum of eigenspaces of non-
negative eigenvalues of DP∂M,≥0

. Let PP∂M,≥0,≥0 denote the orthogonal projection
from L2(S(TM)) to L2

P∂M,≥0,≥0(S(TM)).

Now let CN be the trivial complex vector bundle over M of rank N , which
carries the trivial Hermitian metric and the trivial Hermitian connection. We extend
PP∂M,≥0,≥0 to act as identity on CN .

Let g : M → U(N) be a smooth unitary automorphism of CN . Then g extends
to an action on S(TM)⊗ CN by acting as identity on S(TM).
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Since g is unitary, one verifies easily that the operator gP∂M,≥0g
−1 is an orthog-

onal projection on L2((S(TM)⊗CN)|∂M ), and that gP∂M,≥0g
−1−P∂M,≥0 is a pseu-

dodifferential operator of order less than zero. Moreover, the pair (D, gP∂M,≥0g
−1)

forms a self-adjoint elliptic boundary problem. We denote its associated elliptic
self-adjoint operator by DgP∂M,≥0g−1 .

Let L2
gP∂M,≥0g−1,≥0(S(TM)⊗CN ) be the space of the direct sum of eigenspaces

of nonnegative eigenvalues of DgP∂M,≥0g−1 . Let PgP∂M,≥0g−1,≥0 denote the orthogo-

nal projection from L2(S(TM)⊗ CN ) to L2
gP∂M,≥0g−1,≥0(S(TM) ⊗ CN ).

Clearly, if s ∈ L2(S(TM)⊗ CN ) verifies P∂M,≥0(s|∂M ) = 0, then gs verifies

gP∂M,≥0g
−1 ((gs)|∂M ) = 0.

Definition 5.1 The Toeplitz operator Tg is defined by

Tg = PgP∂M,≥0g−1,≥0gPP∂M,≥0,≥0 :

L2
P∂M,≥0,≥0

(
S(TM) ⊗ CN

)
→ L2

gP∂M,≥0g−1,≥0

(
S(TM)⊗ CN

)
.

One verifies that Tg is a Fredholm operator. The main result of this section
evaluates the index of Tg by more geometric quantities.

5.2. An η-invariant associated to g

We consider the cylinder [0, 1] × ∂M . Clearly, the restriction of g on ∂M

extends canonically to this cylinder.
Let D|[0,1]×∂M be the restriction of D on [0, 1]× ∂M . We equip the boundary

condition P∂M,≥0 at {0} × ∂M and the boundary condition Id − gP∂M,≥0g
−1 at

{1}×∂M . Then (D|[0,1]×∂M , P∂M,≥0, Id− gP∂M,≥0g
−1) forms a self-adjoint elliptic

boundary problem. We denote the corresponding elliptic self-adjoint operator by
DP∂M,≥0,gP∂M,≥0g−1 .

Let η(DP∂M,≥0,gP∂M,≥0g−1 , s) be the η-function of s ∈ C which, when Re(s) >>

0, is defined by

η
(
DP∂M,≥0,gP∂M,≥0g−1 , s

)
=

∑

λ6=0

sgn(λ)

|λ|s ,

where λ runs through the nonzero eigenvalues of DP∂M,≥0,gP∂M,≥0g−1 .
It is proved in [DZ2] that under our situation, η(DP∂M,≥0,gP∂M,≥0g−1 , s) can be

extended to a meromorphic function on C which is holomorphic at s = 0.
Let η(DP∂M,≥0,gP∂M,≥0g−1) be the reduced η-invariant defined by

η
(
DP∂M,≥0,gP∂M,≥0g−1

)

=
dimker

(
DP∂M,≥0,gP∂M,≥0g−1

)
+ η

(
DP∂M,≥0,gP∂M,≥0g−1

)

2
.
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5.3. An index theorem for Tg

Let ∇TM be the Levi-Civita connection associated to the Riemannian metric
gTM . Let RTM = (∇TM )2 be the curvature of ∇TM . Also, we use d to denote
the trivial connection on the trivial vector bundle CN over M . Then g−1dg is a
Γ(End(CN )) valued 1-form over M .

Let ch(g, d) denote the odd Chern character form (cf. [Z]) of (g, d) defined by

ch(g, d) =

(dim M−1)/2∑

n=0

n!

(2n + 1)!

(
1

2π
√
−1

)n+1

Tr
[(

g−1dg
)2n+1

]
.

Let PM denote the Calderón projection associated to D on M (cf. [BW]). Then
PM is an orthogonal projection on L2((S(TM)⊗CN)|∂M ), and that PM −P∂M,≥0

is a pseudodifferential operator of order less than zero.
Let τµ(P∂M,≥0, gP∂M,≥0g

−1,PM ) ∈ Z be the Maslov triple index in the sense
of Kirk and Lesch [KL, Definition 6.8].

We can now state the main result of [DZ2], which generalizes an old result of
Douglas and Wojciechowski [DoW], as follows.

Theorem 5.2 The following identity holds,

indTg = −
∫

M

Â

(
RTM

2π

)
ch(g, d) + η

(
DP∂M,≥0,gP∂M,≥0g−1

)

−τµ

(
P∂M,≥0, gP∂M,≥0g

−1,PM

)
.

The following immediate consequence is of independent interests.

Corollary 5.3 The number

∫

M

Â

(
RTM

2π

)
ch(g, d) − η

(
DP∂M,≥0,gP∂M,≥0g−1

)

is an integer.

The strategy of the proof of Theorem 5.2 given in [DZ2] is the same as that
of the heat kernel proof of (4.2). However, due to the appearance of the boundary
∂M , one encounters new difficulties. To overcome these difficulties, one makes use
of the recent result on the splittings of η invariants (cf. [KL]) as well as some ideas
involved in the Connes-Moscovici local index theorem in noncommutative geometry
[CM] (see also [CH]). Moreover, the local index calculations appearing near ∂M is
highly nontrivial. We refer to [DZ2] for more details.
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