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Abstract. This thesis consists of several topics centered around index the-
ory. These topics include the study of the Ray-Singer analytic torsion, the
Atiyah-Patodi-Singer 7 invariant, spectral flow and its families generalization,
the Guillemin-Sternberg geometric quantization conjecture and its various ex-
tensions, the index theorems for Dirac operators on even and odd dimensional
manifolds with boundary, the analytic espects of the Kervaire semi-characteritic,
elliptic genus, Rohklin congruences and its higher dimensional generalizations,
Bergman kernels in geometric quantization, etc.

Résumé. Cette these contient des résultats relatifs a la théorie de I'indice.
On consideére en particulier: la torsion analytique de Ray-Singer, l'invariant 7
d’Atiyah-Patodi-Singer, le flot spectral et sa généralisation en famille, la con-
jecture de la quantification géométrique de Guillemin-Sternberg et ses diverses
extensions, le théoreme de I'indice de 'opérateur de Dirac pour les variétés a bord
en dimension paire ou impaire, les aspects analytiques de la semi-caractéristique
de Kervaire, le genre elliptique, les congruences de Rohklin et leur généralisation
en dimension supérieure, le noyau de Bergman en quantification géométrique, etc.
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PRESENTATION DES TRAVAUX:

ANALYTIC ASPECTS OF INDEX THEORY

1. EARLIER WORKS

These are the papers I wrote before coming to France to pursue my Ph.D.
study.

In [1], we gave a slight generalization of the Bott residue formula on complex
manifolds, where the zeroes of the holomorphic vector field are allowed to be non-
degenerate complex submanifolds (instead of points as in Bott’s original formula).
The proof is inspired by Bismut’s Gaussian proof of the famous Duistermaat-
Heckman and Berline-Vergne localization formulas.

In the joint work with Lafferty and Yanlin Yu [4] and [59], we gave a direct
geometric proof of the Atiyah-Bott-Segal-Singer equivariant index theorem for
Dirac operators. Comparing with Bismut’s proof using probability as well as
Berline-Vernge’s proof using frame bundles, our proof is closer in spirit to the
heat kernel proofs of the local index theorem for Dirac operators due to Getzler
and Yanlin Yu respectively.

In paper [2], we proved a regularity result for the equivariant n-function of Dirac
operators by using the method in [4]. Our result generalizes the corresponding
result in the non-equivariant case due to Bismut and Freed.

In [10], we gave an alternate proof without using probability of the local index
theorem due to Bismut for Dirac operators associated with certain non torsion-
free connections.

There is another paper [58] in which we made an effort to understand Bismut’s
local index theorem for a family of Dirac operators.

2. REIDEMEISTER TORSION AND RAY-SINGER ANALYTIC TORSION

Reidemeister torsion is a classical concept in topology associated to orthogonal
representations of the fundamental group of a CW complex.

Inspired by the Atiyah-Singer index theory, Ray and Singer studied in 1970
an analogue of the Reidemeister torsion for the de Rham complex on a smooth
manifold. They called this analogue the analytic torsion and discovered that

it has a lot of similar properties like that of Reidemeister torsion. They further
2
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made the conjecture that their analytic torsion (now widely called the Ray-Singer
torsion) equals to the Reidemeister torsion.

The above Ray-Singer conjecture was proved in 1978, independently by Cheeger
and Miiller. The Cheeger-Miiller theorem holds for orthogonal representations
of the fundamental group. Later, Miiller extended it to the case of unimoduler
representations.

The proofs of Cheeger and Miiller use many ideas in topology and reduce the
problem to that on spheres.

In [3] and [6], jointly with Bismut, we extended the Cheeger-Miiller theorem
to the case of arbitrary representations of the fundamental group. Moreover,
the method we used is purely analytic and is quite different from what used by
Cheeger and Miiller. It uses the Witten deformation for the de Rham complex by
a Morse function and relies on the analytic techniques developed in the long paper
of Bismut-Lebeau on complex immersions and Quillen metrics. An adaptation
of Helffer-Sjostrand’s rigorous proof of Witten’s proposal of deriving the Thom-
Smale complex through the Witten deformation also plays an important role in
this proof.

In [12], again jointly with Bismut, we further generalized the results in [3] and
[6] to the case where the manifold under consideration admits a finite group ac-
tion. The results obtained generalize the earlier results in this direction obtained
by Lott-Rothenberg and Liick. Moreover, this paper also contains an alternate
treatment of the relationship between the Thom-Smale complex and the Witten
complex, simpler than that of Helffer and Sjostrand.

In [46], we generalized the main result in [3], [6] to the case of infinite Galois
covering of a smooth manifold. Here one deals with the L2-torsions, introduced
first by Lott and Mathai, which are defined with the help of the von Neumann
trace associated to the covering group. Our main result is stated for extended
cohomologies and thus generalizes the L? generalization, due to Burghelea et al, of
the Cheeger-Miiller theorem, in that we do not assume the so-called determinant
class condition. It also extends the corresponding result of Braverman-Carey-
Farber-Mathai to the case of general representations. An important anomaly for
L?-analytic torsions was established in [46] during the process of the proof.

In the joint paper [61] with Xiaonan Ma, we proved an anomaly formula for L2
analytic torsions on manifolds with boundary. It generalizes the anomaly formula
in [46] as well as the anomaly formula for the usual analytic torsion on manifolds
with boundary established by Briinning and Ma.

Paper [54], which is a joint work with Guangxiang Su, deals with the complex
analytic torsion introduced by Burghelea and Haller. In it, we solved a conjec-
ture of Burghelea and Haller, identifying the complex analytic torsion with the
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corresponding complex Reidemeister torsion. The statement and proof in [54]
are parallel to what in [6]. The key difference is that in dealing with complex
torsions, one deals with the non-self-adjoint Laplacians instead of the self-adjoint
ones in [6]. However, we showed that the main method in [6] still applies in
the current situation, with necessary modifications. Burghelea and Haller proved
their conjecture, up to sign, around the same time as ours. Their proof is different
from ours.

In the joint papers [49], [63] with Weiping Li, we introduced what we call the
L?-Alexander-Conway invariant for knots. These invariants can be interpreted
as the twisted L?-Reidemeister torsion of the knot complement. A surprising
rigidity in the twisted U(1)-representation case was established.

3. THE ADIABATIC LIMITS OF 7)-INVARIANTS AND ROKHLIN CONGRUENCES

It is well-known that the n-invariant, introduced by Atiyah-Patodi-Singer in
their study of the index theorem for manifolds with boundary, appears in many
places in geometry, topology as well as mathematical physics. For example,
Witten proposed that the adiabatic limit of the n-invariant associated to Dirac
operators on a fibered manifold over a circle is closely related to the anomaly in
physics (This conjecture of Witten was proved independently by Bismut-Freed
and Cheeger). Later on, Bismut-Cheeger and Xianzhe Dai studied systemati-
cally the adiabatic limits of n-invariants of Dirac operators on general fibered
manifolds.

In [5] and [11], we applied the above results of Bismut-Cheeger and Dai to circle
bundles and obtained an explicit expression of the adiabatic limit of n-invariants
for Dirac operators on circle bundles (This result was also obtained independently
in an unpublished work of Dai). We then applied this computation to establish
a higher dimensional Rokhlin type congruence and studied various extensions.

We state a special case of the general result in [11] as follows.

Let K be an 8k + 4 dimensional compact oriented Spin®-manifold. Let ¢ be a
closed two form on K such that the corresponding de Rham class [¢] € H*(K)
verifies that [¢] = wq(K) mod 2, where wq(K) is the second Stiefel-Whitney class
of K.

Let B be an oriented 8k + 2 dimensional closed submanifold of K such that
[B] C Hgp2(K) is dual to [¢]. Then K \ B is a spin manifold, and every spin
structure on K \ B induces naturally a spin structure on B. Moreover, all the
induced spin structures on B lie in the same spin cobordism class.

Let ,Zl\(B) € Z5 be the Atiyah-Milnor-Singer invariant determined by this spin
cobordism class on B.
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A classical theorem due to Atiyah-Hirzebruch states that (E(TK )exp(5), [K])
is an integer. The following result in [11] refines this result.

Theorem 3.1. The following identity holds,
~ c ~
(3.1) <A(TK) exp (5) ,[K]> = A(B) mod 2Z.

Corollary 3.2. (Atiyah-Hirzebruch) If K is an 8k + 4 dimensional compact

-~

oriented spin manifold, then (A(TK),[K]) is an even number.

Corollary 3.3. (Rokhlin) If K is as in Theorem 3.1 and dim K = 4, then
sign(B - B) — sign(K)
8
Both Corollaries 3.2 and 3.3 generalize the following classical Rokhlin divisi-

bility theorem: the signature of a smooth closed oriented spin four dimensional

manifold is divisible by 16.
Indeed the result established in [11] is still valid for the case where B is
non-orientable. In this case, the obtained result generalizes the congruences of

(3.2) EA\(B) mod 2Z.

Guillou-Marin and Kirby-Taylor in four dimension to higher dimensions.

It might be worth to mention that the congruences of Rokhlin (3.2), Guillou-
Marin and Kirby-Taylor have important applications in real algebraic geometry
(related to Hilbert’s 17th problem) and low dimensional topology.

As an application of the Rokhlin type congruence (3.1), we computed in [18]
the Atiyah-Milnor-Singer invariant of spin complex hypersurfaces of dimension
4k + 1 (k > 1). Combining this computation with a well-known result of Stolz,
we determined in [18] when a spin complex hypersurfaces of dimensional 4k + 1
(k > 1) admits a Riemannian metric with positive scalar curvature.

In another paper [15], which is joint with Dai, the computation of the adia-
batic limit of the Dirac operator on circle bundles is applied to get an analytic
computation of a cobordism invariant of Kreck-Stolz.

Paper [9] contains a K-theoretic proof of Theorem 3.1, as well as a generaliza-
tion of it to the case of arbitrary twisted bundles.

On the other hand, we proposed in [11] that there should be an intrinsic relation
between the KO-characteristic class and the Hirzebruch L-class. This problem
was later solved by Kefeng Liu who generalized the 12 dimensional ”miraculous
cancellation” formula due to Alvarez-Gaumé and Witten to arbitrary 8k + 4
dimensional manifolds.

In the joint paper [13] with Liu, we applied Liu’s above result to give an analytic
interpretation of the Finashin invariant, by using ideas in elliptic genus.

In joint papers [41] and [44] with Fei Han, we further extended Liu’s result
to the case where an extra twisted complex line bundle shows up. Combining
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with earlier results in [11] and [13], we get direct geometric proofs of the higher
dimensional Rokhlin type congruences due to Ochanine and Finashin.

4. REAL EMBEDDING, 7)-INVARIANT AND INDEX THEORY ON MANIFOLDS
WITH BOUNDARY

In the joint paper with Bismut [7], we applied the analytic techniques developed
by Bismut-Lebeau to study the n-invariant of Atiyah-Patodi-Singer.

To be more precise, let 7 : Y — X be an embedding between two closed oriented
spin odd dimensional Riemannian manifolds. Let N be the normal bundle to Y
in X carrying the induced metric. Then for any Hermitian vector bundle p on
Y carrying a Hermitian connection, we can give a geometric construction of the
direct image iy € K (X) of Atiyah-Hirzebruch. The main result of [7] states that
when mod Z, the n-invariant of D, the Dirac operator twisted by p on Y, can
be expressed by the n-invariant of D#*, the Dirac operator twisted by iy on X,
plus some extra purely geometric terms.

The proof in [7] relies heavily on the techniques of Bismut-Lebeau developed for
a problem in complex geometry. In view of the more flexible nature of n-invariants
(with respect to the holomorphic analytic torsion in the paper of Bismut-Lebeau),
it is nature to ask whether one can prove the above embedding formula for -
invariants in more geometric ways.

In [45], we made a first step in this direction. We started with a simple ob-
servation that if X is taken to be a sphere, then with the help of the Bott peri-
odicity, one gets a purely geometric formula of the analytically defined invariant
7(D") mod Z. Then by using the Freed-Melrose mod k index theorem as well as
the original Atiyah-Patodi-Singer index theorem, we showed that for any g on Y,
there always exists an embedding of Y to a higher dimensional sphere for which
the embedding formula in [7] can be proved without using the Bismut-Lebeau
techniques.

The geometric proof of the remaining general case was later carried out in the
joint paper [55] with Huitao Feng and Guangbo Xu. A notable feature in [55] is
that a Riemann-Roch type theorem for the Chern-Simons currents constructed
in [7], under successive embeddings, is established.

The methods and results developed in [7] have some further applications:

In [8], we used them to give a new proof of the Atiyah-Singer mod 2 index
theorem for Dirac operators.

In [16], we used them to give a new proof of the mod & index theorem of
Freed-Melrose for Dirac operators, and obtained some mod 2 refinement in the
real case.
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In [14] and [34], which were joint with Dai, we applied the method in [7] to
give a new proof of the Atiyah-Patodi-Singer index theorem for Dirac operators
on manifolds with boundary. There are two more features in this works with
respect to what in [7]. First, since the formula in [7] is only stated in a mod
Z version, we need to be more careful in dealing with the missing "mod Z”
terms by examine the spectral flows appeared in the context. Secondly, we need
to establish a Riemann-Roch type theorem under embeddings for the indices of
Dirac operators on manifolds with boundary (thus carrying the Atiyah-Patodi-
Singer boundary conditions).

In [42], we applied the techniques in [34] to prove a generalization of the fa-
mous Atiyah-Hirzebruch vanishing theorem for circle actions to the case of Z/k-
manifolds.

5. FAMILIES INDEX THEORY FOR DIRAC OPERATORS

We describe some joint works with Xianzhe Dai on families index theory in
this section.

In [20], we established a splitting formula for the families index of Dirac oper-
ators. It solves a question of Bismut-Cheeger and generalizes the corresponding
splitting theorem of Atiyah-Patodi-Singer to the case of families.

In [17], [24], we generalized the concept of spectral flow due to Atiyah-Patodi-
Singer to the family case and introduced what we call the higher spectral flow.

As is well-known, the concept of spectral flow was introduced by Atiyah-Patodi-
Singer in their study of the index theory on manifolds with boundary. It appeared
later in many places in mathematics as well as in mathematical physics, and
became an important invariant for elliptic operators.

Bismut-Cheeger and Melrose-Piazza studied the families generalizations of the
Atiyah-Patodi-Singer index theorem, and obtained the families index theorem in
the sense of taking Chern characters.

It is nature to ask whether the concept of spectral flow can also be extended
to the family case and this is what we did in [17], [24].

We first obtained a new formula for the spectral flow, so that the original
(discrete) definition by counting eigenvalues now admits a continuous version.
With this continuous version at hand one then gets a natural generalization of
the concept of spectral flow to the family case. Several basic properties of the
higher spectral flow just defined were studied in [17], [27], showing that it is the
"right” generalization of the classical concept of Atiyah-Patodi-Singer. Moreover,
we used our spectral flow to give a heat kernel proof of the families index theorem
for Toeplitz operators. The later can be viewed as an odd dimensional analogue
of the Bismut local families index theorem for Dirac operators.
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Our concept of higher spectral flow was later generalized by Fangbing Wu to
the non-commutative case, which in turn plays roles in a series of papers by
Leichtnam-Piazza on the Atiyah-Patodi-Singer type index theorem on covering
spaces.

6. GEOMETRIC QUANTIZATION CONJECTURE AND HOLOMORPHIC MORSE
INEQUALITIES

6.1. Analytic approach of the geometric quantization conjecture. The
famous Guillemin-Sternberg geometric quantization conjecture in symplectic ge-
ometry, in roughly speaking, says that ”geometric quantization commutes with
symplectic reduction”.

To be more precise, let (M,w) be a compact symplectic manifold. Let J be an
almost complex structure on 7'M such that

g™ (v, w) = w(v, Jw)

defines a Riemmannian metric on T'M.

Let G be a compact connected Lie group. Let g be the Lie algebra of G.
Assume G acts on (M,w) in a Hamiltonian way, and preserves J. Then there
exists a G-equivariant moment map

p:M—g'
such that for any V' € g, one has
Z‘VM("} = d<,u, V>7

where Vy; € I'(T'M) denotes the vector field on M generated by V' € g. Clearly,
G preserves = 1(0).

Definition 6.1. The Marsden-Weinstein symplectic reduction space Mg is de-
fined to be

Mg = p~'(0)/G.
Basic assumption: 0 € g* is a regular value of the moment map pu: M — g*.
Then p~1(0) is a closed manifold. For simplicity, we also assume that G acts
on 1~ 1(0) freely, then My is a closed manifold and carries an induced symplectic

form wg. Moreover, J induces an almost complex structure Jg on T'Mg such
that we(v, Jow) determines a Riemannian metric g?™¢ on T'Mg.

Remark 6.2. If (M,w, J) is Kéhler, then (Mg, wg, Jg) is also Kéhler.
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Now, let L be an Hermitian line bundle over M carrying an Hermitian connec-

tion V% such that T
— N2

When such an L exists, we call (M,w) pre-quantizable, and call L the pre-
quantized line bundle. We assume the existence of L now.

We make the assumption that the Hamiltonian G action lifts to an action on
L, which preserves the Hermitian metric and Hermitian connection on L. Then
L descends to a pre-quantized line bundle Lg over Mg carrying a canonically
induced Hermitian metric and Hermitian connection V%6,

Remark 6.3. When (M, w, J) is Kéhler and L is a holomorphic line bundle over
M, then Lg is also holomorphic over Mg.

Let D* be the Spin®-Dirac operator (twisted by L) acting on I'(A®*)(T*M) ®
L). Then it commutes with the induced G-action on I'(A®*)(T*M) @ L). Thus,
G preserves ker D which are the restrictions of D on I'(A©®%dd)(T*M) ® L)
respectively.

Let (ker DX)% denote the G-invariant part in ker D.

Define the reduction of the quantization space

Q(L) = (ker D¥) — (ker D¥)
of L to be
QL) = (ker D) — (ker DX)€.
Let
Q(Lg) = (ker D}¢) — (ker D<)

be the quantization space of Lg on M.

The Guillemin-Sternberg conjecture:
dim Q(L)¢ = dim @ (L) . (%)

Remark 6.4. Guillemin-Sternberg first proved in 1982 that when (M, w,J) is
Kahler and L is holomorphic,

dim H®O(M, L)Y = dim H® (Mg, Lg)
and proposed (*) as a conjecture.

When G is abelian, (*) was first proved by Guillemin (1995) in a special case,
and later in general by Meinrenken (JAMS 1996) and Vergne (DMJ 1996) inde-
pendently. The remaining non-abelian case was proved by Meinrenken (Adv. in
Math. 1998) by using the technique of symplectic cut of Lerman.
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There are also approaches of Duistermaart-Guillemin-Meinrenken-Wu (for cir-
cle actions) and Jeffrey-Kirwan (for non-abelian group actions with certain extra
conditions).

Remark 6.5. All of the above proofs use the Atiyah-Bott-Segal-Singer equivari-
ant index theorem in an essential way: first relate dim Q(L)“ to quantities on the
fixed point set of the G-action, and then try to relate the later to quantities on
the symplectic quotient (through symplectic cut or through the Jeffrey-Kirwan-
Witten non-abelian localization formulas).

Natural question. Whether there is an approach relating dim Q(L)% directly
to dim Q(L¢g)?

In the joint papers [21] and [23] with Youliang Tian, we gave a direct ana-
lytic proof of the Guillemin-Sternberg conjecture, answering the above natural
question.

The main idea is to introduce a deformation of the Spin® Dirac operator D* by
using the Hamiltonian vector field associated to the norm square of the moment
map U.

More precisely, we equip with g* an Adg-invariant metric and set H = |u|?.

Let X™ be the associated Hamiltonian vector field, i.e.,

’ixHu} = dH

For any T' € R, we introduce the following deformation of D’

v —=1T
2

Remark 6.6. If (M, w, J) is Kéhler and L is holomorphic, then one has
D:I; =2 (6#5%% tez <5L) e#> .

This might be thought of as an analogue of the Witten deformation in Morse
theory, but now in a holomorphic non-abelian context.

Dy = D" + c(X™): T (A (T"M)® L) = T (A*(T"M)® L) .

By using this deformation, one can then apply the analytic localization tech-
nique of Bismut-Lebeau to complete the proof of the Guillemin-Sternberg con-
jecture. In particular, a direct relation between dim Q(L)Y and dim Q(L¢) is
obtained.

Several immediate extensions of the geometric quantization formula were also
obtained in [23] by using our analytic method. First of all, we showed that the
line bundle L can be replaced by any Hermitian vector bundle verifying certain



PRESENTATION DES TRAVAUX: ANALYTIC ASPECTS OF INDEX THEORY 11

”positivity” condition. We also showed that when p~1(0) is not empty, then
Todd(M) = Todd(Mg),

a result also obtained independently by Meinrenken and Sjamaar. On the other
hand, when (M,w, J) is Kéhler, we showed that the quantization formula can be
refined to a series of Morse type inequalities.

The analytic method developed in [21] and [23] allows us to obtain further
generalizations of the geometric quantization formula. Here we list a few of
them.

1). In the joint paper [25] with Tian, we generalized the holomorphic Morse
inequalities in [23] to the case of singular reductions;

2). In the joint paper [26] with Tian, we generalized the results of Meinrenken
and Vergne, in the case where G is abelian, to a series of weighted quantization
formulas;

3). In the joint paper [28] with Tian, we extended the quantization formula to
the case of symplectic manifolds with boundary. As a consequence, we obtained
an analytic version of the residue formula of Guillemin-Kalkman-Martin;

4). In [29], we showed that in the Kéhler case, the holomorphic Morse inequal-
ities in [23] are indeed equalities, our results were stated for singular reductions
and were thus stronger than similar results proposed earlier by Braverman;

5). In [30], we generalized the quantization formula to the family case;

6). In the joint paper [38] with Huitao Feng and Wenchuan Hu, we further
generalized the results in [30] to the case of manifolds with boundary. The result
obtained is a common generalization of the main results in [28] and [30];

7). More recently, in the joint paper [56] with Mathai, we generalized the
Guillemin-Sternberg geometric quantization conjecture to the case where both
M and G are allowed to be non-compact. This will be discussed in more details
in Subsection 6.4.

6.2. Equivariant holomorphic Morse inequalities in the sense of Witten.
It is now well-known that Witten’s analytic proof of (real) Morse inequalities has
had wide range influence in mathematics. In a paper appeared shortly after Wit-
ten’s paper on his proof of (real) Morse inequalities, Witten wrote another paper
concerning holomorphic circle actions on Kéhler manifolds and proposed what
he called the homomorphic More inequalities. As usual, Witten only outlined his
proof based on physics ideas and he only stated precisely his inequalities in the
case where the fixed points of the circle action are isolated.

In 1996, Mathai and Wu gave a first rigorous proof of Witten’s equivariant
holomorphic Morse inequalities, in the case where the fixed points are isolated,
by using heat kernel method.
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In the joint paper [22] with Siye Wu, by using the localization techniques
developed by Bismut-Lebeau, we proved the generalized version of the Witten
holomorphic Morse inequalities where the fixed point set need not be discrete.
Relations with the Guillemin-Sternberg geometric quantization conjecture were
also discussed.

6.3. An application of the quantization formula on manifolds with bound-
ary. In the joint paper [28] with Tian about the quantization formula on man-
ifolds with boundary, as an application, we proved a universal geometric quan-
tization formula which holds for the case where the symplectic reduction might
be singular, while the total symplectic manifold is closed. The contribution near
the symplectic reduction is expressed by an (analytic) invariant index of Atiyah-
Patodi-Singer type. Here, we will show this APS type index can actually be
interpreted as an invariant index of certain transversally elliptic operator in the
sense of Atiyah, Paradan and Vergne. Thus it acquires a natural topological
interpretation.

We will first recall the above mentioned analytic result from [28].

Following the notation in Section 6.1, it is clear that there exists 6 > 0 small
enough such that H~'((0, d]) does not contain any critical point of H = |u|>. Thus
for any ¢ € (0,4], a regular value of H, H*(c) is a G-invariant hypersurface of
M, cutting M into two parts M = M¢$ U M¢ with M$ = H'([0,¢]) and the
common boundary M¢ N M¢ =H*(c).

Now for any 7" € R, let DLMJCHT denote the restriction of D% on M$. Let
DJ%/ISF,TJL 4ps be the corresponding elliptic operators verifying the Atiyah-Patodi-
Singer boundary condition (here since the product nature no longer holds near
boundary, one need to modify the induced boundary operator a little bit, see [28]
for more details).

It is clear that both DJLWivT’i’ aps are G-equivariant. Moreover, since there is
no critical point of H on OMS = H~'(c), one verifies easily that when 7" > 0
is large enough, D]%/[inV_vAPS is the formal adjoint of D]@LT#,APS, thus one can
define the quantization space

QaprsT (MLL|M1> = (Kef D]L\/[i,T,Jr,APS) - <Ker DJ%/[i,T,f,APS) :

We can now state the universal quantization formula proved in [28, Theorem
6.1] as follows.

Theorem 6.7. There exists Ty > 0 such that for any T > Ty, the following
tdentity holds,

G
dim Q(M, L)G = dim Qapsr (M-T-a L|Mj_>
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From the above theorem, one sees that dim Qapgr (Mi,L\ Mi>G does not
depend on T" when T" > 0 is large enough. Indeed, if 0 € g* is a regular value of
i, one can further identity dim Q aps 7 (Mfm L|Mi> G, when T" > 0 is large enough,
with dim Q(L¢), thus getting the original Guillemin-Sternberg conjecture.

Now in general, 0 € g* might not be a regular value of . However, by an
observation due to Paradan and Vergne, since X™ is a G-invariant vector field
on M¢$ tangent to the orbits of the G-action and p~*(0) is the only zero set of
XM in M¢, one has a well-defined transversally elliptic Dirac operator associated
to X™ and the prequantized line bundle L, denoted by cxn . And its index
can be interpreted as a distribution on GG. We denote its G-invariant index by
indg(CXH,L).

The following proposition identifies indg(cxn 1) and dim Qaps <Mi, L| Mi) ¢
for large enough 1" > 0.

Proposition 6.8. There exists Ty > 0 such that for any T > Ty, the following
identity holds,

G
indg (CXH’L) =dim Qapsr (Mi, L|Mi) .

Proof. One first deforms in a G-invariant way the metrics and connections
near the boundary of M¢ to the situation of product nature. Then extend these
geometric data to the complete manifold obtained by attaching a cylinder to the
boundary.

By using a standard argument going back to Atiyah-Patodi-Singer, one sees
that when T" > 0 is large enough, one can interpret dim Qapsr(MS, L|Mi)G by
the corresponding G-invariant L2-index of the extended operator on the complete
cylindrical manifold.

On the other hand, a result due to Braverman shows that the above G-invariant
L?-index equals exactly to indg(cxw ).

By combining the above two observations, one completes the proof of the
Proposition. Q.E.D.

By combining Theorem 6.7 and Proposition 6.8, one gets analytically the fol-
lowing result, which should be contained in Paradan’s paper on his proof of the
Guillemin-Sternberg conjecture.

Proposition 6.9. The following identity holds,
dim Q(M, L)¥ = indg (cxn.z) -

Note that the right hand side now admits a purely topological interpretation.
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6.4. Quantization formula for proper actions. In this subsection, we de-
scribe a recent joint work with Mathai [56], where a generalization of the Guillemin-
Sternberg conjecture to the case of non-compact groups and manifolds is estab-
lished. This essentially solves a conjecture of Hochs and Landsman.

So from now on we assume that G and M are non-compact. The quantization
formula we proved is for the case where G acts on M properly with compact
quotient M/G. Note that in this case Mg = p~1(0)/G is still compact. Thus,
if we still assume that everything is G-invariant' and that 0 € g* is a regular
value of the moment map p with G acting on p~1(0) freely, then the quantity
dim Q(L¢) is still well-defined.

The first difficulty one encounters in stating a possible quantization formula
in this situation is that since here M is non-compact, Ker D¥ need not be finite
dimensional, so tautologically dim(Ker D)% might not be well-defined.

Nevertheless, Hochs and Landsman, by making use of the K K-theory, proposed
to define an integer which in the case where both G and M are compact, coincides
with dim Q(L)¢. Then they made the conjecture that in the case where G is
unimodular, the integer they defined equals to dim Q(Lg). Moreover, they proved
that their conjecture holds in the case where G admits a normal discrete subgroup
I' such that G/I' is compact.

In the joint work with Mathai [56], we first defined, in a direct analytic way,
what we call a G-invariant index (denoted by indg(D%)) associated to D, and
then show that for this index, the following generalization of the Guillemin-
Sternberg conjecture holds.

Theorem 6.10. In the general case where G is merely assumed to be locally
compact, there exists pg > 0 such that for any integer p > po,

(6.1) indg (D) = ind (D{7) .

Moreover, if g* admits an Adg-invariant metric, then one can take p = 1 in

(6.1).

In particular, in the case considered by Hochs and Landsman where G admits a
normal discrete subgroup I' such that G/T" is compact, G admits an Adg-invariant
metric so that one can take p =1 1in (6.1).

For completeness we now briefly recall our definition of indg(D%).

Since M /G is compact, one sees easily that there exists a compact subset Y of
M such that G(Y) = M.

IThis can always be achieved with the help of a cut-off function which is a smooth nonneg-
ative function ¢ on M such that ¢ has compact support and fG c(gz)?dg = 1 for any x € M.
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Let U, U’ be two open subsets of M such that Y C U and that the closures
U and U’ are both compact in M, and that U C U’. The existence of U, U’ is
clear.

Then one can construct a smooth function f : M — [0, 1] such that f|y =1
and Supp(f) c U’

We now consider the space I'(A®*)(T*M) @ L)Y, the subspace of G-invariant
sections of I'(A®*)(T*M) ® L).

By using the property that G(Y) = M, it is easy to see that there exists a
positive constant C' > 0 such that for any s € I'(A®*)(T*M) ® L)%,

(6.2) Isllvo < (1 fsllo < [[slloro < Cllsllvo,
where for V =U or U’,

(6.3) 512 = / (s(x), 8 (x)) do.

Let HY(M, L)€ be the completion of the space {fs : s € D(AC)(T*M)® L)%}
under the standard L?-norm || - [[o. Let H}(M, L)“ be the completion of {fs :
s € T(AC)(T*M) ® L)} under a (fixed) G-invariant first Sobolev norm || - ||;.

Let P; be the orthogonal projection from L?(M, L) to its subspace H?(M ,L)C.

It is clear that PyD" maps an element of H}(M, L)< into H}(M, L)

Proposition 6.11. The induced operator
(6.4) PyD" - H} (M, L)Y — HY(M, L)°
18 a Fredholm operator.
Proof. For any s € T'(A©*)(T*M) ® L), one has
(6.5) D (fs) = fD"s +c(df)s.

where we identify the one form df with its metric dual (df)*.
It is clear that P;(fD%s) = fD%s, while in view of (6.2),

(6.6) 1Py (c(df)s)llg < lle(df)sllo < Cill sl

for some constant Cy > 0.
From (6.2), (6.5) and (6.6), one verifies easily that

(6.7) | PrD (fs)||, = Callfslly — Csll fsllo,

for some constants Cy, C3 > 0.
Since f is of compact support, from the Géarding type inequality (6.7) one
completes the proof of Proposition 6.11. Q.E.D.

2With this function, one can construct the cut-off function ¢ by c¢(z) = UJ“(;E% for
G

any z € M.



16 PRESENTATION DES TRAVAUX: ANALYTIC ASPECTS OF INDEX THEORY

Remark 6.12. Besides the Fredholm property in Proposition 6.11, the following
self-adjoint property also holds: for any s, s’ € ['(A®*)(T*M) @ L), one has

(6.8) (PyD"(fs), fs') = (fs, PsD* (f5)).

Remark 6.13. If ([7 U f) is another triple of open subsets and the cut-off
function as above, then by taking the deformation f; = (1 —¢)f + ¢f, one gets
easily a continuous family of Fredholm operators Py, DL.

Now let D : D(A©S5) (T* M) @ L) — T(AQ-E&) (T* M) @ L) be the restriction
of D¥ on I'(A®%id)(T*M) @ L).

Let HY (M, L) (i = 0, 1) be the subspaces of H;(M, L)< obtained by com-
pleting the 27% forms.

By Proposition 6.11 and (6.8), the induced operator P;D% : H} (M, L)Y —
H} (M, L) is Fredholm. Moreover its index, ind(P;D¥), does not depend on
the choice of f, in view of Remark 6.13. Similarly, it is also easy to see that

this index does not depend on the choices of G-invariant metrics and connections

involved.

Definition 6.14. We call ind(P;D%) defined above the G-invariant index asso-
ciated to D% and denote it by indg(D%).

In particular, one can show that in the case where both GG and M are compact,
one has ind(P;D%) = dim Q(L)“. Thus, tautologically ind(PyD%) should be the
right generalization of dim Q(L)“ in the non-compact case.

Now since both G and M are non-compact, one can not apply the Atiyah-Bott-
Segal-Singer equivariant index theorem to compute ind(PfDi). Instead, we will
adapt the analytic approach developed in [23] to the current situation.

However, since now G is non-compact, there need not exist Adg-invariant
metrics on g*. Thus the function H = |u|*> as well as the Hamiltonian vector
field X need not be G-invariant, and consequently, the deformed operator DX
defined in Subsection 6.1 need not be G-equivariant.

In order to get a G-equivariant deformation of D¥, we set

(6.9 X¥ = [ ctaryxyids

where X* denotes the pullback of X™ by g € G.

It is clear that X} is G-invariant, and we can define the following deformed
operator of D%,
v—1T

(6.10) D% = D"+ 5

c (Xg) ,

which is G-equivariant.
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However, the appearance of the cut-off function ¢ in the definition of XX makes
it difficult for the pointwise localization argument in [23, Section 2| to proceed
here. This is why we need to replace L by LP for positive integer p.

More precisely, for any open neighborhood W of p=1(0) in M, we can show
that the following analogue of [23, Theorem 2.1] holds.

Proposition 6.15. There exists pg > 1 such that for any integer p > py, there
exist C > 0, b > 0 wverifying the following property: for any T > 1 and s €
Q% (M, LP)¢ with Supp(s) NU’' C U’ \ W, one has

P 2
(6.11) |PD7" (fs)|, = C (I3[} + (T = b)[1 5l5) -
Moreover, if g* admits an Adg-invariant metric, then one can take pg = 1.

This key localization property allows us to reduce the proof of Theorem 6.10
to sufficiently small neighborhoods of 1 ~1(0), on which one can apply the known
analytic technique (which goes back to Bismut-Lebeau) to complete the proof of
Theorem 6.10.

Remark 6.16. In the Appendix in [56], Bunke showed that our G-invariant index
indg (D) actually admits a K K-theoretic interpretation, which implies that our
Theorem 6.10 indeed resolves the Hochs-Landsman conjecture essentially.

Remark 6.17. Indeed, one can show that both (Ker D)% are of finite dimension.
Moreover, in the case where G is unimodular, we showed in [56] that

(6.12) indg (DY) = dim (Ker D%) — dim (Ker D),

which further justifies that Theorem 6.10 is a "right” extension of the Guillemin-
Sternberg conjecture in the non-compact case.

7. VECTOR FIELDS ON MANIFOLDS, POINCARE-HOPF FORMULA AND THE
KERVAIRE SEMI-CHARACTERISTIC NUMBER

The famous Poincaré-Hopf index formula for vector fields states that for any
vector field with isolated zeros on a closed manifold, one can define an integer
at each zero, called the index of the vector field at this zero, such that the Euler
characteristic number of the manifold equals to the sum of these indices.

The Poincaré-Hopf theorem is interesting mainly for even dimensional man-
ifolds, as a classical result of Hopf says that on any odd dimensional manifold
their always exists a vector field without any zero.

In his paper on the analytic proof of Morse inequalities, Witten also proposed
an analytic proof of the Poincaré-Hopf formula. But his proof holds only for the
case where the isolated zeros are non-degenerate.
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In [60], we gave an analytic proof of the Poincaré-Hopf formula which holds
without the non-degenerate assumption. It is based on an old idea due to Atiyah
in 1970’s and makes use of the n-invariant.

Another natural question relating to the Poincaré-Hopf formula is that whether
there is an odd dimensional analogue of Euler characteristic as well as a cor-
responding Poincaré-Hopf type formula for them. A natural candidate is the
Kervaire semi-characteristic defined in what follows.

Let M be a 4q + 1 dimensional closed oriented manifold. Then its Kervaire
semi-characteristic is defined by

2q
(7.1) k(M) =) dim H*(M;R) mod 2Z,

1=0

where H*(M;R) is the 2i-th cohomology of M.

An important property of k(M) is that it can be expressed through the mod
2 index of skew-adjoint elliptic operators in the sense of Atiyah-Singer. On the
other hand, it is not multiplicative under coverings. Thus it is more subtle in
some sense than the Euler characteristic.

In 1969, Atiyah proved his famous vanishing result for k(M ): if there exist two
nowhere linearly dependent vector fields on M, then k(M) = 0.

Inspired by this vanishing result, Atiyah and Dupont proved a counting formula
for k(M) which is of Poincaré-Hopf type: let Vi, V4 be two vector fields on M,
and V; and V; are linearly dependent only at a finite number of points on M (we
call these points the singular points of {V},V5}), then for any singular point x
one can define a mod 2 index indy, v, (z) € Zy. The formula of Atiyah-Dupont
then states

(7.2) k(M) = Zindvhw(a:) mod 2Z.

However, the condition in formula (7.2) needs that V; and V, are linearly
dependent only at a finite number of points, while this condition does not hold
for all manifolds (indeed, it requires that the 4¢-th Stiefel-Whitney class of M
vanishes). Thus a natural question is whether there is a generic counting formula
for k(M) which holds for all 4¢ + 1 oriented manifolds.

In [32], we proposed a positive answer to the above question. Our starting
point is the Hopf theorem we mentioned: on any 4¢q + 1 closed oriented manifold
M there exists at least one nowhere zero vector field V. Let E be the normal
bundle to V in T'M, then the generic self-intersection of F is a one dimensional
manifold consisting of a union of disjoint circles. For any such circle F', one can
define canonically a real line bundle op(V'). The counting formula established in
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[32] can now be stated as follows,
(7.3) k(M) =#{F : op(V) is orientable on F} mod 2Z.

Clearly, (7.3) holds for any 4¢g+1 manifolds, thus it can be viewed as a universal
counting formula for k(M). Moreover, a difference between (7.3) and the Atiyah-
Dupont formula (7.2) is that here we count the number of circles instead of
points.

The proof we gave in [32] for (7.3) is purely analytic. It is based on an analytic
interpretation of k(M) given in [27].

To be more precise, let g"™ be a Riemannian metric on TM. Let d : Q*(M) —
Q* (M) be the exterior differential operator and d* : Q*(M) — Q*(M) the formal
adjoint of d with respect to the inner product on Q*(M) naturally induced from
g™ . Let Dy be defined by

(74) Dy =2aV)(d+d*) — (d+d)aV) : QM) — Qv (D).

Then one verifies that Dy is skew-adjoint and elliptic. Moreover, the following
formula is proved in [27],

(7.5) k(M) = ind, (Dv),

where ind, is the mod 2 index in the sense of Atiyah and Singer.

Now let E be the normal bundle to V' in T'M such that V is perpendicular to
E with respect to g”. Let X be a transversal section of E. Then the zero set
of X, zero(X), represents the self-intersection of E.

For any T' € R, the following deformation of Dy is introduced in [32],

(7.6) Dyr=c¢V)(d+d +Tc(X)) — (d+d" +Tec(X))e(V),

which may be thought of as a Witten type deformation for Dy,. Then one still
has

(7.7) k(M) = indy (Dy)

for any 7" > 0.

One then lets T' — 400 to get (7.3) by applying the analytic localization tech-
niques developed by Bismut-Lebeau. The line bundle og(V') shows up naturally
in the process.

A more topological proof of (7.3), as well as a more topological interpretation
of op(V'), was later given by Zizhou Tang.

In [31], we extended the main result in [32] to the twisted bundle case. We
call the obtained result the mod 2 index theorem for twisted Signature operators.
It can be thought of as an odd dimensional analogue of the classical Hirzebruch
Signature theorem. It also generalizes a result of Farber and Turaev.
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On the other hand, besides giving an analytic interpretation of k(M), [27] also
contains an odd dimensional analogue of the Gauss-Bonnet-Chern formula.

In another paper [39], which is joint with Tang, we extended the Atiyah-Dupont
theory for vector fields on tangent bundles to the case of vector bundles. As
an application, we get the following non-existence theorem of almost complex
structures.

Theorem 7.1. (Tang-Zhang [39]) Let CP™" denote the "negative” complex pro-
jective space which carries the opposite orientation with respect to the standard
complex projective space CP?*. Then for any k > 1, CP™ admits no almost
complex structure.

8. ELLIPTIC GENUS: VANISHING AND RIGIDITY RESULTS IN K-THEORY

A famous vanishing theorem of Atiyah-Hirzebruch states that if a closed ori-
ented spin manifold M admits a nontrivial circle action, then A(M) = 0. This
vanishing result was applied by Witten formally on the loop space LM, and ob-
tained what we now call the Witten rigidity theorem. Here, the g—genus of LM
was interpreted as the elliptic genus on M. This is the way Witten derived his
rigidity result for elliptic genus. Natually, this proof is still a physics proof.

The first rigorous proof of the Witten rigidity was given by Taubes by analytic
method. Later, Bott and Taubes simplified Taubes’ proof by using the Lefschetz
fixed point theorem. An even simpler proof was in turn found by Kefeng Liu
who used effectively the properties of modular forms involved. Moreover, Liu
also obtained along his proof several vanishing results concerning elliptic genus.

From the point of view of index theory, a natural question is whether one can
generalize the Witten rigidity to the family case. The positive answer to this ques-
tion appeared in 1999, when Liu and Xiaonan Ma proved such a generalization
by extending Liu’s method accordingly.

The key feature of the theorem of Liu-Ma is that they proved the rigidity of
the Chern character of the index bundle under consideration. Thus, the natural
question still remained whether the index bundle itself admits certain rigidity
property.

In the joint papers [33], [40] with Liu and Ma, we solved the above problem
by establishing the rigidity theorem for the index bundle associated to elliptic
genus in the K-theoretic sense. Our proof generalizes in principle the original
proof of Taubes, in which we applied the techniques developed in [22] to simplify
many treatment. In particular, the K-theoretic generalization to families of the
Atiyah-Bott-Segal-Singer equivariant index theorem was established at the very
beginning of the proof.
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In [35], a generalization of the above K-theoretic rigidity to Spin“-manifolds is
given.

9. VANISHING THEOREMS ON FOLIATIONS

In the joint paper [36] with Kefeng Liu, we gave a geometric interpretation of
the Bott connection of foliation by using the idea of adiabatic limits. Our original
motivation is to give a more geometric proof of the following vanishing theorem
of Connes.

Theorem 9.1. If M is an oriented closed manifold. Let F' C T'M be an oriented
spin integrable subbundle of TM. We assume that there is a metric on F such
that it induces pointwise positive scalar curvature on any leaf induced by F'. Then

A(M) = 0.

When F' =T M, this is the classical theorem of Lichnerowicz.

The original proof of Connes is highly noncommutative. In [36], we applied
our geometric interpretation of the Bott connection to give a geometric proof of
the Connes vanishing theorem for what we called almost Riemannian foliation
which contains Riemannian foliations as special cases. The general case seems
still lacks a purely geometric proof.

In another paper [37], jointly with Liu and Ma, we proved certain generaliza-
tions of the vanishing theorem of Liu for elliptic genus to the case of foliations.
As a special case, we proved the following generalization of the famous Atiyah-
Hirzebruch vanishing theorem to foliations.

Theorem 9.2. If M is an oriented closed manifold. Let ' C T'M be an oriented
spin integrable subbundle of TM. We assume that F' admits a nontrivial circle

action. Then A(M) = 0.

10. SUB-SIGNATURE OPERATORS AND APPLICATIONS

In [19], for any oriented subbundle E of the tangent bundle T'M of an oriented
closed manifold M, we constructed an elliptic operator Dg, such that

(10.1) ind Dj = <Z(E)6(TM/E), [M]> .

In particular, by taking E to be zero or T'M, we get the Gauss-Bonnet-Chern
theorem and the Hirzebruch Signature theorem respectively.

The key point of the above construction is that it does not use any spin con-
dition. Moreover, the local index computation still applies to Dg.

It turns out that the main idea involved in the above construction has certain
applications, for examples, in [27], [31], [32], [36], [37].
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On another direction of application, we applied Dg to fibered manifolds and
extended the Atiyah-Patodi-Singer invariant associated with unitary flat vector
bundles to the non-unitary case, and established a Riemann-Roch type theorem,
under fibration, for these invariants. The main technique here is the computation
of the adiabatic limit of the n-invariants of the involved operators.

In the joint paper [52] with Xiaonan Ma, we applied these techniques to give an
alternate proof of Bismut-Lott’s Riemann-Roch formula for flat vector bundles.
In doing so, we introduced the following deformation for flat vector bundles.

Let (F, V™) be a complex flat vector bundle over a manifold M. Let g* be a
Hermitian metric on F'. Set

(10.2) w(F,g") = (gF)_1 vigr.
Then
(10.3) Vit =vF 4+ %w (F,g")

is a unitary connection on F'.
For any a € R, we introduced in [52] the following deformation

—1la
2
Then we get a family of unitary connections on F. By studying the n-invariants

(10.4) Vii(a) = VY + w(F,g").

of Dirac operators associated to these connections, we can get a new proof of the
Bismut-Lott theorem. Moreover, an extension of the Bismut-Lott theorem from
the original R version to the C/Q version is also obtained in this framework.

In two other papers [48], [65], also jointly with Ma, we applied the above defor-
mation to get new properties of n-invariants associated to non-unitary connections
on twisted bundles, by identifying the real and imaginary parts respectively. In
particular, we showed analytically that one can define a holomorphic function on
the representation space of the fundamental group of a smooth manifold which
has the Ray-Singer analytic torsion as its absolute value.

In a recent joint paper [57] with Dai, we showed how the Bismut-Lott real an-
alytic torsion form can show up by considering the adiabatic limit of the Bismut-
Freed connection associated to certain families of sub-signature operators.

11. AN INDEX THEOREM FOR TOEPLITZ OPERATORS ON MANIFOLDS WITH
BOUNDARY

The classical Toeplitz operator on circle, as well as the corresponding index
theorem due to Gohberg-Krein, has a natural extension to odd dimensional man-
ifolds, described as follows.
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Let M be an odd dimensional closed oriented spin manifold. Let g”* be a
metric on TM. Let D : T'(S(T'M)) — I'(S(T'M)) be the Dirac operator acting
on the spinor bundle S(T'M). Then D is elliptic and formally self-adjoint.

Let

L2o(S(TM)) = @E/\
A>0
be the direct sum of the eigenspaces associated to nonnegative eigenvalues of D.
Let P5q be the orthogonal projection from L?(S(T'M)) to L%,(S(TM)).

Let CV|y; be the trivial vector bundle on M carrying the trivial metric and
connection.

Let g € Aut(C¥|y/) be an automorphism of CV|y;.

The associated Toeplitz operator T, can be defined as follows,

(11.1) T, = (Pso ® Idewy,, ) Idseran ® g (P>o @ Ideny,, )
L2, (S(TM)) @ CN |y — L2, (S(TM)) @ CV |y

Omne can prove that T, is a Fredholm operator. Its index is computed by
Baum-Douglas as an application of the Atiyah-Singer index theorem for elliptic
pseudo-differential operators.

Index Theorem for T,. The following identity holds,
(11.2) ind 7, = <21(TM)ch(g), [M]> ,

where ch(g) is the odd Chern character associated to g.

There is also a heat kernel proof of the above index theorem through 7-
invariants. In such a proof, one first identifies ind 7}, with certain spectral flow,
then computes this spectral flow by evaluating the variation of n-invariants.

In the joint paper [50] with Xianzhe Dai, we established a generalization of
the above index theorem to the case of manifolds with boundary. Our result can
be thought of as an odd dimensional analogue of the Atiyah-Patodi-Singer index
theorem for Dirac operators on manifolds with boundary.

In the process, we also constructed an n-invariant associated to g on even
dimensional manifolds, which is of independent interests.

We now briefly summarize our main result in the following subsections.

11.1. Toeplitz operators on manifolds with boundary. Let M be an odd
dimensional oriented spin manifold with boundary 0M. We assume that M car-
ries a fixed spin structure. Then OM carries the canonically induced orientation
and spin structure. Let ¢ be a Riemannian metric on T'M such that it is of
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product structure near the boundary dM. That is, there is a tubular neighbor-
hood, which, without loss of generality, can be taken to be [0,1) x 9M C M with
OM = {0} x OM such that

™ _ 22 . TOM
9 ‘[0,1)><8M =de" @ g ",

where z € [0,1) is the geodesic distance to M and g7M is the restriction of

g™ on OM. Let VT™ be the Levi-Civita connection of g™. Let S(T'M) be
the Hermitian bundle of spinors associated to (M, g"™). Then V™ extends
naturally to a Hermitian connection V™) on S(T'M).

Let E be a Hermitian vector bundle over M. Let V¥ be a Hermitian connection
on E. We assume that the Hermitian metric ¢¥ on E and connection V¥ are of
product structure over [0,1) x dM. That is, if we denote 7 : [0,1) x OM — OM
the natural projection, then

E * E E * E
9 |[0,1)><8M =7 (9 ‘8M) Y |[0,1)><8M =7 (V |6M) :

For any X € T'M, we extend the Clifford action ¢(X) of X on S(T'M) to an
action on S(T'M) ® E by acting as identity on E, and still denote this extended
action by ¢(X). Let VSTM2E he the tensor product connection on S(TM)® E
obtained from VM) and V¥,

The canonical (twisted) Dirac operator D¥ is defined by

dim M
DY = )" c(e) VETMEE . T(S(TM) @ E) — T(S(TM) ® E),
i=1
where eq, ..., €qim as 1S an orthonormal basis of T'"M. One verifies easily that over

[0,1) x OM, one has
0 0 .
p*=e () (35 7Dk

where D5\, : T((S(TM) ® E)|an) — T((S(TM) ® E)|oar) is the induced Dirac
operator on OM. The later is elliptic and self-adjoint.

We now introduce the APS type boundary conditions for DF.

Let L2 ((S(TM) ® E)|an) be the space of the direct sum of eigenspaces of
positive eigenvalues of DE,,. Let Pyys denote the orthogonal projection operator
from L*((S(TM) ® E)|on) to L2 ((S(TM) ® E)|an) (for simplicity we suppress
the dependence on FE).

As is well known, the APS projection Py, is an elliptic global boundary condi-
tion for D¥. However, to get self adjoint boundary conditions, we need to modify
it by a Lagrangian subspace of ker DE,,, namely, a subspace L of ker D}, such
that ¢(2)L = L*N(ker DE),). Since )M bounds M, by the cobordism invariance
of the index, such Lagrangian subspaces always exist.
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The modified APS projection is obtained by adding the projection onto the
Lagrangian subspace. Let Py (L) denote the orthogonal projection operator

)
from L2((S(TM) ® E)lonr) to L2 (S(TM) ® E)|ont) & L:
Pyrme(L) = Pon + Pr,

where Pp, denotes the orthogonal projection from L*((S(TM) ® E)|oa) to L.
The pair (D¥, PJ,(L)) forms a self-adjoint elliptic boundary problem, and

Pypr(L) is called an Atiyah-Patodi-Singer boundary condition associated to L.

We will also denote the corresponding elliptic self-adjoint operator by DgaM (L)

Let L?;:M(L)(S(TM) ® E)) be the space of the direct sum of eigenspaces of non-
negative eigenvalues of Dg@M( L) This can be viewed as an analog of the Hardy
space. We denote by Pp,,, (1) the orthogonal projection from L?(S(TM)® E) to
L3y (S(TM) © B)).

Let N > 0 be a positive integer, let CV be the trivial complex vector bundle
over M of rank N, which carries the trivial Hermitian metric and the trivial
Hermitian connection. Then all the above construction can be developed in the
same way if one replaces F by E ® CV. And all the operators considered here
extend to act on CV by identity. If there is no confusion we will also denote them
by their original notation.

Now let g : M — GL(N, C) be a smooth automorphism of CV. With simple
deformation, we can assume that g is unitary. That is, g : M — U(N). Further-
more, we make the assumption that g is of product structure over [0,1) x OM,

that is,
glo.nyxen = 7 (glonr) -

Clearly, g extends to an action on S(T'M) ® E ® CV by acting as identity on
S(TM) ® E. We still denote this extended action by g.

Since ¢ is unitary, one verifies easily that the operator gPyy(L)g" is again an
orthogonal projection on L2((S(TM) @ E ® CV)|ar), and that gPyp(L)g™ —
Pypr(L) is a pseudodifferential operator of order less than zero. Moreover, the
pair (D¥, gPyy(L)g~!) forms a self-adjoint elliptic boundary problem. We denote

. . . . . . E E
its associated elliptic self-adjoint operator by Dg Pont (L)g—1" Thus D has

Ponr(L)g—1
the boundary condition which is the conjugation by ¢ of the previ(g)uast&P)’gS type
condition.

The necessity of using the conjugated boundary condition here is from the fact
that, if s € L*(S(TM) ® E ® C) verifies Pyy(L)(s|anr) = 0, then gs verifies
9Porr(L)g~ ((g8)loar) = 0.

Thus, consider also the analog of Hardy space for the conjugated boundary
value problem, L§7P_ZM(L)971 (S(TM)® E®CY) which is the space of the direct sum
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of eigenspaces of nonnegative eigenvalues of DgEPaM( Lyg—1- Let Pyp,,,(1)g-1 denote
the orthogonal projection from L*(S(T'M) ® E @ CV) to L;;DZM(L)Q,l(S(TM) ®
E®CN).

Definition 11.1. The Toeplitz operator T,”(L) is defined by
Tf<L) = PQP’@M(L)Q_1 ©go PPaM(L) :
2,+ N 2,+ N
Ly iy (STM)®@E®CY) —» Ly 1 (S(TM)® E®CY).
One verifies that T,”(L) is a Fredholm operator.

11.2. Perturbation. The analysis of the conjugated elliptic boundary value
E

gPor(L)g~
cumvent this difficulty, we now construct a perturbation of the original problem.

Let v = ¢(x) be a cut off function which is identically 1 in the e-tubular
neighborhood of M (e > 0 sufficiently small) and vanishes outside the 2e-tubular
neighborhood of M. Consider the Dirac type operator

DY = (1 —+)D* +4¢gD¥g™*.

problem D . turns out to be surprisingly subtle and difficult. To cir-

The effect of this perturbation is that, near the boundary, the operator DY
is actually given by the conjugation of D¥  and therefore, the elliptic boundary
problem (D¥, gPsy(L)g™") is now the conjugation of the APS boundary problem
(D, Pyps(L)).

All previous consideration applies to (DY, gPyy(L)g™!) and its associated self-
adjoint elliptic operator DZ’PBM( L)g-1" In particular, we have the perturbed Toeplitz
operator

(11.3) wa(L) - P;ZJPBM(L)éf1 © 90 Pro(r) :

zé;wﬂﬂTMw®E®cﬂ_9@gw

o (L)g—1 (S<TM> RE® CN) )

P

b
where P 9Pont(L)g—1"

gPon (L)g
We will also need to consider the conjugation of DV:

(11.4) D¥9 = g~'D¥g = D® + (1 —4)g~'[D", g].

_, is the APS projection associated to D

11.3. An invariant of n type for even dimensional manifolds. Given an
even dimensional closed spin manifold X, we consider the cylinder [0, 1] x X with
the product metric. Let g : X — U(N) be a map from X into the unitary group
which extends trivially to the cylinder. Similarly, £ — X is an Hermitian vector
bundle which is also extended trivially to the cylinder. We make the assumption
that ind D¥ =0 on X.
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Consider the analog of D¥¢ as defined in (11.4), but now on the cylinder

[0,1] x X and denote it by Dfé’*‘i]. We equip it with the boundary condition Px (L)

on one of the boundary component {0} x X and the boundary condition Id —
g~ Px(L)g on the other boundary component {1} x X (Note that the Lagrangian

subspace L exists by our assumption of vanishing index). Then (Dféﬁ]’ Px(L),1d—

g ' Px(L)g) forms a self-adjoint elliptic boundary problem. For simplicity, we will

still denote the corresponding elliptic self-adjoint operator by Dfé’f{].

Let U(fo)ﬁ}’ s) be the n-function of Dflo”f{] which, when Re(s) >> 0, is defined
by

WD 9 = 3,

.9
(0,1

One knows that the n-function n(DEg’%, s) admits a meromorphic extension to
C with s = 0 a regular point (and only simple poles). One then defines the
n-invariant of DE’S’%, denoted by n(D%4), to be the value at s = 0 of (D%, s),

[0,1] [0,1)>
and the reduced n-invariant by

where A runs through the nonzero eigenvalues of D

3 1/17 11%
H(DEa ) — dimker Di§, + n(D))
[0,1] 2 '

Definition 11.2. We define an invariant of n type for the complex vector bun-
dle E on the even dimensional manifold X (with vanishing index) and the K*
representative g by

(11.5) (X, 9) = WD) = st { Dty (s);0 < s < 1},

where ”sf” is the notation for spectral flow and DE@’%(S) is a path connecting

g 'DEg with fo;g] defined by

D¥9(s) = D + (1 — sib)g~ ' [D", g]

on [0,1] x X, with the boundary condition Px (L) on {0} x X and the boundary
condition Id — g~ ' Px(L)g at {1} x X.

We proved in [50, Section 5] that 77(X, g) does not depend on the cut off function
1 and is thus a well-defined analytic invariant.

In our application, we will apply this construction to the cylinder [0, 1] x M.
i.e., X = OM is a boundary.
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11.4. An index theorem for T,”(L). Recall that g : M — U(N). Thus g~'dg
defines a I'(End(C"))-valued 1-form on M. Let ch(g) denote the odd Chern
character form of g defined by (cf. [66, Chap. 1])

dim M —1
2 n! B n
hio) = 3 Gyt [lea)™]

Recall also that V™ is the Levi-Civita connection associated to the Riemann-
ian metric g™, and V¥ is the Hermitian connection on E. Let RTM = (VTM)2
(resp. RE = (V¥)?) be the curvature of VI (resp. VF).

Let Py denote the Calderén projection associated to DE®CY on M. Then Py
is an orthogonal projection on L2((S(TM)®@E®CN)|snr), and that Py — P (L)
is a pseudodifferential operator of order less than zero.

Let 7,(gPorn(L)g™ ", Pore(L), Par) € Z be the Maslov triple index in the sense
of Kirk and Lesch.

We can now state our main result as follows.

Theorem 11.3. The following identity holds,

(11.6)
1

ind TP (L) = — (m

(dmM+1)/2
> /M A (R™) Tt [exp (~R")] ch(g, d)

—n(OM, g) + 7 (9Pors (L)g ™", Pors (L), Par) -

Remark 11.4. The formula (11.6) is closely related to the so called WZW theory
in physics. When OM = S? or a compact Riemann surface and E is trivial,
the local term in (11.6) is precisely the Wess-Zumino term, which allows an
integer ambiguity, in the WZW theory. Thus, our eta invariant 7(0M, g) gives an
intrinsic interpretation of the Wess-Zumino term without passing to the bounding
3-manifold. In fact, for OM = 52, it can be further reduced to a local term on
S? by using Bott’s periodicity.

The following immediate consequence is of independent interests.

Corollary 11.5. The number
1 (dim M+1)/2 R
P A(R™)T —RE)] ch(g,d) + 7(dM,
(271—\/__1> /M ( ) Tr [exp ( )] ch(g, d) +7( 9)

1S an integer.

Our proof of Theorem 11.3 given in [50] divides into two steps. In the first
step, we proved by using heat kernel method an index theorem for the perturbed
Toeplitz operator defined in (11.3). Then in the second step we connected the
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index of the perturbed Toeplitz operator and that of the (un-perturbed) Toeplitz
operator by using spectral flow.

11.5. A conjectural relation between two cylindrical n-invariants. We
have pointed out that the eta type invariant 7j(X, g), which we introduced in
Subsection 11.3 using a cut off function, is in fact independent of the cut off
function. This leads naturally to the question of whether 77(X, ¢g) can actually be
defined directly. We now state a conjecture for this question.

Let DU be the Dirac operator on [0,1] x X. We equip the boundary condition
gPx(L)g™" at {0} x X and the boundary condition Id — Px(L) at {1} x X.

Then (DU gPx(L)g~!,1d — Px(L)) forms a self-adjoint elliptic boundary

[0,1]
problem. Let DgP

(1)1, Px (L) denote the corresponding elliptic self-adjoint oper-

ator.

0,1 . 0,1
Let n(DLP)l(L)g,I’PX(L), s) be the n-function of DLPQ(L)Q,IVPX(L). By results due

to Grubb and Kirk-Lesch, one knows that the 7-function n(Dg(};E( Dg-1.Py(n)S)

admits a meromorphic extension to C with poles of order at most 2. One then

o 0,1 0,1

defines the n-invariant of D;PJ(L)Q_l,PX(L), denoted by n(DLP;(L)g_I’PX(L)), to be

the constant term in the Laurent expansion of U(Dé%ﬂ(L)g—l,Px(Ly s)at s =0.
Let ﬁ(DLO};ﬂ (L)g—1.Px (1)) De the associated reduced 7-invariant.

Conjecture 11.6. The following identity holds,

_ = [0,1]
77(X7 g) =1 <D9PX(L)9*1,PX(L)> )

If this conjecture would be correct, then the result stated in [62, Theorem 5.2]
would also be correct. A previous version of [50] was devoted to a proof of [62,
Theorem 5.2], and a referee pointed out a gap in that version. This is why we
later introduced a new n-type invariant, which makes the picture clearer.
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Géométrie différentielle/ Differential Geometry

Métriques de Reidemeister et métriques de Ray-Singer sur
le déterminant de la cohomologie d’un fibré plat : une
extension d’un résultat de Cheeger et Miiller

Jean-Michel BismuT et Weiping ZHANG

Résumé — Soit M une variété compacte, soit F un fibré plat sur M. On munit TM et F de
métriques. Soit K une triangulation de M. On considére le fibré en droites réel det H (M, F), qu'on
munit de deux métriques naturelles, la métrique de Reidemeister associée & K et la métrique de
Ray-Singer. On établit des formules d’anomalie pour la métrique de Ray-Singer. On montre que
les métriques de Reidemeister et de Ray-Singer sont reliées par une formule locale sur M. On
généralise ainsi le résultat de Cheeger et Miiller relatif 4 1'égalité des deux métriques dans le cas ot
la métrique de F est plate, résultat récemment étendu par Miiller au cas ou F possede une forme
volume invariante. Le terme local mesutant le 1apport des deux métriques fait précisément intervenir
la variation locale de la forme volume sur F.

Reidemeister metrics and Ray-Singer metrics on the determinant of the cdhomology
of a flat bundle: an extension of a result of Cheeger and Miiller

Abstract — Let M be a compact manifold, let F be a flat bundle over M. We equip TM and F
with smooth metrics. Let K be a smooth triangulation of M. We consider the real line det H (M, F),
which we equip with two natural metrics, the Reidemeister metric and the Ray-Singer metric. We
establish anomaly formulas for the Ray-Singer metric. We also show that the Reidemeister metric
and the Ray-Singer metric are related by a formula which is local over M. We thus extend the result
of Cheeger and Miiller, who proved the equality of the two metrics in the case where the metric of F
is flat. This last result was recently extended by Miiller to the case where the volume form of F is
flat. In our local term measuring the ratio of the Ray-Singer metric to the Reidemeister metric, the
local variation of the volume form of F appears explicitly

Abridged English Version — Let M be a compact manifold. Let F be a real flat bundle
on M and let F* be its dual. Let H (M, F) be the cohomology groups of the sheaf of flat
sections of F. Let det H (M, F) be the real line

dim M
detH' (M, F)= ® (detH!(M, F))V"
i=0

Let g™ gF be smooth metrics on TM, F. Let K be a smooth triangulation of M, let B
be the finite set of barycenters of the simplexes of K, let (C (K, F*), d¢) be the simplicial
complex associated to K, F*, whose homology is canonically isomorphic to H_(K, F¥*), and
let (C' (K, F), %) be the dual complex. The restriction of g& to B determines a metric on

dim M )
C. (K, F*), and so a metric on the line detC' (K, F)= ® (det(C'(K, F))(""". Since
i=0
detH (M, F)~det C' (K, F),
we obtain a metric || ||§:% o1, 5 on the line det H'(M, F), called the Reidemeister

metric. As was shown by Reidemeister (see [8]), if the metric g& is flat, the Reidemeister
metric is invariant under subdivision of K. This result was recently extended by Miiller
[10] to the case where the metric induced by g" on the line det F is flat.

Let || |55 4 o, ) be the Ray-Singer metric on the line det H (M, F) associated to the
metrics g™, g¥. This is the product of the standard L, metric on det H (M, F) [obtained

Note présentée par Jean-Michel BisMuT.
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by identifying H' (M, F) with the harmonic elements in the De Rham complex Q (M, F)]
by the Ray-Singer analytic torsion of the complex (Q(M, F), 2%) [12].

In two celebrated papers, Cheeger [S] and Muller [9] proved a conjecture of Ray and
Singer [12] saying that when the metric g" is flat, the Reidemeister and Ray-Singer metrics
coincide. This result was recently extended by Miiller [10] to the case where the metric
on det F is flat,

We here announce the result that in full generality, the ratio of the Ray-Singer metric to
the Reidemeister metric is given by an explicit local formula on M. We thus extend the
results of Cheeger and Miiller to arbitrary flat bundles with metrics

As an intermediary step, we establish anomaly formulas for the Ray-Singer metric, which
are the analogues of the corresponding holomorphic anomaly formulas [1] in the De Rham
category. These anomaly formulas are tdﬁtologically trivial when M is odd dimensional, and
also when the metric g is flat.

To establish our main result, we inspire ourselves from prior work by Bismut-Lebeau [3]
on a corresponding result in the holomorphic category. We then use the deformation of the
De Rham complex suggested by Witten [14] using a Morse function and also the results of
Helffer and Sjostrand [6], who established the asymptotic matrix structure of the d-operator
acting on certain finite dimensional vector subcomplexes of the De Rham complex for the
trivial flat vector bundle as a parameter T tends to + co, when the Morse function f verifies
the Smale transversality conditions.

Also, we choose a Morse function adapted to the triangulation K by using a result of

Pozniak [11], who constructs a Morse function whose Thom complex coincides with the
simplicial complex of K.

The idea of using Helffer and Sjostrand’s results [6] to establish the equality of the
Reidemeister and Ray-Singer metrics goes back to Tangerman [13] who announced he had
made progress in this direction.

1. INTRODUCTION. — Soit M une variété compacte de dimension #. Soit F un fibré
plat sur M, soit F* son dual.
~ Soit K une triangulation C* de M, soit B I'ensemble fini des barycentres des simplexes
de K. Soit (C, (K, F*), d¢) le complexe simplicial associé¢ 4 K et F*, dont ’homologie
est égale 4 H (M, F*). Soit (C'(K, F), 8f) le complexe dual, dont la cohomologie
s’identifie 4 H (M, F). On pose
n

detC' (K, F)= ® (detC' (K, F))" ¥,
i=0
n
detH (M, F)= ® (detH! (M, F))t~ ',
i=0
Alors les droites det C' (K, F) et det H' (M, F) sont canoniquement isomorphes.
Pour xeB, soit || |lsqr, une métrique sur la droite detF,_. Les métriques
Il llaei s, (xeB) induisent une métrique sur det C’ (M, F). On appelle métrique de Reide-
meister et on note | |54 o, ) 12 métrique correspondante sur la droite det H' (M, F).
Dans le prolongement de résultats de Reidemeister [8], Miiller [10] a établi récemment
que si les métriques || ||y, &, proviennent d’une métrique plate sur det F, alors la métrique
de Reidemeister est invariante par subdivision.
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Soit (Q(M, F), d) le complexe de De Rham des sections C® de A (T* M)®F. Soient
g™, gF des métriques sur TM, F. Soit * I'opérateur de Hodge associé & la métrique g™.
On munit Q (M, F) du produit scalaire

1) o, o' eQM, F)i- (a, oc’>=f {lan*a'y.

Soit d** I'adjoint formel de @ relativement au produit scalaire (1). Soit
OF=4F dF* -+ dF* JdF

le laplacien correspondant.

Par la théorie de Hodge, H' (M, F)~Ker [JF On munit Ker [IF de la métrique induite
par (1). On désigne par | |ou o, F la métrique sur la droite detH (M, F) induite par
cet isomorphisme.

Soit P la projection orthogonale de Q (M, F) sur Ker [(I¥. On pose P*=1-P. Soit N
Iopérateur de nombre de Q(M, F). On note Tr, la supertrace. On pose pour
seC, Re(s)>n/2

B(s)= —Tr,[N(OIF) P4y

Dermnttion 1. — On appelle métrigue de Ray-Singer sur la droite detH (M, F) la
métrique

L.,
H H};StH' o™, F)— l 'detH' ™, F eXP{’Z‘e (0)}~

Le terme exp {1/26'(0)} est appelé torsion analytique de Ray-Singer [12].

Dans des articles célébres, Cheeger [5] et Miiller [9] ont montré que, quand la métrique
g" est plate, les métriques de Reidemeister et de Ray-Singer coincident, &tablissant ainsi
une conjecture de Ray-Singer [12]. Plus récemment, Miiller a étendu le résultat de [5], [9]
au cas ot la métrique || ||q ¢ induite par g¥ sur detF est plate.

L’objet de cette Note est d’annoncer une formule reliant les métriques de Reidemeister
et de Ray-Singer dans le cas général. Les preuves sont développées dans [4].

2. FORMULES D’ANOMALIE POUR LA METRIQUE DE RAY-SINGER. — Quand M est de
dimension impaire, il est bien connu par Ray-Singer [12] que la métrique || |55 1 o, 5
ne dépend pas des métriques g™ et g Quand M est de dimension paire et quand la
métrique g7 est plate, il résulte aussi de [12] que la métrique || |85 g+ o, ¢ et triviale,
essenticllement a cause de la dualité de Poincaré.

Nous traitons ici le cas général. Soit g" une métrique sur F. On pose

o(F, g)= (g d" ¢
8(F, gH)=Tr[o(F, ")

Alors B(F, g") est une 1-forme fermée, dont la classe de cohomologie ne dépend pas

de g~

Soient maintenant (g™, g") et (¢'™, g’F) deux couples de métriques sur TM, F. Soient

I llecr et |l |'aecr les métriques induites par g& et g™ sur le fibré en droites detF.
Soient || B o ;€ || [oen o, ) les métriques de Ray-Singer correspondantes sur

la droite det H (M, F).

Soit V™ (resp. V™) la connexion de Levi-Civita sur (TM, g™) [resp. (TM, g'™)]. Soit
e(TM, V™) [resp.e(TM, V'™)] la forme différentielle sur M associée & la connexion
VM (resp V'™) représentant la classe d’Euler de TM en théorie de Chern-Weil.

C. R, 1991, 2¢ Semestre (T 313) Série I — 58
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Soit ¢(TM, V™, V'™) 1 classe de formes de Chern-Simons de degré n—1, définie a
un cobord prées, telle que
de (TM, VM, V'T™™) = ¢ (TM, V'™)— ¢ (TM, V™),
Notons que si z est impair, e(TM, VIM)=¢(TM, V'™)=0, et que ¢ (TM, V™™, V'T™M)=0,

THEOREME 1. — On a l'identité
I IIA“ié o F) || HdetF

—J O (F, ge(TM, V™, v,
M

3. COMPLEXE SIMPLICIAL ET FONCTION DE MORsSE. — Soit K une triangulation C® de
M. Pour 0<i<n, soit K’ la réunion des simplexes de K de dimension <i Soit B
Pensemble fini des barycentres de M.

Alors par Pozniak [11], on peut construire une fonction de Morse /: M — R et une
métrique g™ sur TM ayant les propriétés suivantes :

— Les points critiques de f sont les barycentres de K. De plus si ce K\ K", I'indice
de f au barycentre de o est égal a i.

— Les cellules descendantes W associées & Vf s’identifient aux simplexes de K.

— f vérifie les conditions de transversalité de Smale. Le complexe de Thom associé & f

s’identifie au complexe simplicial associé a K.

— Si xeB, il existe des coordonnées y= (y!, ..., y") prés de x tel que dans ces
coordonnées
1 ind (x) ) 1 n )
F=f®-- X PP+ XA
2 1 2ind (x)+1

3) ;
gIM:Z'dinZ'

— Les simplexes de K de dimension <n—1 sont totalement géodésiques dans M.

4. FoncTiON DE MORSE ET FORME D'ANGLE. — Soit © la projection TM — M. Soit
Y (TM, V™) le courant de degré n—1 sur I'espace total de TM construit dans [7], [2],
qui verifie ’équation de courants

A (TM, VIMy=n* ¢ (TM, V™) -5,
La restriction de \ aux fibres de TM est la forme d’angle de TM relativement a la
métrique g™

Soit f: M — R une fonction de Morse, et soit B ; Pensemble de ses points critiques.
Soient Vf'et V' fles gradients de f relativement aux métriques g™ et g'™.

On utilise les mémes notations qu’en 2, 3.

THEOREME 2. — On a lidentité

4) —j O(F, &™) (V' ))* ¥ (TM, V'™) +J O (F, g (V/)* ¥ (TM, V™)

M

[ e o{ e e v

2
_J‘ e(F’ glF) E(TM, VTM, V!IM)_ Z (_ l)ind ) Log<” ”detF >
" det Fy

xeBy
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Soit ceK"™\K"~*. La 1-forme 6 (F, &%) posséde sur o une primitive V,(F, gF) définie
a une constante prés. Si xe o (M B, soit a (o, x)e[0, 1] Pangle solide sous lequel x voit &
relativement 4 la métrique g™=M.

THEOREME 3. — Si f et g™ sont choisies comme en 3, on a lidentité

&) —f OF, eHVH*V (M, VM= ¥ Vo (F, g e(TM, V™)
M

ceK™K" 1Jo

=~ X (DM Y g6, )V, (F, &) ()
xeB ce K™\ K" 1

Remarque 4. — Des théorémes 2 et 3, on tire en particulier que pour des métriques
g™, g° arbitraires, — f O(F, g (VA)* ¢ (TM, V™) ne dépend pas de la fonction f
M
" construite en 3.

5. COMPARAISON DES METRIQUES DE REIDEMEISTER ET DE RaY-Smweer. — Soit K une
triangulation C* de M. Soit /:M >R une fonction de Morse prise comme en 3

relativement a K,

Soient g™, g" des métriques C* sur TM, F. Pour xeB, on munit detF, de la métrique
induite par gFx.

Soient || [&f o, 5 et || 188 * o, 7y les métriques de Reidemeister et de Ray-Singer
correspondantes sur la droite det H' M, F),

On a alors extension suivante du résultat de Cheeger [5] et Miiller [9], [10].

THEOREME 5. — On a lidentité

(6) Log < ” “]fi:ft;(}zi' (M, F)) — _f 0 (F, gF) (Vf)* \ll (TM, VIM)“
[ w7, ) M

Remarque 6. — De (6), on déduit en particulier le comportement de la métrique de
Reidemeister par subdivision.

6. PRINCIPE DE LA PREUVE DU THEOREME 5. — La preuve du théoréme 5 est proche dans
son principe de la preuve d’un résultat de Bismut-Lebeau [3] dans une situation holo-
morphe formellement comparable.

Par les théorémes 1 et 2, on voit qu’il suffit de montrer (6) pour un seul couple
(™, &%) de métriques sur (TM, F).

On choisit g™ adapté 4 f commme en 3. De plus on suppose que g est plate sur un
voisinage de B.

Pour T=0, on munit F de la métrique gr=e"*1/ g Soit d¥* I'adjoint de 4F relative-
ment au produit scalaire (1) associé aux métriques (g™, gF). On pose

Dy=d*+dt*,
On a un résultat trés proche d’un résultat de Bismut-Lebeau [3].

THEOREME 6. — Soir %, 1 la 1-forme sur R* x R,

™ oy = ;_’—;Trvs [N exp (= ¢ D3)]~ 4T Tr, [ fexp (~ 1 D2)]

Alors o, 1 est fermée.
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Soient g, A, T, avec O<e<1<A < +oo, 0<Ty< +co.

Soit I' le contour orienté de R* xR, qui borde le rectangle A= {(u, T), esugA,
0ST=T,}. Soit T, le cbté {G, T), eSu=<A, T=T,}. Les cdtés T,, I's, I, sont obtenus
a partir de I'; par orientation de I" dans le sens direct. On pose Ij:f o. Du théoréme 6,

L

on tire
() S1=0

Comme dans [3], on étudie le comportement des termes I; (1=j<4) quand A — + o0,
Ty — +o0, € -0 dans cet ordre. (6) résultera alors de (8) et des résultats intermédiaires
suivants, qui sont montrés dans [4].

Soit y (F) la caractéristique d’Euler de F. On pose

1 (B)=1g(F) Y (= 1)™@ind (x),

xeB

T [f]= 3 (= 1) f (x),

xeB

Soit P} **l la projection orthogonale de Q(M, F) sur le sous-espace de Q(M, F)
engendre par des espaces propres de D? associé & des valeurs propres >1.

THEOREME 7. — Etant donnés e, A avec 0<e<A< +co, il existe C>0 tel que si
tele, Al, T=1, alors

~, C
ITxs[Nexp (=D -y (F)|| = o
Pour tout t>0, on a

lim Tr, [Nexp (—¢D P} "= =0.

T- +w

1l existe ¢>0, C>0 tels que pour tout t= 1, T=0, alors
IITr, [N exp (— D2 P} + =[] || Scexp(—Co).

THEOREME 8. — Pouwr tout t>0, il existe ¢>0 tel que quand T — + o0, on ait
n I~ 1 —
Trs[fexp(~ tD))=1g(F) Tre [f]+ <ZX (F)— X (F)>i: +0(e™*h).

On utilise maintenant le formalisme de I'intégrale de Berezin [7]. Soit R™ Ia courbure

de la connexion de Levi-Civita V™, Soit e, . . ., e, une base orthonormale de TM. On
pose

. 1 . .
) R™M= ZZ(ek, R™(e,e)e e nel nétné

Pour T=0, on pose
> IM

Bi= =t TRV &5 n e+ T )2

B
L’intégrale de Berezin J transforme un polyndme en les variables anticommutantes

'

et, .., e, é, .. ., & en un polyndme en les variables e', .., e" ie en une forme
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. B
différentiellé\ sur M. Une puissance de © convenable est incorporée dans I'intégrale J

pour simplifier les formules qui suivent.
On pose

&,
=_)e&né.
2
THEOREME 9. — Quand t — 0, alors

Tr,[Nexp (—tD3)]= g'x (EY+0@% si n est pair,

B R™™ 1 _
=1g(F) J f Lexp < S ) —=+ 0 \/ f) S n est impair.
M 2 \/ t

On pose
D=d"+d"",

' cdN=dfn +ig .
L’opérateur D+ T é(df) a été introduit par Witten [14].

TugorEME 10, — Il existe C>0 tel que pour 0<t=<1, 0T 1/t, on ait

;;{Trs[feXp(— (D +T5(df))2)]—rg(F)J ff exp (—By2)
M

¢} B~ -
—I—tf —(F, gF)J afexp(—BIz)} <C.
M2
THEOREME 11. — Pour tout T>0, on a
.1 T, .\ B
lim —{ Tr,| fexp| — | tD+ —¢(df) —1g(F)Tr [f]]
t=0f t

VN P70 T S
B <ZX(F) 2 (F)>Ttanh T)

THBOREME 12. — [l existe ¢>0, C>0 tel que pour t€l0, [, T=1, alors

é(Trs [fCXP ( (z D+ Le (df)> )]— g (F) Tr2 /]~ i( Py () 27 <F>))
t t T\4 2
Scexp(—CD.

Soit DI 1 la restriction de Popérateur Dy a la somme directe des espaces propres de

D% pour des valeurs propres A€10, 1].
Soit | |gern® o, 1, 7 18 métrique L, sur la droite det H (M, F) associée aux métriques

(€™, g%

En utilisant une extension des résultats de Helffer-Sjostrand [6] & des fibrés plats F
munis de métriques arbitraires et le quasi-isomorphisme canonique du complexe de Rham
(Q(M, F), d¥) au complexe simplicial (C' (K, F), 8%), on montre dans [4] le résultat clef
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suivant :
THEOREME 13. ~ On a lidentité

2 »
lim {Trs [N Log (D} 1 )1+ Log <,—’d‘;ﬂ—‘:u> +2rg(F) T3 [ /1T

detH (M, F)

+ <ZX(F)‘%'(F)>L0g<z>}=Log<%)
2 T ’ JdetH' M, F)

De P'identité (8) et des théorémes 7-13, on tire dans [4] le théoréme 5.

Note remise le 23 septembre 1991, acceptée le 1¥ octobre 1991
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Géométrie/Geometry

Spin‘-manifolds and Rokhlin congruences

Weiping ZHANG

Abstract — We establish a general congruence formula of Rokhlin type for spin‘-manifolds. This
result refines the integrality theorems of Atiyah and Hirzebruch [1]. It also extends the previous
congruences due to Rokhlin [7], Atiyah-Rees [2], Esnault-Seade-Viehweg [3] and Zhang [10}{12].

Varietés spin° et congruences de Rokhlin

Résumé — Nous établissons une formule de congruence générale du type Rokhlin pour des variéiés
spin®. Ce résultat précise le théoréme de divisibilité d’ Atiyah-Hirzebruch [1]. Il étend également des
-congruences dues & Rokhlin [7], Atiyah-Rees {2}, Esnault-Seade-Viehweg [3] et Zhang ([10]-[12]).

Version frangaise abrégée — Soit K une variété compacte spin de dimension 8k+4.
Soit E un fibré vectoriel orienté réel sur K. Soit E¢ la complexification de E. Alors,
par un théoréme classique d’Atiyah-Hirzebruch [1], le nombre caractéristique

(A(TK) ch (Eo), [KI)
est un entier pair.

D’autre part, si K est une variété compacte connexe orientée non-spin de dimension 4,
soit B une sous-variété compacte connexe orientable de dimension 2 de K telle que
[BleH, (K, Z,) soit duale 4 la deuxiéme classe de Stiefel-Whitney , K)yeH?(K, Z,).
Rokhlin [7] a établi une formule de congruence pour la signature de K du type

Sign (B.B)—Sign (K)
8

ot B.B désigne lauto-intersection de B et ®(B) est un invariant de cobordisme spin de B
associé a (K, B).

Dans cette Note, nous étendons les résultats d’Atiyah-Hirzebruch et de Rokhlin aux
variétés spin® de dimension supérieure.

Comme corollaire, nous donnons une formule intrinséque pour des indices mod 2 des
fibrés vectoriels orientables de dimension 2 sur une variété spin de dimension 8 £+ 2.

=®(B) (mod 2Z)

In this Note, we establish an extended Rokhlin type congruence formula for spin‘-
manifold. This result generalizes the formulas proved in Zhang ([10]-[12]).

Although it turns out that both of the proofs appearing in [11] and [12] can be used
to prove this formula, we here present a third proof whose idea goes back to Atiyah
and Hirzebruch [1]. From the topological point of view, this proof seems more close to
the heart of the problem, in comparing with the cobordism proof in [12].

1. A CONGRUENCE FORMULA FOR SPIN‘-MANIFOLDS. — Let K be a compact connected
oriented spin‘-manifold of dimension 8k+4. Let & be a complex line bundle on K such
that the formula ¢, (§)=w, (TK) (mod 2) holds. We fix a spin structure on E@TK.

Let B be an 8k +2 dimensional compact connected orientable submanifold of K such
that [BleHg,. , (K, Z) is Poincaré dual to c=c, (€). Then B carries an induced spin
structure (cf. [5]). We call B a ¢-characteristic submanifold of K.

Note présentée par Jean-Michel BismuT.
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If F is a real vector bundie on B, we denote by ind, (F) the associated mod 2 index of
Atiyah and Singer (cf. [4], [13]).

Let now E be a real vector bundle over K. Note E¢ the complexification of E.

Let i:B g K denote the canonical embedding of B in K.

The main result of this Note can be stated as follows.

THEOREM 1. — The Jollowing identity holds,

(1) < A(TK) exp ( g) ch (B, [K] > =ind, (*E) (mod 2Z)

Proof. — We use ideas of Atiyah-Hirzebruch [1] and Atiyah-Rees [2] to prove (1).

Let m, n be two sufficiently large positive integers. Let f: K — CP4m+2 pq a classifying
map of &, and let g:K 5 $* be an embedding. Let 4=, 8):K g CP**2x 88 e the
induced embedding.

Let v be the canonical complex line bundle over CP4m+2 o

T: CP4m+2 X SBn - CP4m+2

be the projection map. Then one has
@ E=*()=h*n*(y).

Let j: CP*"*1 g CP4m+2 b the canonical embedding, Clearly M: =CP4m+1 x g8n g
a ¢; (n* y)-characteristic submanifold of CP#m+2 x g8n. Furthermore, by perturbing f and
& We get a transversal intersection B’=K NM, which is another ¢, (€)-characteristic
submanifold of K. Note ;* :B's K, j:B"' 6 M the canonical embeddings.

Then by an casy modification of an argument in Ochanine (5], Section 2., 5) and by
the spin cobordism invariance of the mod 2 index, one gets
3) ind, ("*E) = ind, (i* E),

Also, since K MM is a transversal intersection, one has the following identification of
KO direct images:
4 (% idgsn)* (h, E)=; (i"* E).
On the other hand, by the Atiyah-Hirzebruch theorem the Riemann-Roch property for
spin‘“-manifolds as well as for the mod 2 index, one obtains that

) < A(TB) exp ( 5) ch (Ep), [K1>

= <A(T(CP4'"+2 X $8%) exp < -”iczlﬂ) ch ((h, E)o), [CP#m+2 x g8n) >

and
(6) ) ind, (" E)=ind, (j; (i"* E)).

By wusing (3)-(6), we then reduce (1) to the case where K=Cp#m+2x gtn
B=CP*"*1x 88 This in turn, via the Bott periodicity theorem, can be reduced to the
case where K=CP*"*2 gpd B= C pém+1 for which the validity of (1) has been proved
by Atiyah and Rees [3B]. O

Remark 2. — Since KO (CP*"*2) has been calculated explicitly (Sanderson [8]), the
formula (1) for complex projective Spaces can also be verified directly.
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Remark 3. — Theorem 1 provides a partial way of calculating the mod 2 index of a
real vector bundle over an 8% +2 dimensional spin manifold, at least when this bundle
can be extended through some circle bundle to a spin®-manifold.

Remark 4. — Special cases of (1) for complex manifolds have been proved in Atiyah-
Rees [2] and Esnault-Seade—Viehweg [3].

2. SOME APPLICATIONS. — We state some corollaries of theorem 1.

CoroLLARY 5 (Atiyah-Hirzebruch [1D). ~ LetK be a compact spin manifold of dimension
8k+4, E a real vector bundle over K, then { A(TK) ch (Ec), [K1) is an even interger.

Let (K, B) be a characteristic pair as in Section 1. Let N be the normal bundle to B
in K. Note e the Euler class of N.

Let E be an integral power operation on KO.

‘COROLLARY 6 (Zhang [11]). — The following identity holds,
() (A(TK) ch (8¢ (TK)), [K] ) = ind, (E(TB@R?))

+ < A(TB) ch (B (TB@N))—cc?sh (e/2)ch (Z, (TB@RZ))’ [B]> (mod 27),
2 sinh (e/2)
Proof. — The formula (7) foliows from (1) by setting E=E(TK@®R?-&), where € is
the complex line bunde over K associated to B. [
The following congruence formula for elliptic genera ¢, (¢f- [6], [12]) and the Ochanine
genus B, [6] is a direct consequence of corollary 6.

CoroLLARY 7 (Zhang [11], [12]). — The following identity holds,

® (o, TR) K1) =, @)+ o, TB) LD, () B ) mod 22,
etanh (e/2)

Remark 8. — Recall that in [11], we use an analytic method of calculating the adiabatic
limits of m-invariants of Dirac operators on circle bundles to prove corollary 6, while
the proof of (8) in [12] is based on a cobordism theoretic method. Both two methods
can be modified to prove theorem 1 immediately.

Remark 9. — In [11], we have also proved a congruence formula for the case where B
is allowed to be non-orientable. This result has not received a purely topological proof.

By setting E=£ in (1), we get

CoroLLaRY 10. — The following identity holds,

) < A(TK) exp < 3?6) [K]> + < A(TK) exp ( g) [K]> =ind, (N) (mod 2Z).

Example 11. — Let S2=CP* 5 CP2 be the canonical embedding, then N is the Hopf
bundle H over S2. By (9), one gets immediately that ind, (H)=1. Combining with
the analytic approach mentioned in remark 8, this provides an explanation of [13],
remark 2.4,

Remark 12. — By using theorem 1 for E=R, one sees from (9) that ind, (N) can be
computed using the Atiyah invariants of some other characteristic submanifolds. This is
particularly strange when B is a nonsingular spin complex hypersurface V¢ (4k+ 1) of
CP**2 (k>0), for which, in view of a result of Stolz [9], the fact that ind, (N) is zero
or nonzero relies on whether V3 (4% +1) and/or V*(4k+1) would or would not carry
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metrics of positive scalar curvature. We refer to [12] for a determination of whether a
nonsingular spin complex hypersurface in C P#k+2 fan carry a metric of positive scalar

curvature,
We conclude this Note with the following generalization of example 11.

COROLLARY 13. ~ Ler B be g compact connected spin manifold of dimension 8k+2, let
N be a complex line bundle over B. Then the Jollowing identity holds,

(10) ind; N)=(A(TB)ch(N), [B]) (mod 2Z).

Proof. — Clearly N can be extended through the circle bundle associated to itself to a
spin“-manifold K, such that (K, B) is a characteristic pair. The formula (10) then follows
easily from (9). [J

Remark 14. — 1t might be Interesting to note that according to (10), ind, (N) does
not depend on the spin structure on B.

Note remise le 13 juillet 1993, acceptée le 2 aodit 1993,
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Abstract.  We present a direct analytic proof of the Guillemin-Sternberg geometric quantization
conjecture [2]. Further extensions are also obtained.

Réduction symplectique et quantification

Résumé.  Nous présentons une preuve analytigue d’une conjecture de Guillemin-Sternberg [2],
ainsi que des extensions de ce résultat.

Version francaise abrégée

Soit ¢ un groupe de Lie compact connexe agissant sur une variété symplectique compacte
(M, w) par une action hamiltonienne. Soit (L, VL) un fibré en droites hermitien muni d’une
connexion hermitienne, supposé G-équivariant, et tel que V2 = %w. Soit p : M — go*
I’application moment associée. Soit J une structure presque complexe G-invariante sur TM, telle
que g*M (u,v) = w(u, Jv) est une métrique riemannienne sur TM.

Soit DE : Q%= (M, L) — %" (M, L) 'opérateur Spin® de Dirac associé (voir [4]). Alors, on a

une représentation virtuelle RR (M, L) de G donnée par
RR(M, L) = Q%" (M, L) Nker DX — QU mpait (A7 1) N ker DL

Supposons que 0 € g* soit une valeur réguliére de 11, et que G agisse librement sur ;! (0). On note
Mg = 1177 (0)/G la réduction symplectique de Marsden-Weinstein, Le fibré Lg = (L|,-: (0)/G) est
un fibré hermitien en droites sur M. On obtient ainsi un espace virtuel RR (Mg, Lg).

Conjecture (Guillemin-Sternberg, [2]) On a
dim RR (M, L)% = dim RR (Mg, Lg).

Note présentée par Jean-Michel BismMuT.
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Dans cette Note, nous présentons une preuve analytique de cette conjecture et on obtient également
des extensions de ce résultat. Ainsi, si (M, w) est kihlérienne, on montre des inégalités de type
Morse relative 4 la partie invartante de la cohomologic de L

In this Note, we present a direct analytic proof of the Guillemin-Sternberg geometric quantization
conjecture [2]. Besides deriving an alternative proof of this conjecture in the full nonabelian group
action case, our methods also lead to immediate generalizations in various contexts, Details and
further applications will appear in [7].

1. The Guillemin-Sternberg conjecture

Let (M. w) be a closed symplectic manifold such that there is a Hermitian line bundle L over M

admitting a Hermitian connection V' with the property that V&2 = \/Z—%w. Let J be an almost

complex structure on TM so that g7 (u,v) = w (u, Jv) defines a riemannian metric on T'M.
With these data, one can construct canonically a Spin®-Dirac operator (see [4, Appendix D])

(L. DL Q% (M, L) - Q% (M, L),

which gives rise to the finite dimensional virtual vector space

(1.2) RR(M, L) =Q%" (M, L)Nker DY — Q"o (A1 L) Nker D%,

Now suppose that a compact connected Lie group (7 acts on (M, «) in a Hamiltonian way, which
lifts to L naturally and preserves J, V%, ete. Let u : M — g* be the corresponding moment map.
We assume that 0 € g™ is a regular value of 4, and for simplicity, that (7 acts on =1 (0) freely. Then
Mg = p~1 (0)/G is a smooth manifold. On the other hand, w descends to a symplectic form we on
Mg. Thus we get the Marsden-Weinstein symplectic reduction space (Mg, wg). The pair (L, V¥)
also descends to a pair { L, V'¢) over M. Then one defines the corresponding Spin®-Dirac operator
and in particular the virtual vector space RR (Mg, Lg).

Since G preserves everything, it commutes with D*, Thus RR (M, L) is a virtual representation
space of . Denote by RR (M, L)Y the G-trivial representation component of RR (M, L).

THEOREM 1.1. — dim RR(M, L)¢ = dim RR (Mg, Lg).

Theorem 1.1 was first proved by Guillemin-Sternberg [2] in the holomorphic category when
(M, gT) is Kihler. They raised it as a conjecture for general symplectic manifolds. When @ is
abelian, this conjecture was proved by Meinrenken [5] and Vergne ([8], [9]). A proof for the full
nonabelian case was given by Meinrenken [6].

2. Quantized Witten deformation and its Laplacian

For any X € I'(ZM) with complexification X = X; + Xp € ['(TMOM @ T UM), set
¢(X) = V2X;A—v2ix,, where X} € T'(T* DA is the metric dual of X, (see [1], Section 5).
Then ¢ (X) extends to an action on Q" * (M, L).

Let g and thus g* be equipped with an Ad G-invariant metric. Let [u}? be the norm square of the
moment map. Let Jd|u|? € I'(T*M) ~ [ (1'M) be the 1-form introduced by Witten [10].
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49 Symplectic reduction and quantization

DeFintTION 2.1. — For any T' € R, the quantized Witten symplectic deformation operator D+ is the
formally self-adjoint first order elliptic differential operator given by

V=17 .
2
Remark 2.2. — Tf .J is integrable, so that (M, g™™) is Kihler, one has

2.1y Dy = D% (Jd|ul*) : QO (M, L) — Q" (M, L).

(2.2) Dy = \/§(e—TINI2/2 g eT|,.|2/2 + 67‘\#.\2/2 (5L)* e—T|p|2/2).

Also, a similar deformation has been used by Vergne [9] on the symbol level. ,

Let hy, ..., haing be an orthonormal base of g*. Then p has the expression p = Eg’fa pihi,
where each p; is a real function on M. Let V] be the killing vector field on M induced by the dual
of h;. Using (2.1) and the Kostant formula [3] for the infinitesimal action of G on L, one obrains
the following Bochner type formula.

TreOREM 2.3. — The following identity holds,

dim G dim & b

(23) D =D"*+V=IT Y cldw)e(Vi)+4nTlpf +7°| Y wVi
=1 i=1
dim & 1 dirm M
FVEIT S (2 > c(ej)c(ve,.vz)—Tr[v“=°)m|mw]—sz!),
i=1 j=1

where ﬁ\,; denotes the infinitesimal action of V; on Q%* (M, L), and V% denotes the connection
on TV M jnduced from the Levi-Civita connection V of g7

3. Localization to neighbourhoods of 1~ (0)

In this section, we show that the proof of Theorem 1.1 can be localized to arbitrary small
neighbourhoods of p ! (0). The main difficulty arises from the fact that the nonzero critical peint
set of |iz|* may not be nondegenerate in the sense of Bott. We overcome this difficulty by doing
pointwise estimates instead of global estimates used in the standard analytic Morse theory,

Let Q%" (M, L) denote the G-invariant part of Q%* (M, L).

THEOREM 3.1. — For any open neighbourhood U of p=* (0), there exist constants C > 0, b > () such
that for any T > | and any s € Q%* (M, L) with Supps C M\U,

G3.h I1D7sllg = C sy + (T = B)lls[I5)-

We prove Theorem 3.1 in two steps. The first step is to prove the following key pointwise estimate.,
PropositioN 3.2. — Let

dim G
(3.2) Qr=D3+2vV=1T Y Ly,
i=1
act on Y (M, L). For any x € M\U, there exist an open neighborhovod W of z and constants

Cyp > 0, by > U such thar if s € Q%* (M, L) with Supps C W, then forany T > 1,
(3.3) (Qps.<) 2 Co ([sl]T + (T = ba)lIsll3)-
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If z is not a critical point of |u|?, the proof of (3.3) is trivial. We now assume that z is a ronzere

critical point of |u|*. Then one can find an orthonormal basis fi, ..., famar of ToM with the
corresponding normal coordinates y1, ..., Yaimar Such that near x, |u|*> can be written as

din M
34 le @) = lu@@)* + > auf + 0I5,

Jj=L

where the constants a;’s may possibly be zero.
From (3.4), one can see directly that at z,

dim G dim & dim M
1
(35) V_]- ; C(dﬂzi)c(‘/i)‘F V—].T ; i (-2- ]Z—; C(fj)C(ij W)—TI‘[V(I’O) V;])

dim M

> - Z |aji-

From (3.5), (3.4), (3.2) and (2.3), one gets (3.3).

The second step of the proof of Theorem 3.1 is to glue together the pointwise estimates in
Proposition 3.2. The key point is that when restricted to Q(C];* (M, L), one has IA',VT. = 0. Thus
D2 = Qr on Q%* (M, L). On the other hand, since M\U is compact, finitely many glueing suffice.

4. The analysis near ;~' (0) and a proof of Theorem 1.1

Theorem 3.1 allows us to reduce the proof of Theorem 1.1 to a sufficiently small open neighbourhood
U of p~'(0). We take I to be equivariant.

Since 0 € g* is a regular value of g, p~' (0) is a nondegenerate critical submanifold of |u|?
in the sense of Bott. One can then apply directly here methods and techniques of the paper of
Bismut-Lebeau [1, Sections 8, 9] and localize everything at x='(0). As G acts on p~! (0) freely,
G — pt(0) 5 Mg = M/G is a principal fibration. Furthermare, the vertical G-direction covariant
derivatives are bounded operators when restricted to (-invariant subspaces. This eventually pushes
everything down to M.

In summary, we get a self-adjoint Spin“-Dirac type operator D¢; on Mg acting on 1% (Mg, Lg),
having the properties given in Theorem 4.1. To our surprise, it turns out to he non identical to the
Spin®-Dirac operator D¢,

THEOREM 4.1. — There exist ¢ > 0, Ty > 0 such that there are no nonzero eigenvalues of Dge in
[0, |, and such that for any T > T, the number of eigenvalues of D%|Qg:* v, 1y P [0, ¢] is equal
to dim (ker Dg). ’

Now, all arguments used to prove Theorem 4.1 preserve the Z,-grading of the Spin°-bundles.
Theorem 1.1 then follows from Theorem 4.1 easily.

Remark 4.2. — For a precise form of Dg in the holomorphic category, see (6.1).

Remark 4.3. — If G does not act freely on =1 (0), then M, is an orbifold. In this case, the above
arguments can be modified easily to prove the orbifold version of Theorem 1.1.

Remark 4.4. — Alternatively, one can first take the principal fibration G — U — /G and then
apply [1] to U/G to prove Theorem 4.1.
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5. Two immediate extensions

Arguments in Sections 2 to 4 also lead immediately to further extensions of Theorem 1.1. Here we
only state two of them, The first is a dual version of Theorem 1.1.

THEOREM 5.1. ~ The following identity holds:
dim BR (M, L™ @ det (T'"VM))¢ = (~1)™C dim RR (Mg, L' ® det (T VM),

The second result can be viewed as an invariance property of symplectic quotients. 1t has also been
obtained independently by Meinrenken and Sjamaar.

THEOREM 5.2. — If 1= 1 (0) is not empty, then we have the equality of Todd genus, (Td (TM), [M]) =
(Td (Tﬂrf(;), []Vf(,])

6. Holomorphic Morse inequalities

We now assume that {M, w) is Kihler and work in the holomorphic category. Then (M, we) is
also Kihler. The line bundle L (resp. Lg) is now holomorphic over M (resp. Mg).

Let h : Mg — R, be defined by h(z) = vol (G, ) = val (=1 (x)). Then the Dirac type operator
Dg in Section 4 can be written precisely here as

(6.1) Dy = V2 (RVEGEe =12 4 =12 (§hoyr p172),

From (2.2), (6.1), and proceeding as in Sections 2 through 4, one actually gets a Z-graded refined
version of Theorem 4.1, This culminates in the following refinement of Theorem 1.1, which is stated
for Dolbeault cohomologies, where we use the upperscript &G to denote the G-invariant part.

THEOREM 6.1. — The following Morse type inequalities hold:
(i) For any 0 < p < 4m

dim HO? (M, L)¢ < dim H*? (Mg, Le);

(ii) For any 0 < p < di“;—M,
r P
> (1) dim B (M, L) <Y (-1) dim H*7™ (Mg, La).
i=0 i=0
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Abstract. In this Note we announce some new rigidity and vanishing results in the equivéfiant
theory. These results generalize the famous Witten rigidity theoren2000 Académie
des sciences/Editions scientifiques et médicales Elsevier SAS

Théoremes de rigidité et d’annulation dans I&-théorie

Résumé. Dans cette Note, nous annongons des résultats de rigidité et d’annulation danthkéorie
équivariante. Ces résultats étendent les théoremes de rigidité de Witten dans le contexte
de la K-théorie équivariante] 2000 Académie des sciences/Editions scientifiques et
médicales Elsevier SAS

Version francaise abrégée

Soit X une variété compacte, orientée et de dimension paire. On supposeaget une action dg'
et queX est munie d’une structure spinoriefié-invariante.

Soit gT¥ une métriques -invariante sufl X. SoitS(TX) = S*(TX) @ S~ (TX) le fibré des spineurs
Zo-gradués sufT X, gT¥). Suivant Witten [9], on pose

e3¢} [e'e] “+00
O, (TX) = (X) Ay (TX @r C) Q) Sym . (TX @r C) =Y _ Ruq",
n=0

n=1 n=1

avecR, € K(X).
Witten a conjecturé dans [9] que pour teut N, le nombre de Lefschelz(g),, de 'opérateur de Dirac
twisté, qui envoif (ST (TX) ® S(TX) ® R,) dansl'(S~(TX) ® S(TX) ® R, ), ne dépend pagec S*.
La conjecture de Witten a été démontrée par Taubes [8], Bott—Taubes [2] et Liu [5] etc.

Note présentée par Jean-Michel BsMuT.
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Dans [6], Liu et Ma ont étendu la conjecture de Witten a une situation en famille. lls ont démontré de
résultats de rigidité et d’annulation au niveau du caractére de Chern équivariant pour la famille d’'opérate
de Dirac twistés décrit ci-dessus.

Dans cette Note, nous annongons des résultats de rigidité et d’annulation au niveali deédarie
équivariante, qui raffinent les résultats de Liu—Ma [6]. Les détails de la preuve et les extensions sc
développés dans [7].

In this Note, we announce the proofs of thetheory versions of the famous rigidity and vanishing
theorems for elliptic genera. Details and further extensions will be developed in [7].

1. A family rigidity theorem for the Witten elements

For simplicity, we will focus on the discussion of the rigidity for one of the elliptic genera. For more
general rigidity and vanishing results, we refer the reader to [7].

Let7: M — B be a smooth fibration of compact manifolds with fibteanddim X = 2/. Let TX be
the vertical tangent bundle of the fibration M — B. We make the assumption th#t acts fiberwise on
M, and thatT X admits anS*-equivariant spin structure. Lgt"'* be anS!-invariant metric oril X. Let
S(TX)=ST(TX) &S (TX) be theZ,-graded bundle of spinors ¢T X, gTX).

For a complex (resp. real) vector bundieover M, let

Sym,(E) =1+ tE + t*Sym*E + - - -,
A(E)=1+tE+1*A*E+---

be the symmetric and exterior power operationgdfesp.F @r C) in K (M)[[t]] respectively. Following
Witten [9], set

oo oo +oo

O, (TX) =) Agn (TX) Q) Sym, (TX) = > Rug", (1.1)
n=1 n=1

with eachR,, € K (M).

For anyn € N, b € B, let D;¥ ® R,, denote the twistedignatureoperator onX;, = 7~!(b) mapping
fromT'((ST(TX) @ S(TX) ® Ry)|x,) toT((S™(TX) @ S(TX) ® Ry)|x,). Then{D;¥ @ R, }1ep is a
smooth family of twisted signature operators which we denot®Byx R,,. The family operatoDX @ R,,
is clearlyS!-equivariant. Thus, its index bundled(D* ® R,,), in the sense of Atiyah and Singer [1], lies

in Kg1(B). Let (Ind(DX @ Rn))Sl € K(B) denote thes!-invariant part ofind(DX ® R,,). We say that

1
D* ® R, isrigid on the equivariant<-theory leveif Ind(D* ® R,,) = (Ind(D¥ ® Rn))S
We can now state the main result of this Note as follows:

THEOREM 1.1. —For anyn € N, the family operatorD* ® R,, is rigid on the equivariants-theory
level.

Remark1.2. —WhenB is a point, Theorem 1.1 was conjectured by Witten [9] and was proved by
Taubes [8], Bott—Taubes [2] and Liu [5], etc. WhBris not a point, Theorem 1.1 refines a result of Liu—Ma
[6] to the equivarianfs -theory level.

In order to outline a proof of Theorem 1.1, we will first state in the next sectiaitheory version of
the equivariant family index theorem for the considered operators.
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2. An equivariant family index theorem for circle actions

Let F be the fixed point set of thg'-action on)M. Thenr : F — B is a fibration with compact fibre
denoted byY". One has the following splitting 6f X over F',

TX|p=TY P Nur, (2.1)
v#0

where N, r denotes the underlying real bundle of the complex vector bundlen which St acts by
sendingg to g. Since we can choose eithdf, or N, as the complex vector bundle fo¥, g, in what
follows we may and we will assume that

TX|p=TY N, (2.2)
o<wv

whereN,, is the complex vector bundle on whiéf acts by sending to g (hereN, can be zero).

Let TY carry the orientation induced from those BX and theN,’s via (2.2). LetDY be the family
signature operator along the fibérs If £ is anS!-equivariant Hermitian vector bundle overcarrying
with anS*-invariant Hermitian connection, we denote By ® E the associated family twisted signature
operator. Then the index bundle Bf” ® E lies in Kg: (B). For anyh € Z, letInd(DY ® E, h) denote the
componentoind(DY ® E) of weighth with respect to the inducesf -representation. In what follows, if
R(q) =3",,cz Rma™ € Kg1(M)][[q]], we will also denotdnd(D* @ R,,, h) by Ind(D* @ R(q), m,h).

The main result of this section can be stated as follows:

THEOREM 2.1. —For m, h € Z, we have the following identity i’ (B),

Ind(D* ® ©,(TX),m,h)

=) (—1)P=rdimNeng (DY"‘ ® 0,(TX)® Sym(@Nv) ® A(@Nv) )M, h), (2.3)

0<wv 0<wv

wherea runs over the connected componentgof

Proof. —=Theorem 2.1 is proved in [7] by using the analytic arguments in [10] and [1].

3. Proof of Theorem 1.1

Forp € N, we define the following elements ig: (F)[[¢]]:

F3) =@ (@S5 (V) @ S, (V,) ) @Sy (1),
n=1

O<v “n=1 n>pv
Fo(X) = ® (Sym,—n(Ny) @ det N,),

0<v
o<n<py

FP(X)=Fp(X)® Fp(X) ®A<@Nv) ® (det (@M))_léw (TX). @31

0<wv 0<wv
Then

FUX)=0,(TX)® sym(@m> ® A(@Nv).

0<v 0<v
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Set
e(N)=) v’dimN,,  d(N)=> vdimN,. (3.2)

0<wv 0<v
We now state two intermediate results on the relations between the family indices on the fixed point s

PROPOSITION 3.1. —For h, p, m € Z, p > 0, we have the following identity i (B),

Z(_1)20<v dimNoyy (DYO ®0,(TX)® Sym (@ M) QA (@ Nv) ,m, h)

[eY 0<v 0<wv
. 1 1
=) (—1)FosvdimNeIngd (DYa @ FP(X),m+ 3 pPe(N) + 3 pd (N), h) . (3.3)

PROPOSITION 3.2. —For h, p € Z, p > 0, m € Z, on each connected componént of ', we have the
following identity inK (B),

1 1
Ind (DYa @ F P(X),m+ §p26(N) + 5pd'(N), h) =Ind(D¥* @ FO(X),m + ph, h).

Propositions 3.1 and 3.2 are proved in [7], where, inspired by Taubes [8], we introduce certain shiftir
operations for vector bundles ovér and study the behaviour of the involved family indices under the

shifting operations. Moreover, in the proof of Proposition 3.1, we make use a key idea in [8] to reduce tl
problem to the fixed point set of the induc&g-actions. For more detailsge[7].

Proof of Theorenmi.1 —By (3.1), Theorem 2.1 and Propositions 3.1, 3.2 far Z, p > 0, we get the
following identity in K (B),

Ind(D¥ ® ©,(TX),m,h) =Ind(D* ® ©/(TX),m’, h), (3.4)

with
m’ =m + ph. (3.5)
Note that by (1.1), iftn < 0, for h € Z, we have

Ind(D* ® ©,(TX),m,h) =0 in K(B). (3.6)

Letmg, h € Z with h # 0 be fixed:

() if >0, we takem’ = mg, then wherp is big enough, we get < 0;

(i) if h <0, we takem = mg, then ag is big enough we get’ < 0.
From (3.4), (3.6) and the above discussion, we get Theorem 11.

4. Vanishing results and further remarks

In some sense, our proof given in [7] may be considered Astheory version of the proof given by
Bott—Taubes [2] of the Witten rigidity theorem, which was also inspired by the ideas in Taubes’ proof [8
While on the other hand, the proof in [7] is self-contained and the arguments in [7], even in the ca
where the basé is a point, are different from the ones in the papers of Bott—Taubes [2], Liu [5] and
Taubes [8]. Moreover, our method in [7] is quite general and allows us to deal with systematically mol
general situations than what was described in this note. We refer to [7] for more results and discussio
Here, for the conclusion of this Note, we only state one of the vanishing results, which follows from ot
techniques together with an observation of Dessai [3].
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THEOREM 4.1. —Assume that\/ is connected and tha pi(TX) = 0, wherep,(TX) is the first
Pontryagin class off X. If the S'-action on is non-trivial, and is induced from a fiberwis#-action
on M which also preserves the spin structure ‘01X, then the index bundle of the family twistBirac
operatorD* @, Sym,.(TX) is identically zero inKs: (B).

n=1
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Abstract

We present an extension of the “miraculous cancellation” formulas of Alvarez-Gaumé, Witten and Kefeng Liu to a twisted
version where an extra complex line bundle is involved. Relations to the Ochanine congruence forniuia4ditensional
Spirf manifolds are discussetio cite thisarticle: F. Han, W. Zhang, C. R. Acad. Sci. Paris, Ser. | 336 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Variétés Spin¢ et genre eliptique. Nous présentons une extension de formules d’annulation d’Alvarez-Gaumé, Witten et
Liu lorsqu’on tensorise les fibrés considérés par un fibré en droites complexe. On discute le lien entre nos formules et les
formules de congruence d’Ochanine pour les variétés“Stendimension B+ 4. Pour citer cet article: F. Han, W. Zhang,

C. R. Acad. Sci. Paris, Ser. | 336 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

Let M be a Riemannian manifold. L&™ be the associated Levi-Civita connection, andié&¥ = vTM.2 pe
the curvature o ™. Thenv™ extends canonically to a Hermitian connect®@f¢* on 7cM =TM® C.
Let A(TM, VM) L(TM, V™M) be the Hirzebruch characteristic forms defined by

V ™ /1 ™
(TM, V) = det (sinh((«/—1/4yr)RTM) o LaM VT =det tanh((v—1/47)R™) )’ @

and let ciTcM, VTcM) denote the Chern character form associate@g, V'cM) (cf. [9, Section 1.6]).
When dimM = 12, the following equation for 12-forms was proved by Alvarez-Gaumé and Witten in [1], which
they called “miraculous cancellation”,

{Z(TM, vT™)}*2 = (8A(TM, V™) ch(TcM, VTeM) — 324 (TM, vTM)} 42 )

These authors also discussed the applications of such formulas to physics.

E-mail addresseshanfeiycg@yahoo.com.cn (F. Han), weiping@nankai.edu.cn (W. Zhang).
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In [5], Kefeng Liu generalized (2) to arbitrarilyk8 4 dimensional manifolds by developing modular invariance
properties of characteristic numbers.

In this Note, we present an extension of Liu’s formula in the presence of an extra complex line bundle (or
equivalently, a rank two real oriented vector bundle). In dimension 12, this extension can be described as follows: let
& be a rank two real oriented Euclidean vector bundle, equipped with a Euclidean connggtlenc = e(£, V¢)
be the associated Euler form (cf. [9, Section 3.4]). Then the following equation for 12-forms holds,

7 ™, (12
{%} = {[SA(T'VL V™) ch(Te M, vTeM) — 324(TM, vT)
C

12
_ 24A(TM, V™)(¢f + & — 2)] cosk(%)} . 3)

Clearly, wher¥ is trivial andc = 0, (3) reduces to the formula (2) of Alvarez-Gaumé and Witten. Our work was
motivated by the Ochanine congruence formula [7].

2. Main results

Let M be a & + 4 dimensional Riemannian manifold. L€f™ be the associated Levi-Civita connection. Let
V be a rank 2real Euclidean vector bundle ovéf equipped with a Euclidean connecti®tl . Let £ be a rank
two real oriented Euclidean vector bundle owércarrying with a Euclidean connectioff . Let ¢ = e(£, V¥) be
the Euler form oft canonically associated 1.

SetVe =V ® C andéc =& ® C. ThenVc andé&c are complex vector bundles ovéf, each of which is
equipped with a Hermitian metric, and a unitary connection.

If W is a Hermitian vector bundle ovéf equipped with a Hermitian connectiaf” , we denote by otiv, VW)
the associated Chern character form (cf. [9, Section 1.6]). Also, for any complex numbet A,(W) =
Cly +tW + 12A2(W) + --- and S;(W) = C|y + tW + 125%(W) + ---, where for any integej > 1, A/(W)
(resp.S/ (W)) is the j-th exterior (resp. symmetric) power 8f. SetW = W — C'kW),

Letg = e27V=1t with ¢ € H, the upper half plane. Set

o0 o0 o0 o0

O1(M, Ve, &c) = Q) Sy (TeM) @ Q) Agn (Ve — 2&c) ® Q) Agr-112(Ec) ® Q) A_s-12(Ec), (4)
n=1 m=1 r=1 s=1
o0 o o0 - B o0 B o0 B

O2(M. Ve, &) = R) S (TeM) @ Q) A_yn-12(Ve — 26c) ® (R) Ayr-112(Ec) @ Q) Ags (c).- (5)
n=1 m=1 r=1 s=1

Clearly, ©1(M, Ve, &c) and®@2(M, Ve, £c) admit formal Fourier expansion /2 as
O1(M, Ve, &) = Ao(M, Ve, &c) + A1(M, Ve, &c)g™/? + -, (6)
O2(M, Ve, éc) = Bo(M, Ve, &) + Bu(M, Ve, Ec)g %+ -+, @)

where theA;’s and B;’s are elements in the semi-group generated by Hermitian vector bundled/fovEinese
vector bundlest ;, B; are naturally equipped with Hermitian metrics and unitary connectishs V2.
Let RV = V-2 denote the curvature 6" . We can now state our main result as follows.

Theorem 2.1. If the equality for the first Pontryagin formsy(TM, VM) = p1(V, VV) holds, then one has the
equation for(8k + 4)-forms,

{ ATM, V™) det/(2 costi(v/—1/47)R")) }(8“‘” _ 2z+2k+1i — {br COS)—<E> }(%4),

coslt(c/2) ®

r=0
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where eachb,, 0 < r <k, is a finite canonical integral linear combination of the characteristic forms
A(TM, VM) ch(B;, VEi), j > 0.

Whené = R? andc = 0, Theorem 2.1 is exactly Liu’s result in [5, Theorem 1].
If we takeV = TM andV¥ = V™ in (8), we get

i(TM,VTM) (8k+4)_ k k6 c\ ) @+d
{ costt(c/2) } _BZ;‘)Z {brcosr<5>} ' ©

In the case wherk =1, one obtains (3) from (9).

Now assume thaV is closed, oriented and carries a Spstructure with{c] = w2(TM) mod 2, wheravz(TM)
is the second Stiefel-Whitney classT. Let B be a connected closed orienteld-8 2 submanifold inM such
that[B] € Hgy12(M, Z) is Poincaré dual t¢c]. Let B - B be the self-intersection & in M which can be thought
of as a closed orientedi8nanifold. Then by [7], we know that

/ L(TM, V™)

— . _ . . . 1
cosRcz ~ SanM) — SignB - B) (10)

On the other hand, by [2], we know that eaf;@; by cosh(3), 0<r <k, is an integer. Combining this argument
with (9) and (10), we deduce that

SignM) — Sign(B - B) z/bk cosl-(%) mod 64 (11)
M

8

By combining (11) with the Rokhlin type congruences proved in [8], one can give a direct proof of the analytic
version of the Ochanine congruence formula [7] stated in [6]. Moreovaf,ig spin, then using (11), the Ochanine
divisibility result (cf. [7]) and [2], we get

Sign(B - B) =0 mod § (12)

a result which seems to be of interest by itself.

On the other hand, there are twisted cancellation formulas similar to (8), (% oraBifolds, generalizing the
(untwisted) cancellation formulas stated in [5, p. 32].

More details and further applications will be given in [4].

3. Proof of Theorem 2.1

The methods of [5, Section 3] can be adapted here, with obvious modifications which take into account the
presence of andc. Here, we only indicate the main steps of the proof.

First, since (8) is a local assertion, we may and we will assume thatTddtand V are oriented. As in [5],
we use the notation of formal Chern rodts2z+/—1y,} and {£27+/—1x;} for (Vc, V®) and (TcM, VTcM)
respectively. We also set= 27 +/—1u.

Forz e H andg = e¥"V=1r set

A(TM, VM) det/2(2 costi(v/—1/4m)RY , (8k+4)
Pi(1t) = { ( ) ( f(v—1/47)R")) ch(O1(M. Ve. &), VG)l(M,vc,gc))} (13)
costt(c/2)
. (8k+4)
Pa(7) = {A(TM, V™M) ch(02(M, Ve, £c), vO2M-Ve.ke)) cos)(E)} ’ (14)
wherev® M.Ve.éc) ;i —1 2 are the induced Hermitian connections wjth?-coefficients or®; (M, V¢, &c) one

gets from thev4i, V5i’s (compare with (6) and (7)). Then a direct computation shows that
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8k+4
Pi(r)=2 4ﬁ2< 0'(0, t)) l_[ 01(yv, T) 912(0, ) O3(u, T) Oa(u, T) (8k+4) -
j=1 T0(x;,1) 61(0,7) | 62(u, 7) 63(0, ) 62(0, 7) ,

8k-+4
P 4ﬁ2< 9/(0,r>> [ %2000 30.0) st ) . ) o 6
T)= Xi s
’ 3 oo/ (L 600.7) ) 02w, 1 62(0.7) 61(0.7)
whereé (z, ) andé; (z, t), i =1, 2, 3, are the classical Jacobi theta functions (cf. [3]).

Sincep1(TM, VM) = py(V, vV, ie. > 2x2 =Y 1 v2, by (15), (16) and by the transformation laws of
theta functions (cf. [3]), one verifies directly thB;;(r) is a modular form of weighti+ 2 overI"°(2). Moreover,

Pi(—1) = 2% 2 py(0). 17

On the other hand, following [5], write; = 6;(0,7), 1< j < 3, and seba(r) = 3(65 + 03), £1(7) = 70303,
82(1) = — 507 + 03) andez (1) = 0765. They admit Fourier expansion

81(t)=3+6g+-, et =15 —q -+, (18)
S2(0)=—3 -3¢+, ea(r)=q"*+ -, (19)

where the *-.” terms are higher degree terms all having integral coefficients.

By [5, Lemma 2], we know tha, (resp.c) is a modular form of weight 2 (resp. 4) ovEP(2), and that 8, &>
generate the ring of modular forms with integral coefficients dv&¢2). Combining this argument with (7), (14)
and (19), we obtain

Pa(7) = ho(852)% 1 + h1(852)% ~Lea + - - + hi(882)eh, (20)

where eachh,, 0< r <k, is a canonically defined finite integral linear combination of the fofm&rM, V™)
ch(B;, VPi)cosh§)}&+4, j > 0. For exampleho and 1 can be written explicitly agio = —{A(TM, VTM)
cosh(§)} &+ andhy = {A(TM, VIM)[24(2k + 1) — ch(B1, V51)] cosh(§)} &+,

Now recall that by [5, p. 36]§;, &;,i = 1,2, verify the transformation lawsy(—2) = t281(7), ea(—1) =
t%¢1(1). Using also (17) and (20), we find that

Pi(t) =2 [ho@50) ! + 71 (851)* o1 + - - + h (851)s] ). (21)
By (6), (13), (18), (21), and taking = 0, we get (8). O
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Abstract

We establish am‘l-equivariant index theorem for Dirac operatorsOfk-manifolds. As an application, we generalize the
Atiyah—Hirzebruch vanishing theorem f§t-actions on closed spin manifolds to the casg p-manifolds To citethisarticle:
W. Zhang, C. R. Acad. Sci. Paris, Ser. | 337 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Actions du cercle et Z/ k variétés.On établit un théoréme d'indicgt-équivariant pour les opérateurs de Dirac surzlgs
variétés. On donne une application de ce résultat, qui généralise le théoréme d’Atiyah—Hirzebruch sur les aglianscde
Z/k variétésPour citer cet article: W. Zhang, C. R. Acad. Sci. Paris, Ser. | 337 (2003).

O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Sl-actions and the vanishing theorem

Let X be a closed connected smooth spin manifold admitting a non-trivial circle action. A classical theorem
of Atiyah and Hirzebruch [1] states that X) = 0, whereA (X) is the Hirzebruchi-genus ofX. In this Note we
present an extension of the above result to the cage bfmanifolds, which were introduced by Sullivan in his
studies of geometric topology. We recall the basic definition for completeness (cf. [6]).

Definition 1.1. A compact connected / k-manifold is a compact manifold with boundaryd X, which admits
a decompositiod X = Ule(aX)i into k disjoint manifolds and diffeomorphismsrz; : (8 X); — Y to a closed
manifoldY.

Letz:9X — Y be the induced map. In what follows, we will call an objecte.g., metrics, connections, etc.)
of X aZ/k-object if there will be a corresponding objggbn Y such thatx|;x = 7 *8. We make the assumption
thatX is Z/k oriented,Z/k spin and is of even dimension.
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Let g”X be azZ/k Riemannian metric oX which is of product structure nearX. Let R”X be the curvature
of the Levi-Civita connection associated 6. Let E be aZ/k complex vector bundle ovex. Let gZ be a
Z/k Hermitian metric onE which is a product metric nearX. Let V£ be aZ/k connection onE preserving
g% such thatv % is of product structure nearX. Let R® be the curvature oV . Let DX : I'(S1(TX) ® E) —
I'(S_(TX) ® E) be the associated Dirac operatorXSrandeﬁX (and thean) be its induced Dirac operator

onaX (and then ort). Letﬁ(Df) be the reduceg-invariant ofo in the sense of [2]. Then

1 pTX
Aw (X, E)= / deﬂ/2< 1R /4 )tr[e(“/‘_l/Z”)RE]—kﬁ(Df) modkZ (1)
X

sinh(v/—1RTX /4rm)

does not depend orz{*, ¢#, V¥) and determines a topological invariantan kZ (cf. [2] and [6]). Moreover,
Freed and Melrose [7] have proved a mbdndex theorem, givingA)(X, E) € Z/kZ a purely topological
interpretation. Wherk = C is the trivial vector bundle oveX, we usually omit the superscript.

Theorem 1.2.If X admits a nontrivial Z/k circle action preserving the orientation and the Spin structureon 7'X,,
then A, (X) = 0. Moreover, the equivariant mod k index in the sense of Freed and Melrose vanishes.

It turns out that the original method in [1] is difficult to extend to the case of manifolds with boundary to
prove Theorem 1.2. Thus we will instead make use of an extension of the method of Witten [10]. Analytic
localization techniques developed by Bismut and Lebeau [3, Section 9] and their extensions to manifolds with
boundary developed in [5] play important roles in our proof.

2. A mod k localization formula for circle actions

We make the assumption that tle/ k circle action onX lifts to a Z/k circle action onE. Without
loss of generality, we may and we will assume that thjs circle action preserveg’ X, ¢f and VE. Let
Df’APS: I'S+(TX)® E)— I'(S_(TX) ® E) be the elliptic operator obtained by imposing the standard Atiyah—
Patodi-Singer boundary condition [2] @ .

Let H be the Killing vector field onX generated by thé! action onX. ThenH|;x C 9X induces a Killing
vector field Hy on Y. Let Ly denote the corresponding Lie derivative acting B0S+(7X) ® E). ThenLy

' E
commutes withD ' APS:

For anyn € Z, let F} be the eigenspaces 0f(S+ (7T X) ® E) with respect to the eigenvaluera of ﬁLH.
Let DY pps(n) : FIL — F” be the restriction oD¥ ,pg on F}. ThenD’ ,o(n) is Fredholm. We denote its index
by ind(D% pps(n)) € Z.

Let Xy (resp.Yy) be the zero set off (resp.Hy) on X (resp.Y). ThenXy is aZ/k-manifold and there is a
canonical mapry,, : Xy — Yy induced fromr. We fix a connected componekiy , of Xy, and we omit the
subscriptx if there is no confusion.

We identify the normal bundle t& 5 in X to the orthogonal complement GtXy in TX|x, . ThenTX|x,,
admits ans*-invariant orthogonal decompositidhX |y, = Np, @ -+ ® Ny, ® TXp, where eachv,, y € Z,
is a complex vector bundle on whiche S c C acts by multiplication byg”. By using the same notation
as in [8, (1.8)], we simply write thal X|x,, = €D,.oNv ® TXy. Similarly, let E|x,, admits thest-invariant
decompositiorE|x, = P, Ev.

Let S(T Xy, (detN)~1) be the complex spinor bundle ové&t; associated to the canonically induced Spin
structure onT Xg. It is a Z/k Hermitian vector bundle and carries a canonically induZg¢d Hermitian
connection.

Recall that by [1, 2.4], one hgs , vdim N, = 0 mod Z. Following [8, (1.15)], set

R(q) = g2 IP1dmNs (S (Sym, . (N,) @ detNy) (R) Sym, - (N) ® D ¢" Ev = D) Rug”".

v>0 v<0 v
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R'(q) =g~ 22 MAmNe (S Sym, . (N,) (R)(Sym, (N,) @ detn,) ®Zq”E —EBR
v>0 v<0
Then eactR, (resp.R),) is aZ/k Hermitian vector bundle ove¥ y carrying a canonically induced)/ k Hermitian
connection. For any € Z, let DR” L iT(S4(T Xy, (detN) ™) ® R,) — I'(S_(T Xy, (detN)~1) ® R,) be the
canonical twisted SpfhDirac operator oKX p. Let DX1 _+Aps be the corresponding elliptic operator associated to
the Atiyah—Patodi—Singer boundary condition [2]. We will use similar notatioRfor

Theorem 2.1.For any integer n € Z, the following identities hold,

indDE ppg(n) =Y " (—1)Zo<v MmN ind DY t.Aps ModKZ, 2)
o

. i . R/

ind DY ppg(n) = ) (=1 Zv=0®™Nind Dy | spg mOdZ, 3)
o

Proof. For anyT € R, following Witten [10], IetDE + T(S4(TX)® E) — I'(S—(TX) ® E) be the Dirac type
operator defined by} | = DY 4+ v/ —1Tc(H). Let DT +.aps be the corresponding elliptic operator associated to
the Atiyah—Patodi—Singer boundary condition [2]. CleaﬂyﬁjL,APS also commutes with th&-action. For any
integern, let D]I::,+,APS(n) be the restriction onanAPS on F7. ThenD$,+,APS(n) is still Fredholm. By an easy
extension of [5, Theorem 1.2] to the current equivariantankl situation, one sees that i(}ﬂnyryAPS(n)) modkZ
does not depend dh € R (compare with [9, Theorem 4.2]).

Let Df , oy T(S1(TX) ® E)lax) — I'((S+(TX) ® E)|ax) be the induced Dirac type operator bf;
on dX. For any integen, let Df |, (n): Fi|yx — Fi|ax be the restriction oD} , ;. on F|sx. Also, the
induced Dirac operatorEf?aXH andDﬁ; can be defined in the same way as in Section 1.

Let a, > 0 be such that SpeDfl';) N [—2ay,, 2a,] € {0}. By combining the techniques in [3, Section 9], [4,
Section 4b]) and [8, Section 1.2], one can prove the following analogue of [4, Theorem 3.9], stating that there
existsTy > 0 such that for any” > T1,

#{1 € SpectDf | 5y (m)): —an <A <a,} = dim(kerD"

k) = kdim(kerDﬁ;). (4)

If dim(keer;) =0, then by (4), one sees that when> T1, D , . (n) is invertible. Then indDf , \pg(n))
itself does not depend of > T;. Moreover, by combining the techniques in [8, Section 1.2] and [5, Section 3],
one can further prove that there exigs> 0 such that whefl > T»,

ind(D% , aps(n)) Z( DXo< dMVoind DY | os (5)

(compare with [5, (2.13)]). From (5) and the médnvariance of indD$7+7APS(n)) with respect tol' € R, one
gets (2).
In general, dimkerDﬁ:l) need not be zero, and the eigenvalue@ﬁfhax(n) lying in [—a,, a,] are not easy

to control. Thus the above arguments no longer apply directly. Instead, we observe tﬂ@ranﬁ; —ay)) =0
and we use the method in [5] to perturb the Dirac type operators under consideration.

To do this, lets > 0 be sufficiently small so that’ X, g andV¥ are of product structure d, ] x X C X.
Let f:X — R be an Si-invariant smooth function such thagt = 1 on [0,¢/3] x X and f = 0 outside
of [0,2¢/3] x dX. Let r denote the parameter ifD, ¢]. Let D)’f” gyt be the Dirac type operator acting

on I'(S¢(T Xy, (detN)™)) ® R,) defined byDY" _ =Dy  —ayfe(L). Let DY’ | sog be the

corresponding elliptic operator associated to the At|yah Patod| —Singer boundary condmon [2]. By an easy
extension of [5, Theorem 1.2] (compare with [9, Theorem 4.2]), we see that,
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-, dimN, Ry — —p dimn,
> (~1yxo indDy: L aps= D (—1)Z0 ind DY’ . aps MOdKZ. (6)
o o

For anyT € R, let D%_amJr IS4 (TX)® E) — I'(S—(TX) ® E) be the Dirac type operator defined by

Df _, [ =Df_ —ayfe(F). Let Df _, | apsbe the corresponding elliptic operator associated to the Atiyah—

Patodi-Singer boundary condition. L@tf,_aer’APS(n) be its restriction onF. Then D%_aer’APS(n) is still
Fredholm. By another extension of [5, Theorem 1.2], one has

iNdDf _, | aps(n) =iNdDf | apg(n) mModkZ. 7

Moreover, sinceD :1 —ay, which is the induced Dirac type operatorfrdhf 4 throughrry ,, is invertible,
by combining the arguments in [8, Section 1.2] with those in [5, Section 3] one deduces that ther&sexidts
such that for any” > T3, the following analogue of (5) holds,

indDZb:,—an,+,APS(n) = Z(_l)ZM 4mtind DJIXM —ap,+,APS’ (8)
o

From (6)—(8) and the moklinvariance of indD? +.aps() with respect tdl' € R, one gets (2).
Similarly, by takingT — —oo, one gets (3). O

3. Proof of Theorem 1.2

We apply Theorem 2.1 to the cage=C.
First, if Xz =@, by Theorem 2.1, it is obvious that for eagcle Z,

ind(D_,_’Aps(n)) =0 modkZ. 9)

When Xy # ¢, we see thad_, [v|dimN, > O (i.e., at least one of th&,’s is nonzero) on each connected
component ofX ;. Then by (2) and by the definition of th®,’s, we deduce that for any integer< 0, (9) holds.
Similarly, by (3) and by the definition of th&,,’s, one deduces that (9) holds for any integez 0.

In summary, for any: € Z, (9) holds.

From (1) and (9), by the Atiyah—Patodi—Singer index theorem [2], and using the obvious fact tiiat i) =
>, ind(Dy aps(n)), one getA ) (X) =0. O

Remark 1. By combining Theorem 2.1 with the arguments in [8, Sections 2—4], one should be able to prove an
extension of the Witten rigidity theorem, of which-theoretic version has been worked out in [8],40k-
manifolds. This, together with some other consequences of Theorem 1.2, will be carried out elsewhere.
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Abstract

We present several results concerning the asymptotic expansion of the invariant Bergman kernel of higespoperator
associated with high tensor powers of a positive line bundle on a compact symplectic marafoite this article: X. Ma,
W. Zhang, C. R. Acad. Sci. Paris, Ser. | 341 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Noyaux de Bergman et réduction symplectique. Nous annongons des résultats sur le développement asymptotique du
noyau de Bergmar-invariant de I'opérateur de Dirac spiassocié a une puissance tendant vers l'infini d’un fibré en droites
positif sur une variété symplectique compad®eur citer cet article: X. Ma, W. Zhang, C. R. Acad. Sci. Paris, Ser. | 341
(2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version francaise abr égée

Soit (X, w) une variété symplectique compacte, et gdit #%) un fibré en droites hermitien muni d’une
connexion hermitienn&’ telle que%(vL)2 = w. Soit (E, k) un fibré vectoriel hermitien sux muni d’une
connexion hermitienn&£. Soit g7* une métrique riemannienne sif, et soitJ une structure presque com-
plexe compatible séparément 8% etw. Alors les données géométriques ci-dessus définissent canoniquement un
opérateur de Dirac spinD,, agissant suR®*(X, L? ® E), l'espace d€0, e)-formes a valeurs darns” ® E.

Soit G un groupe de Lie compact connexe et gpgion algébre de Lie. On suppose gieagit surX, et que
son action se releve A et E en préservant/, les métriques et les connexions ci-dessus. AlorsIKgest une
G-représentation de dimension finie. StierD,,)¢ la partie G-invariante de KeD,. Le noyau de Bergman

E-mail addressesna@math.polytechnique.fr (X. Ma), weiping@nankai.edu.cn (W. Zhang).

1631-073X/$ — see front mattdrl 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2005.07.009



68
298 X. Ma, W. Zhang / C. R. Acad. Sci. Paris, Ser. | 341 (2005) 297-302

G-invariant P,,G(x,x’) (x,x’ € X) est le noyaug™ de la projection orthogonalef de 2%°(X,LP ® E) sur
(KerD,,)G associé a la forme de volume riemannienng@’).

Dans cette Note, hous annongons des résultats sur le développement asymptoHﬁtﬂe,dcé) guandp tend
vers l'infini. Le détail des démonstrations et des applications de nos résultats est donné dans [6].

1. Introduction

Let (X, w) be a compact symplectic manifold of real dimensian 2ssume that there exists a Hermitian line
bundleL over X endowed with a Hermitian connectidt- with the property thatg RLY = w, whereRl = (V1)?
is the curvature ofL, VL). Let (E, h®) be a Hermitian vector bundle ox with Hermitian connectio®v £ and its
curvatureRE .

Let ¢”X be a Riemannian metric oki. Let J:TX — T X be the skew-adjoint linear map which satisfies the
relation w (u, v) = g7 X (Ju, v) for u,v € TX. Let J be an almost complex structure such tgat (Ju, Jv) =
gT X, v), o(Ju, Jv) = w(u,v), and thatw(-, J-) defines a metric ol X. Then J commutes withJ, thus
J =J(=J%~12 Let VTX be the Levi-Civita connection o7 X, g7 *) with curvatureR”X and scalar cur-
vaturerX. ThenV7¥ induces a natural connectiov®® on det7 -9 x) with curvatureR%! and the Clifford
connectionvC! on the Clifford moduleA(7*©Y x) with curvatureR®'. The spifi Dirac operatorD,, acts on
204X, L? ® E) = @, _2%(X, L” ® E), the direct sum of spaces ¢, ¢)-forms with values inL” ® E.
We denote byD; the restriction ofD, on Q0evenx 1P @ E). By [4, Theorem 2.5], whep is large enough,
CokerD; vanishes.

Let G be a compact connected Lie group with Lie algeprand dimG = ng. Suppose that acts onX and
its action onX lifts on L, E. Moreover, we assume th@-action preserves the above connections and metrics on
TX,L,E andJ. Then KerD, is a finite dimensional representation spac&of

The action ofG on L induces naturally a moment map: X — g*. Now we assume that & g* is a regular
value of . Then the Marsden—Weinstein symplectic reducti&ig = 1 ~1(0)/ G, wyx.) is a symplectic manifold
whenG acts freely onu~1(0). Moreover(L, VL), (E, VE) descend tdL¢, VE6), (Eg, VEG) overX ¢ so that the
corresponding curvature conditie@g RL6 = wg holds (cf. [3]). TheG-invariant almost complex structurealso
descends to an almost complex structiigeon 7 X, andh’, hE, ¢gTX descend talc, hte | gTXc respectively.
Thus we can construct the corresponding $litac operatoDg , on Xg.

Let (KerD,,)G denote theG-invariant part of KeD,,. Let P,? be the orthogonal projection from2%*(X,

L? ® E) on (KerD,)“. The G-invariant Bergman kernel i®# % (x,x") (x,x’ € X), the smooth kernel oP?
with respect to the Riemannian volume forrxdx’). Let pr; and pp be the projections fronk x X onto the
first and second factok respectively. TherPf(x,x/) is a smooth section of P, ® pr; E;, on X x X with
E,=AT*®VYX)® L’ ® E. In particular,Pf (x, x) € ENAE,), = End A(T*®VX) ® E),.

The G-invariant Bergman kernelPlf (x,x") is a local analytic version quer)G.

In this Note, we present several results concerning the asymptotic expansibﬁmfx’) asp — +o00. More
details will appear in [6].

2. Main results

The first result shows that one can reduce our problem to a problenunéen).

Theorem 2.1. For any openG-neighborhoodU of 1 ~1(0) in X, g > 0, [, m € N, there existLy ,, > 0 (depend
onU, go) suchthatforp > 1, x,x" € X,d(Gx,x') >ep0rx,x' e X\ U,
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|Pl?(xv-x/)|<gm < Cl,mp_lv (1)

where%™ is the¢™-norm induced bw’, VE, vTX pL pE oTX

Assume for simplicity thatG acts freely or.~1(0). Let U be an open neighborhood pf~%(0) such thatG
acts freely ort/. For anyG-equivariant bundlg€F, V) on U, we denote by the bundle or// G = B induced
naturally byG-invariant sections of* on U. The connectiorV? induces canonically a connectiai’® on Fg.

Let R"> be its curvature. We denote also by (K) = Vi — Lk € End(F) for K € g. Note thatP¢ e (6°°(U x
U,pr; E, ®pry E%))9*¢, thus we can viewp¢ (x, x') as a smooth section 6pr; E,) s ® (prs E3) on B x B.

Let ¢7 8 be the Riemannian metric dii/ G = B induced byg”X. Let VT2 be the Levi-Civita connection on
(T B, g"B) with curvatureR” 8. Let N be the normal bundle t& s in B. We identify N with the orthogonal
complement off X¢ in (T B|x,, g’ ?). Let PTX6, PNG pe the orthogonal projections frofB|x, onT X, NG
respectively. Set

TB

ThenVNG,OVTB are Euclidean connections &;, T B|x,; on X¢, andA is the associated second fundamental
form. We denote by v@tGx) (x € U) the volume of the orbitGx equipped with the metric induced ky/ X.
Following [9, (3.10)], letz(x) be the function oV defined by

h(x) = (vol(Gx))Y/2. A3)
Thenh reduces to a function oB. We denote byicgx the projection froma(T*®D X) ® E ontoC ® E under

the decompositiomt (T*OV x) = C @ A>0(T*OV X), andIcg £, the corresponding projection dh

; 0 Loy 0 1L 1
Foranyxoe Xg,Z € Ty, B, wewriteZ = Z°+ Z—,with Z° € T,y X, Z~ € NG, x,. Lett,0Z eNGYeprOG(ZO)

be the parallel transport af with respect to the connectiovi¥¢ along the geodesic iXg, [0,1] >t —
exd‘oc (tZ%). Foreg > 0 small enough, we identifg € Ty, B, |Z| < o with exp? %g (Zo)(rZoZL) € B, then for
eXPy

x0 € XG, Z, Z' € TyyB, |Z|,|Z'| < €0, the map
. N o 1 1
W:TB|x, xTBlx, > BxB, ¥(Z,Z)= (exp:xnfoc(zo)(tzoZ ), expfxpfOG(Z/O)(rZ/oZ )

is well defined. We identif(E ,) 5,z to (E ) 5.x, by Using parallel transport with respect¥~»)# along[0, 1] >
u—uZ. letnp:TB|x, x TB|x, — X¢ be the natural projection from the fiberwise productd|x. on X¢
onto X. From Theorem 2.1, we only need to understmfdo ¥, and under our identificatioerG oW (Z,7Z)is

a smooth section of ;(ENA(E ) g) = 7} (EndA(T*OVX) ® E)p) on T B|x, x T Blx,. Let| |l (x,,) D€ the
%™ -norm on¢>® (X, EndA(T*%V X) ® E)p) induced byvCifs vEs pE andg”X. The norm| legn’ (xe
induces naturally & -norm alongXg on¢*>° (T B|x,; x TB|XG,n§(End(A(T*(O*1)X) ® E)p)), we still denote
It by | |<gm’(XG)-

Let g7¥c, gNe pe the metric off X, Ng induced byg”X. Let dvx,,, dvy, be the Riemannian volume forms

on(Xg, g'%6), (Ng, g"6). Letk € €(T B|x,, R), withk = 1 onX, be defined by that fa € T,, B, xo € Xg,

dvg (xo, Z) = k (x0, Z) dvr, 5 (Z) = K (x0, Z) dvx, (x0) dung - 4)

Theorem 2.2. Assume thaiG acts freely onu=1(0) and J = J on n~1(0). Then there exisQ,(Z,Z)
End A(T*®VX) ® E)p ., (x0 € X, r € N), polynomials inZ, Z’ with the same parity as, whose coefficients
are polynomials inA, RT%, RCIffts REs ,E ,Cift (resp X, RYL RE: resp.h, RE, RL5; resp.u) and their
derivatives atxg to orderr — 1 (resp.r — 2; resp.r, resp.r + 1), such that if we denote by

PIN(Z2.2)=Q:(Z. ZVP(Z2.Z), Qu(Z.Z')=Icgk,. )
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with
P(Z,7) = exp(—% 20— 7207 — 7 V/=1{J,, 2°, z/°)> 202 exp(—n (12412 +12'+1?)), (6)

then there exist6” > 0 such that for any, m, m’, m” € N, there exist& > 0such that forg € Xg, Z, Z' € Ty, B,
1Z1,1Z'| < eo,

N Lam” glal+le|
A+ VPIZH1+P1Z+)"  sup

|| +]e/ [ <m

VAT VA

k
(p”+”°/ 2(hc?)(2) (he ™) (2" PG 0w (2, 2)) =Y PO (/P Z.JPZ)) pr/z)

r=0

" (XG)
<Cp_(k+l_m)/2(l+ﬁ|zo| +ﬁ|z/0|)2(n+k+2)+m exp(—\/F\/I_J|Z—Z/|)+ﬁ(p_oo). 7)

Furthermore, the expansion is uniform in the following serise any fixedk, m, m’, m"” € N, assume that the

derivatives og” X, ht, VL, hE, VE andJ with order< 2n + 2k +m +m’ + 4 run over a set bounded in thg" -

norm taken with respect to the parameters and, more@Ve, runs over a set bounded below. Then the constant
C is independent of ' X; and the#” -norm in(7) includes also the derivatives on the parameters.

In (7), the term&(p~>°) means that for ank; I; € N, there existg’; ;, > 0 such that it’1-norm is dominated
by C;;,p~". The kernelP(Z, Z') is the product of two kernels: alorfg, X g, it is the classical Bergman kernel on
Ty, X ¢ with complex structurd,,, while alongNg, it is the kernel of a harmonic oscillator vy .

Remark 1. (i) WhenG = {1}, Theorem 2.2 has been proved in [2, Theorem'3.18
(i) If we take Z = Z' = 0 in (7), then we get fokg € X,

PO0,0)=2"2]cgp,, (8)

and

k
p"10212(x0) PY (xo,x0) — Y P27(0,0)p ™" <cpr ©
r=0 cgm’ (XG)

In fact, (8) and (9) can be obtained as direct consequences of the full off-diagonal asymptotic expansion of the
Bergman kernel proved in [2, Theorem 3118

Remark 2. Assume tha( X, ») is a K&hler manifold and = J on X. Assume also thatL, V%), (E, VE) are
holomorphic vector bundles with holomorphic Hermitian connections. 'I?h%rpreserves th&-graduation of

20X, L’ ® E) and KerD, = HO(X, L? ® E) whenp is large enough, and gb[f (x0, x0) € End(E). In particu-

lar P)fc?) (0,0) = 2"9/2|d in (8). In the special case @ = C, PPG (x0, x0) is a function onX ¢, (9) has been proved

in [7, Theorem 1] without knowing the informations dn(g’)(o, 0), while in [8, Theorem 1], it was claimed that
(0)

Py’ (0,0) =1.

Let.7, be a section of End(T*®Y X) ® E) on X defined by

I (x0) = / h2(xo, Z)PPG o ¥ ((x0. Z), (x0, Z) )k (x0, Z) dung (2). (10)

ZeNg, |Z]<¢€0
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By Theorem 2.1, modul@(p~), .#,(xo) does not depend ap, and

dim(KerD,)¢ = / TH[P (v, y)] dux (y) = / Tr[ 7, (x0)] dvx, (x0) + O (p~%). (11)
X XG

A direct consequence of Theorem 2.2 is the following corollary.

Corollary 2.3. TakenZ = Z' € Ng,x,, m =01in (7), we get

p PR () PE(2,.2) =Y PO (/P Z. P Z)p P

‘ k
r=0

" (Xc)
<Cp V(14 sp1z) " + 6 (p). (12)

In particular, there exist, € End A(T*®VX) ® E) ., (r € N) which are polynomials imt, R7 &, RCffs REs,

wE, nCf (resp.rX, R9L RE: resp.h, RL8, RE; resp. ), and their derivatives akg to order 2r — 1 (resp.
2r — 2;resp.2r; resp.2r + 1), and ®g = IcgE,, Such that for any, m’ € N, there existLy ,» > 0 such that for
anyxp € Xg, peN,

k
P, (x0) = Y@, (x0)p" | < Crmp L (13)
r=0 @’

Theorem 2.4. If (X, w) is a Kéhler manifold and., E are holomorphic vector bundles with holomorphic Her-
mitian connections’%, VE, J = J on U, and G acts freely ore=1(0), then in(13), &, (xo) € End(Eg),, are
polynomials inA, RT8, REs uE RE (resp.h, RL®; resp.u) and their derivatives atg to order2r — 1 (resp.2r;
resp.2r 4+ 1), and®g = Idg,,. Moreover

1 . 3 V-1
D1(xg) = g'}?g(’ + EAXG |Og(h|Xc) + ?

HererX¢ is the Riemannian scalar curvature 6f X, g7 %6), Ay, is the Bochner—Laplacian oK, and{e?}
is an orthonormal basis df X . )

R;%G (e?, J(;e?). (14)

Still making the same assumptions as in Theorem 2.4, deinote the restriction t& ¢ of the function: defined
in (3). In view of [9, (3.11), (3.54)], setfc = h2hFa,

Let F;(G denote the orthogonal projection froff° (X, LY. ® Eg) onto H(X, LY. ® E) associated to the
metricshlc, hEc gTXc  Let ﬁ;(G (x0. x4) (x0, X, € X¢) denote the corresponding Bergman kernel with respect
to dux (xg)-

Then by [2, Theorem 1.3], we have the following theorem.

Theorem 2.5. Under the assumption of Theoredw, there exist smooth coefficier{fs(xo) € End(Eg)x, Which
are polynomials inR7X¢, REG (resp.h), and their derivatives atg to order2r — 1 (resp.2r), and & = ldg,;,
such that for any, ! € N, there exist<; ; > 0 such that for anyg € Xg, p € N,
k
p "t P (x0,x0) = Y Br(x0)p"| < CrupFTL (15)
r=0 €'
Moreover, the following identity holds,
V=1

~ 1 1 -
D1(x0) = gi’iﬁc + ZAXG |Ogh + ?R}CEOG (6‘9, JG@?). (16)
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Remark 3. From (14) and (16), one sees that in gendrakt &1, if 1 is not constant oiX ;. This reflects a subtle
difference between the Bergman kernel and the geometric quantization.

The proof of the above theorems uses techniques adapted from [1, §11], [2,5], along with a deformaﬁon of

by the Casimir operator (i.e., to considéﬁ — pCas, which plays a key role in proving Theorems 2.1, 2.2). We
refer to [6] for more details.
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Abstract

We establish an asymptotic expansion for families of Bergman kernels. The key idea is to use the superconnection formalism as
in the local family index theorem. To cite this article: X. Ma, W. Zhang, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Superconnexion et noyaux de Bergman en famille. Nous annongons des résultats sur le développement asymptotique du noyau
de Bergman en famille. L’idée principale est d’utiliser le formalisme des superconnexions comme dans la preuve du théoreme de
I’indice local en famille. Pour citer cet article : X. Ma, W. Zhang, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version francaise abrégée

Soit 7 : W — S une submersion holomorphe de variétés compactes de fibre X, et soit L un fibré en droites ho-
lomorphes sur W qui est positif le long de la fibre X. Soit E un fibré vectoriel holomorphe sur W. Pour p assez
grand, la premiére classe de Chern du fibré vectoriel holomorphe H(X, L? ® E) est calculé par le théoréme de
Grothendieck—Riemann—Roch (G.R.R.).

En considérant la courbure de H(X, L? ® E) comme un opérateur agissant le long de la fibre, nous étudions dans
cette Note le développement asymptotique de son noyau quand la puissance p tend vers +o0co. Nos résultats raffinent le
développement asymptotique de la premiere classe de Chern donnée par le théoreme de G.R.R. au niveau des formes
différentielles comme dans la version locale du théoréme de 1’indice en famille. L’idée principale est d’utiliser «un
morceau » de la superconnexion introduite par Bismut dans la preuve du théoréme de I’indice local en famille.

Les résultats annoncés dans cette Note sont démontrés dans [12].

1. Introduction

Let W, S be smooth compact complex manifolds. Let 7 : W — § be a holomorphic submersion with compact fiber
X and dimc X = n. Let E be a holomorphic vector bundle on W. Let L be a holomorphic line bundle on W.

E-mail addresses: ma@math.polytechnique.fr (X. Ma), weiping@nankai.edu.cn (W. Zhang).

1631-073X/$ — see front matter © 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crma.2006.11.013
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We suppose that L is positive along the fiber X.

We will add a subscript R for the corresponding real objects. Thus 7' X is the holomorphic relative tangent bundle
of 77, and Tr X is the corresponding real vector bundle. Let J"®X be the complex structure on T X.

By the Kodaira vanishing theorem, there exists pg € N such that the higher fiberwise cohomologies vanish and that
HO(X, (L? ® E)|x) forms a vector bundle, denoted by H(X,L? ® E), on S for p > po. From now on, we always
assume p > po.

By the Grothendieck—Riemann—Roch Theorem, in H Z(S, R), as p — 400, we have

ci(L)

n!

prro(p"h. )

(L)t tk(E)
c(HO(X, LP®E))=rk(E)/mp + +/<01(E)+ 5 cl(TX)>
X X

Now, in view of the Bismut local family index theorem [2], it is natural to ask whether a local version of (1) still
holds which involves the curvature of the vector bundle HY(X, L”? ® E).

Let us introduce our geometric data now. Let 4% be a Hermitian metric on L such that the restriction of v/—1 R
along the fiber X is a positive (1, 1)-form, here R’ is the curvature of the holomorphic Hermitian connection V on
(L,h%). Let w := (L, h™) be the Chern—Weil representative of the first Chern class c1 (L) of (L, h’), then

V=1
2

Thus w is a smooth real 2-form of complex type (1, 1) on W. Moreover, @ defines a Kidhler form along the fiber X,
i.e.

w=ci(L,h") = R )

gTRx(u, v) = a)(u, JTRXU) 3)

defines a Riemannian metric on T X. We denote by 47 ¥ the corresponding Hermitian metric on 7'X.

Let dvy be the Riemannian volume form on (X, gTRX ).

Let bsz be a Hermitian metric on E. Let V be the holomorphic Hermitian connection on (E, h%) with its curva-
ture R”.

Let hH'CLP®E) e the [2-metric on HO(X, L? ® E) induced by hL, hE and gT®X. Let VH (X.LP®E) pe the
holomorphic Hermitian connection on (H°(X, L? ® E),hHO(X'Lp®E)). Let RH(X.LP®E) _ (VILIO(X'LP‘X’E))2 be the
curvature of VA’ (X:L"®E) Then

RH'(X.LPQE) e A*(T}S) @ End(H (X, L? ® E)).

For s € S, let P, s be the orthogonal projection from ¢ *°(Xy, (L” ® E)|x,) onto HO(X,, (L? ® E)lx,). In the
sequel, we write instead P).

We will identify RH"(X-L"®E) o
PRI O p e A2(TiS) @ End(€°(X, (L” ® E)|,)).

Let RHO(X’LP‘X’E)()C,)C/) (x,x" € X;,s € S) be the smooth kernel of the operator RA'X.LTQE) ity respect to
dvyx, (x). Then

RHCXLI®E) (¢ vy e m*(AX(TES)) ® End(E,). )
The purpose of this Note is to evaluate the asymptotics as p — oo of the kernel of R YXLPQE),

2. Main result

Let T” W be the orthogonal bundle to T X with respect to . Then T# W is a sub-bundle of TW such that
TW=T'WoTX. ©)

Let PTX be the projection from TW = THW @ T X onto TX. For U € TgS, let U € TRﬁW be the horizontal lift
of U.
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LetT € AZ(TH%‘ W) ® Tr X be the tensor defined in the following way: for U, V € Tr S, X,Y € Tr X,

T(U", vH).=—pPTX[U", v?], T(X,Y):=0,

1

6
IO, X)i= (67 (Lo x. ©

Let RTX be the curvature of the holomorphic Hermitian connection V7' X on (T X, h”X). Then the Chern-Weil

representative of the first Chern class of (7 X, hTX) isci(TX, hTX) = % Tr[RTX].

Let {gy} be a frame of T'S and {g%} its dual frame.

Clearly, (5) induces canonically a decomposition A(Tg W) = n*(A(TﬁS))@A(TH;fX ). We will denote by A®) the
component in n*(Ai(TH’{S))®A(TI§X), of a differential form A on W. Then dvy = (™) /n!.

Theorem 2.1. There exist smooth sections by ,(x) € € (W, AZ(TH’{S) ® End(Ey)) which are polynomials in RTX,
T, RE (and R"), and their derivatives of order < 2r — 1 (resp. 2r) along the fiber X such that for any k, 1 € N, there
exists Ci; > 0 such that for any p € N, p > po,

k
0 _ —
RTXLIOE) (¢ x) = by o (x)p" <Crip"*, (7)
r=0 ELW)
with
/1 (wn+l)(2)

by = ldp=g* ngPo(gl g} ) g,

Ve 1 Ve 1o, . ® @
7%’1 = ((ECI (TX,hTX) + S RE — gg“ /\gﬂAX(a)(gf,ggl))>w"> /(a)") ,

where Ay is the (positive) Laplace operator of the fiber Xj.

®)

If we take the trace of this asymptotic (7) on E and integrate along X, we get a refinement of (1) on the level of
differential forms, in the spirit of the local family index theorem.

3. Idea of the proof

Proof. By using the full off-diagonal asymptotic expansion of the Bergman kernel [6] with the parameter s € S, it is
not hard to prove the existence of an expansion with leading term p"*2, but further work is needed to get the vanishing
of the first coefficient, and it is difficult to compute the other coefficients this way.

Our main idea here is to use the superconnection formalism to prove Theorem 2.1. This gives us a conceptually clear
way to get our result: an important feature of our superconnection is that its curvature is a second order differential
operator along the fiber X, while the superconnection itself involves derivatives along the horizontal direction. Just
as in the Bismut local family index theorem [2], this property of our superconnection plays an important role in our
proof.

We now explain briefly the superconnection formalism.

Let 3L"®E* be the formal adjoint of the fiberwise Dolbeault operator dL"®E on the Dolbeault complex
20X, LP Q E). Set

D, =2(3L"®F 4 §jL®E ), )

Let VE» be the connection on E pi= A(T*ODX) ® LP @ E induced by the holomorphic Hermitian connections
vIX vL vEonTX, L, E respectively.
For U € Tr S, if o is a smooth section of SZO"(X, L? ® E) over S,ie.0c € €°(W, Ep), set
E
Vo = Vi HO- (10)
Then V% is a Hermitian connection on £2%*(X,L? ® E) over S. Let B p be the superconnection on
A(TES) ® 2%*(X, L? ® E) defined by
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B,=D,+ V<. (11)

We now describe the explicit geometric construction of VH'X-L’®E) given in [4, Theorem 3.4] (cf. [3, Theo-
rem 3.11]). Let VE"®E be the connection on L? ® E induced by VL, VE ForU € TrS,0 € €°°(S, H'(X, L’ ® E)),
then

HY(X,LPQE
(X.LPQE) |

Vuy

=P, V5 o, (12)
where o is considered as a section of L? ® E on W.
From (11), (12) and the spectral gap property of Df, (cf. [5,9]), for p large enough, we have

2
HY(X,LPQE) __ 1 _ p2y—l
R _72nﬁ[ / (A Bp) Adk] ) (13)

[A|=2mp

Now, by using the formal power series trick developed in [10], we get a general and algorithmic way to compute
the coefficients in the expansion. More details will appear in [12]. O

Remark 3.1. In this Note, we have only formulated our results in the case of holomorphic line bundles which are
fiberwise positive. Actually, the results hold also for symplectic line bundles. In [12], we also prove the existence of

an off-diagonal asymptotic expansion which implies, for example, that R’ X-L"®E) s a Toeplitz operator with values
in A%(T%S) in the sense of [11, Chapter 7].

By (7), (8), the curvatures RY *(X.L"'®E) (x, x) provide a natural approximation of the Monge—Ampere operator on
the space of Kéhler metrics. It should have relations with the existence problem of geodesics on the space of Kéhler
metrics (cf. [7,8,14,13]).

From Eq. (8), for large p, we can obtain more precise positivity estimates for H 0(X,L? ® E) than in [1, §6].
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HIGHER SPECTRAL FLOW

XIANZHE DAl AND WEIPING ZHANG

ABSTRACT. For a continuous curve of families of Dirac type operators we
define a higher spectral flow as a K-group element. We show that this
higher spectral flow can be computed analytically by 7-forms, and is related
to the family index in the same way as the spectral flow is related to the
index. We also introduce a notion of Toeplitz family and relate its index
to the higher spectral flow.

We introduce the notion of higher spectral flow, generalizing the usual
spectral flow (cf [APS1]). The higher spectral flow is defined for a continu-
ous one parameter family (i.e. a curve) of families of Dirac type operators
parametrized by a compact space and is an element of the K-group of the
parameter space. The (virtual) dimension of this K-group element is pre-
cisely the (usual) spectral flow. The definition makes use of the concept
of spectral section introduced recently by Melrose-Piazza [MP].

We show that this higher version of spectral flow satisfies the basic prop-
erties of spectral flow. For example, its Chern character can be expressed
analytically in terms of a generalization of the 7 form of Bismut-Cheeger
[BC1]. The higher spectral flow is also related to the family index, in the
same way as the spectral flow is related to the index.

We also introduce a notion of Toeplitz family and relate its index to
the higher spectral flow. This generalizes a result of Booss-Wojciechowski
[BW, Theorem 17.17]. Finally we use higher spectral flow to prove a
generalization of the family index theorem for manifolds with boundary
[BC2], [BC3], [MP].

The details and the proofs will appear in [DZ2].

1. Spectral flow and spectral section

We take the definition of spectral flow as in [APS1]. Thus, if Ds, 0 <
s < 1, is a curve of self-adjoint Fredholm operators, the spectral flow
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sf{Ds} counts the net number of eigenvalues of D which change sign
when s varies from 0 to 1. (Throughout the paper a family always means
a continuous family, and a curve always means a one parameter family.)
The notion of spectral section can be defined for a family of self adjoint
first order elliptic pseudodifferential operators [MP].
Definition. A spectral section for a family of self adjoint first order elliptic
pseudodifferential operators D, (z € B) is a family of self adjoint pseudod-
ifferential projections P, such that for some smooth function R: B — R
and every z € B

Pou=wuif A > R(z2)

Dzu=u = { Pou=0if A\ < —R(2).

As is proved in [MP], when the parameter space is compact, the exis-
tence of a spectral section is equivalent to the vanishing of the (analytic)
index of the family. Thus the existence for a one parameter family is always
assured.

Now let Dy be a curve of self adjoint elliptic pseudodifferential operators.
Let @5 be the spectral projection onto the direct sum of eigenspaces of D
with nonnegative eigenvalues (the APS projection). The following theorem
provides a link between the above two notions.

Theorem 1.1. Let Ps be a spectral section of Ds. Then [Q1 — Py| defines
an element of K°(pt) =2 Z and so does [Qo — Py]. Moreover the difference
Q1 — P1] — [Qo — Po] is independent of the choice of the spectral section
P, and it computes the spectral flow of Dy:

sf{Ds} = [Q1 — P1] — [Qo — Pyl

Proof. The independence of the choice of spectral section follows from a

construction in [MP, Proposition 2]. For (1.1), we use spectral sections to

reduce it to the finite dimensional case, where it can be easily verified.
This leads us to the notion of

2. Higher spectral flow

Let m : X — B be a smooth fibration with the typical fiber Z an
odd dimensional closed manifold and B compact. A family of self adjoint
elliptic pseudodifferential operators on Z, parametrized by B, will be called
a B-family. Consider a curve of B-families, D,, = {Dy .}, u € [0, 1].

Assuming that the index bundle of Dy vanishes, the homotopy invari-
ance of the index then implies that the index bundle of each D, vanishes.
Let Qp, Q1 be spectral sections of Dy, D; respectively. If we consider
the total family D = {Dy .} parametrized by B x I, then there is a total
spectral section P = {Py.n}. Let P, be the restriction of P over B x {u}.
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According to [MP] difference of spectral sections defines K-group element
of the parameter space.

Definition. The (higher) spectral flow sf{(Dg, Qo), (D1,Q1)} between the
pairs (Dg, Qo), (D1,Q1) is an element in K (B) defined by

sf{(Do,Qo), (D1,@Q1)} = [Q1 — 1] = [Qo — Po] € K(B).

The definition is independent of the choice of the (total) spectral section
P, as it follows again from [MP]. When D,, u € S! is a periodic family,
we choose Q1 = (Qg. In this case the spectral flow turns out to be indepen-
dent of Q¢ = ()1 and therefore defines an invariant of the family, denoted
sf{Dy}.

For the most part of this paper we are going to restrict our attention to
B-families of Dirac type operators, defined as follows. For simplicity we
assume that the vertical tangent bundle TZ — X is spin and carries a
fixed spin structure!. Let g7 be a metric on TZ. Let E be a complex
vector bundle over X with an hermitian metric g¥ and compatible connec-
tion VE. Corresponding to these geometric data we have a family of Dirac
operators D,;E, b € B. This is a family of self adjoint elliptic operators on
Z parametrized by B.

Definition. By a B-family of self adjoint Dirac type operators we mean
a family of self adjoint elliptic operators D parametrized by B whose
principal symbol is the same as that of DF.

Basic assumption. We assume that the family DZ;E has vanishing index
bundle.

A typical example satisfying our basic assumption is the family of sig-
nature operators. More generally a B-family whose kernels have constant
dimension will always satisfy the basic assumption. Another class of ex-
amples comes from the boundary family of a family of Dirac operators on
manifolds with boundary.

Now we can speak of the higher spectral flow of a curve of B-families
of Dirac type operators, given the basic assumption.

3. fl-form and higher spectral flow

By [MP], given a spectral section P = {P,} of a B-family D = {D}},
there is a family of zeroth order finite rank pseudodifferential operators
A = {Ap} such that each Dy = D, + A, is invertible and that P, is
precisely the APS projection of Dy,. (We will call A a Melrose-Piazza
operator associated to the spectral section.)

LOur discussion extends without difficulty to the more general case when there are
smoothly varying Zs-graded Hermitian Clifford modules over the fibers, with graded
unitary connections.
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For our purpose we define a 7-form which generalizes both [BC1] and
[MP]. The main point is that we need to use general superconnections,
not just Bismut superconnection [B]. We first introduce some notations.

Let X be the total space of the fibration whose typical fiber is Z and
the base B. Choosing a connection amounts to a splitting

TX =TZaTHX.

We also have the identification TH X = m*TB.

Endow B with a metric g7 % and let g7 be the metric defined by

gTX = gTZ @ 7+ ¢TB.

Let P, Pt be the orthogonal projections of TX onto TZ, TH X respec-
tively and denote by V7X, VT8 the Levi-Civita connections. Following
Bismut [B], let VT4 be the connection on the vertical bundle defined by
VTZ = pvTXP. This is a connection compatible with the metric g7#
and independent of the choice of the metric g7B.

We use S(T'Z) to denote the spinor bundle of T'Z. Then the connection
lifts to a connection on the spinor bundle. Also following Bismut we view
I'(S(TZ) ® E) as the space of sections of an infinite dimensional vector
bundle H,, over B, with fiber

Hoo,b = F(S(sz) ® Eb)
Then V3(T2)®E Jetermines a connection on H by the prescription:
Vxh=Vxuh.

Now, let {Dy} be a B-family of self adjoint Dirac type operators as de-
fined previously, and A a Melrose-Piazza operator associated to a spectral
section P.

Definition. For any B; € QY(T*B) @ T'(End(S(TZ) ® E)) = QY(T*B) ®
c(TZ)®End(FE) odd, and any ¢ > 0, we define the superconnection B; to
be

dim B

B, =V+VHD+pt)A) + Yt

1—1

2 Bi7

where p is a cut-off function in ¢: p(t) = 1 when ¢ > 8 and p(¢) = 0 when
t<2.
Definition. We define, for R(s) > 0,

~ 1 o s dBt _BZ
P A s)=— t2Trev e [— t|dt.
WP As) = 5= [ e e

This defines a differential form on B which depends holomorphically on
s for R(s) > 0. By the standard argument it extends to a meromorphic
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function of s in the whole complex plane with only simple poles. Note that
our definition has an extra factor of %

Theorem 3.1. The residue of (P, A, s) at s =0 is ezxact.

Definition. The f-form is defined as

Ress—o{n(P, A, s)
s

} }s:O-

Remark. The n-form for a general superconnection is defined in [BC1] in
the finite dimensional case.
A variational argument shows

Proposition 3.2. The value of (D, P) in Q*(B)/dQY*(B) is independent
of the choice of the cut-off function p and the Melrose-Piazza operator A.

ﬁ(D7P) = {ﬁ(PaA’S) -

The dependence of 7-form on the spectral section is also well under-
stood. The following is a slight generalization of a result of [MP].

Theorem 3.3. If Py and Py are spectral sections of the family D, then
their difference defines an element [Py — Py| in K(B). Moreover

ch(Py — By) =0(D, 1) = )(D, Py) in H*(B).

The following theorem generalizes the well known relationship between
the spectral flow and the eta invariant.

Theorem 3.4. Let D, be a curve of B-families of Dirac type operators
and Qo, Q1 spectral sections of Do, D1 respectively. Let By(u) = V +

VEHDy + p()A) + 35, e Bi(u) be a curve of superconnections. Then
we have the following identity in H*(B):

ch(sf{(Do,Qo), (D1,Q1)}) = ﬁ(Dlan)_ﬁ(DOaQO)_/ MCZU?

0 du

where the last term is a local invariant computable from the asymptotic
expansion

19
\/m Os

i.e., we have

OBy (
ou

Nlmo = 3 st

i>—k

{ " [exp(—B7 (u) — s

dij)(Du, Pu)
du
This theorem provides a way to compute, analytically, the Chern char-

acter of higher spectral flow. We will use Formula (3.4) to compute the
higher spectral flow of both a periodic family and a Toeplitz family.

= ap(u).
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4. Higher spectral flow and family index

We consider a periodic family Dj ,,b € B, u € S! of B-families of Dirac
type operators, where B is a closed manifold. The total family Db,u is a
family of Dirac operators on an even dimensional space (the total space
of a fibration over S! with the typical fiber Z). Thus it defines an index
bundle ind(D) € K(B). The following theorem generalizes the well known
relationship between the spectral flow and the index.

Theorem 4.1. We have

ch(ind(D)) = ch(sf{D,}) in H*(B).

Proof. We apply Theorem 3.4 to compute the higher spectral flow and
show that the result agrees with the Atiyah-Singer formula [AS] for the
family index.
Remark. 1t is very likely that the higher spectral flow and the family index
actually equal as K-group elements, but at the moment we do not see how
to prove this.

As a consequence, we deduce the following relation between the spectral
flow and higher spectral flow.

Corollary 4.2. Let DZ be a periodic family of B-families of Dirac oper-
ators and let DX be the one parameter family of the total Dirac operators.
Then we have

sH{DX} = / A(B)eh(sf{D?}).
B

5. Higher spectral flow and Toeplitz family

Now letC¥ be a trivial vector bundle over X with its canonical (trivial)
metric and connection. Let

g: X — GL(N,C).

Then g acts on the trivial bundle. Moreover it extends in the obvious way
to an operator

g LA(S(TZ) ® Ey) @ CN — L2(S(TZ,) ® Ey) @ CV.

Let P be a spectral section of the B-family D. Then P also extends to
an operator

Py: L*(S(TZy) ® B) ® CN — L2(S(TZ) ® E) @ CN

by acting as identity on the factor CV. Let Lp; be the image space of
L2(S(TZy) ® Ep) ® CN under P.
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Definition. For any b € B, define T'(g), to be the bounded linear operator
T(9)o = Pogy: Lpp — Lpp.

This is a generalization of the notion of Toeplitz operator. T(g) is
a continuous family of Fredholm operators parametrized by B, and by
Atiyah-Singer [AS], it defines an element

inda(T(g)) € K(B),

its index bundle. The index bundle of the Toeplitz family does not depend
on the geometric data and the spectral section.

Without loss of generality, we now assume that g is unitary. Extend D
to L2(S(T'Zy) @ Ep) ® CV in the obvious way. Then P is still a spectral
section for D. Moreover, gPg~! is a spectral section for gDg~!. Connect-
ing D and gDg~! by the linear path, we have the following generalization
of [BW, Theorem 17.17].

Theorem 5.1. We have an equality

ch(ind,(T'(9))) = ch(sf{(D, P),(gDg "', gPg~")}).

Remark. In this theorem one can verify directly that the right hand side
does not depend on P.

Proof. Once again we apply Theorem 3.4 to compute the higher spectral
flow. On the other hand one can still use the argument of [BD] to compute
the family index of the Toeplitz family. The computations show that they
are equal. We point out that we shall use a special modification of the
Bismut superconnection to make sure that the local index type calculation
can be carried out.

As an interesting example we can take D a B-family of signature op-
erators. In this case the higher spectral flow in Theorem 5.1 is usually
nontrivial, although the higher spectral flow of a one parameter family of
B-families of signature operators is always zero.

Theorem 5.1 is in fact true in K-theory, see [DZ2] for detail?.

6. An extension of family index theorem

An important property of the spectral flow is that it measures the
change of the index for manifolds with boundary under continuous de-
formation [DZ1]. We show that higher spectral flow measures the change
of the family index for manifolds with boundary under continuous defor-
mation.

2We thank Krysztof Wojciechowski for helpful discussions.
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Let m : M — B be a smooth fibration with the typical fiber Y an

even dimensional manifold with boundary Z. For simplicity® we assume
that the vertical tangent bundle TY — M is spin and carries a fixed
spin structure. Let ¢7¥ be a metric on TY which is of product type
near the boundary. Let F be a complex vector bundle over M with an
hermitian metric ¢g¥ and compatible connection V. Corresponding to
these geometric data we have a family of Dirac operators Df , be B.
This is a family of elliptic operators on the manifold with boundary Y,
parametrized by B.
Definition. By a B-family of Dirac type operators on the manifold with
boundary Y we mean a family of elliptic operators D, parametrized by B
which is of product type near the boundary and whose principal symbol is
the same as that of DE. Moreover, we assume that the boundary family
is also a B-family of Dirac type operators.

It follows that spectral sections always exist for the boundary family.
Choosing a spectral section, we can then define the family index for this

B-family of Dirac type operators on the manifold with boundary as in
[MP].

Theorem 6.1. Let [)b,u be a one parameter family of B-families of Dirac
type operators on the manifold with boundary Y. Let Dgu denote the

boundary family. Let Qp0, @p1 be spectral sections for Dl?,m Dil respec-
tively. Then

ind(Dlan) - ind(Dono) = *Sf{(]jngo), (D?an)} in K(B).

This is a generalization of [DZ1, Theorem 1.1]. Using this result we
can prove the following generalization of the family index theorem for
manifolds with boundary [BC2], [BC3], [MP].

Theorem 6.2. Let D be a B-family of Dirac type operators on the man-
ifold with boundary Y and D? its boundary family. Let Q be a spectral
section of D?. Then

Ch(lnd(ﬁ7 Q)) = / ag — ’f](Dav Q)a
Y
where ag s the constant term in the asymptotic expansion of
Tr[exp(—B?)] = Z a;t’,

izfdir‘;Yﬁ[dimB]

30nce again our discussion extends to the more general case.
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with an arbitrary total superconnection B, now extended to the double of
the fibration, while H(D?, Q) is the f)-form defined using the boundary su-
perconnection induced from By.

Proof. We use the family index theorem of [MP] for the Dirac family and
flow to the more general Dirac type family.

Remark. This is the analogue in the family case for the general index
formula of Atiyah-Patodi-Singer for manifold with boundary [APS2].
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Heat Kernels and the Index Theorems on
Even and Odd Dimensional Manifolds*
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Abstract

In this talk, we review the heat kernel approach to the Atiyah-Singer index
theorem for Dirac operators on closed manifolds, as well as the Atiyah-Patodi-
Singer index theorem for Dirac operators on manifolds with boundary. We also
discuss the odd dimensional counterparts of the above results. In particular,
we describe a joint result with Xianzhe Dai on an index theorem for Toeplitz
operators on odd dimensional manifolds with boundary.

2000 Mathematics Subject Classification: 58G.
Keywords and Phrases: Index theorems, heat kernels, eta-invariants, Toeplitz
operators.

1. Introduction

As is well-known, the index theorem proved by Atiyah and Singer [AS1] in
1963, which expresses the analytically defined index of elliptic differential operators
through purely topological terms, has had a wide range of implications in mathe-
matics as well as in mathematical physics. Moreover, there have been up to now
many different proofs of this celebrated result.

The existing proofs of the Atiyah-Singer index theorem can roughly be divided
into three categories:

(i) The cobordism proof: this is the proof originally given in [AS1]. It uses
the cobordism theory developed by Thom and modifies Hirzebruch’s proof of his
Signature theorem as well as his Riemann-Roch theorem:;

(ii) The K-theoretic proof: this is the proof given by Atiyah and Singer in
[AS2]. It modifies Grothendieck’s proof of the Hirzebruch-Riemann-Roch theorem
and relies on the topological K-theory developed by Atiyah and Hirzebruch. The
Bott periodicity theorem plays an important role in this proof;

*Partially supported by the MOEC and the 973 Project.
TNankai Institute of Mathematics, Nankai University, Tianjin 300071, China. E-mail:
weiping@nankai.edu.cn
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(iii) The heat kernel proof: this proof originates from a simple and beautiful
formula due to Mckean and Singer [MS], and has closer relations with differential
geometry as well as mathematical physics. It also lead directly to the important
Atiyah-Patodi-Singer index theorem for Dirac operators on manifolds with bound-
ary.

In this article, we will survey some of the developments concerning the heat
kernel proofs of various index theorems, including a recent result with Dai [DZ2]
on an index theorem for Toeplitz operators on odd dimensional manifolds with
boundary.

2. Heat kernels and the index theorems on even
dimensional manifolds

We start with a smooth closed oriented 2n-dimensional manifold M and two
smooth complex vector bundles E, F' over M, on which there is an elliptic differential
operator between the spaces of smooth sections, D : T'(E) — T'(F).

If we equip T'M with a Riemannian metric and E, F' with Hermitian metrics
repectively, then I'(E) and T'(F') will carry canonically induced inner products.

Let D_ : T'(F) — T'(E) be the formal adjoint of D, with respect to these
inner products. Then the index of D, is given by

ind D4 = dim (ker D) — dim (ker D_) . (2.1)

It is a topological invariant not depending on the metrics on TM, E and F'.

The famous Mckean-Singer formula [MS] says that ind D4 can also be com-
puted by using the heat operators associated to the Laplacians D_D, and Dy D_.
That is, for any ¢ > 0, one has

ind Dy = Tr[exp (—tD_Dy)] — Trexp (—tD4+D_)]. (2.2)
Dy 0

we can rewrite the difference of the two traces in the right hand side of (2.2) as a
single “supertrace” as follows,

By introducing the Z,-graded vector bundle £ & F' and setting D = ( o D- ),

ind Dy = Tr, [exp (—tD?)], for any t > 0. (2.2)

Let P;(x,y) be the smooth kernel of exp(—tD?) with respect to the volume
form on M. For any f € T'(E @ F), one has

exp (—tD?) f(x) = /M Py, 9)/ (v)dy. (2.3)

In particular,

Tr, [exp (—tD?)] = y Tr, [P (z, )] d. (2.4)
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Now, for simplicity, we assume that the elliptic operator D is of order one.
Then by a standard result, which goes back to Minakshisundaram and Pleijiel [MP],
one has that when ¢ > 0 tends to 0,

1

Filw,z) = (4mt)™

(a,n + a,n+1t +--- a(]tn + 0x (tn)) s (25)

where a; € End((E & F)g), i = —n,...,0.
By (2.2)’, (2.4) and (2.5), and by taking ¢ > 0 small enough, one deduces that

/ Trsa;]de =0, —n<i<0,
M

ind D, — (i) /M Try[ao]dar. (2.6)

Mckean and Singer conjectured in [MS] that for certain geometric operators,
there should be some “fantastic cancellation” so that the following far reaching
refinement of (2.6) holds,

Trsla;] =0, —n<i<0,

and moreover, Trg[ag] can be calculated simply in the Chern-Weil geometric theory
of characteristic classes.

In fact, as a typical example, let M be an even dimensional compact smooth
oriented spin manifold carrying a Riemannian metric ¢”™. Let RTM be the cur-
vature of the Levi-Civita connection associated to g?™. Let S(TM) = S (TM)
®S_(TM) be the Hermitian vector bundle of (T'M,g"™)-spinors, and
Dy :T(S+(TM)) — T'(S_(TM)) the associated Dirac operator.

One then has the formula (cf. [BGV, Chap. 4, 5]),

max

2m sinh (VLR )
2.7)

%ir% Trs [Pz, z)] dax = {A\ (

which implies the Atiyah-Singer index theorem [AS1] for D :

ind Dy = A(M) := /M A (R;TM) . (2.8)

A result of type (2.7) is called a local index theorem. The first proof of such a
local result was given by V. K. Patodi [P] for the de Rham-Hodge operator d + d*.
Other direct heat kernel proofs of (2.7) have been given by Berline-Vergne, Bismut,
Getzler and Yu respectively. We refer to [BGV] and [Yu] for more details.

The heat kernel proof of the local index theorem leads to a generalization of
the index theorem for Dirac operators to the case of manifolds with boundary. This
was achieved by Atiyah, Patodi and Singer in [APS], and will be reviewed in the
next section.
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3. The index theorem for Dirac operators on even
dimensional manifolds with boundary

Let M be a smooth compact oriented even dimensional spin manifold with
(nonempty) smooth boundary OM. Then OM is again oriented and spin.

Let ¢"™™ be a metric on TM. Let g7%M be its restriction on TOM. We
assume for simplicity that ¢”™ is of product structure near the boundary OM.
Let S(TX) = S4+(TX) ® S_(TX) be the Zy-graded Hermitian vector bundle of
(T X, g"X)-spinors.

Since now M has a nonempty boundary dM, the associated Dirac operator
Dy : T(S4(TM)) — T'(S_(TM)) is not elliptic. To get an elliptic problem, one
needs to introduce an elliptic boundary condition for D, and this was achieved by
Atiyah, Patodi and Singer in [APS]. It is remarkable that this boundary condition,
to be described right now, is global in nature.

First of all, the Dirac operator D induces canonically a formally self-adjoint
first order elliptic differential operator

Dont : T (S4(TM)|on) — T (S4(TM)|on)

which is called the induced Dirac operator on the boundary oM.
Clearly, the L2-completion of S, (T'M)|sas admits an orthogonal decomposi-
tion
L*(S4(TM)lax) = & B, (3.1)
AeSpec(Danr)
where E) is the eigenspace of .

Let L2 ,(S+(TM)|onm) denote the direct sum of the eigenspaces Ey associ-
ated to the eigenvalues A > 0. Let P>o denote the orthogonal projection from
L2(S4(TM)|on) to LEo(S+(TM)|onr). We call Psq the Atiyah-Patodi-Singer pro-
jection associated to Dgpr, to emphasize its role in [APS].

Then by [APS], the boundary problem

(D4, P>o) : {u:u € T(S4(TM)), P>o (uloar) =0} — T(S_(T'M)), (32)

is Fredholm. We call this elliptic boundary problem the Atiyah-Patodi-Singer
boundary problem associated to Dy. We denote by ind (D4, P>¢) the index of
the Fredholm operator (3.2).

The Atiyah-Patodi-Singer index theorem The following identity holds,

ind (Dy, Poo) = /ME (R;TM) 5 (Do) . (3.3)

The boundary correction term 7(Dgps) appearing in the right hand side of
(3.3) is a spectral invariant associated to the induced Dirac operator Dgp; on OM.
It is defined as follows: for any complex number s € C with Re(s) > dim M, define

WDors) = 3 =Y

S
AeSpec(Danr) |)\|

(3.4)
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By using the heat kernel method, one can show easily that n(Daas, s) can be ex-
tended to a meromorphic function on C, which is holomorphic at s = 0. Following
[APS], we then define

dim (ker Dopr) + 1 (Do, 0)

7 (Dom) = 5

(3.5)

and call it the (reduced) eta invariant of Dgyy.

The eta invariants of Dirac operators have played important roles in many
aspects of topology, geometry and mathematical physics.

In the next sections, we will discuss the role of eta invariants in the heat kernel
approaches to the index theorems on odd dimensional manifolds.

4. Heat kernels and the index theorem on odd di-
mensional manifolds

Let M be now an odd dimensional smooth closed oriented spin manifold. Let
g™ be a Riemannian metric on TM and S(TM) the associated Hermitian vector
bundle of (TM, gTM)—spimolrs.1 In this case, the associated Dirac operator D :
[(TM) — T(TM) is (formally) self-adjoint.> Thus, one can proceed as in Section
3 to construct the Atiyah-Patodi-Singer projection

Pso : L*(S(TM)) — LZEO(S(TM)).

Now consider the trivial vector bundle CV over M. We equip CV with the
canonical trivial metric and connection. Then P> extends naturally to an orthog-
onal projection from L?(S(TM)® CN) to L2,(S(T'M)®@ CV) by acting as identity
on CV. We still denote this extension by P.

On the other hand, let

g: M — U(N)

be a smooth map from M to the unitary group U(NN). Then g can be interpreted
as automorphism of the trivial complex vector bundle CV. Moreover ¢ extends
naturally to an action on L?(S(TM) ® C¥) by acting as identity on L2(S(TM)).
We still denote this extended action by g.

With the above data given, one can define a Toeplitz operator T, as follows,

Ty = PsogPso : L3, (S(TM)® CV) — L2, (S(TM)® CV) . (4.1)

The first important fact is that 7Ty is a Fredholm operator. Moreover, it is
equivalent to an elliptic pseudodifferential operator of order zero. Thus one can
compute its index by using the Atiyah-Singer index theorem [AS2], as was indicated
in the paper of Baum and Douglas [BD], and the result is

nd T, = — <2(TM)ch(g), [M]> : (4.2)

1Since now M is of odd dimension, the bundle of spinors does not admit a Z>-graded structure.
2In fact, if M bounds an even dimensional spin manifold, then D can be thought of as the
induced Dirac operator on boundary appearing in the previous section.
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where ch(g) is the odd Chern character associated to g.

There is also an analytic proof of (4.2) by using heat kernels. For this one
first applies a result of Booss and Wojciechowski (cf. [BW]) to show that the
computation of ind T is equivalent to the computation of the spectral flow of the
linear family of self-adjoint elliptic operators, acting of I'(S(T'M) ® C¥), which
connects D and gDg~!. The resulting spectral flow can then be computed by
variations of n-invariants, where the heat kernels are naturally involved.

The above ideas have been extended in [DZ1] to give a heat kernel proof of a
family extension of (4.2).

5. An index theorem for Toeplitz operators on odd
dimensional manifolds with boundary

In this section, we describe an extension of (4.2) to the case of manifolds with
boundary, which was proved recently in my paper with Xianzhe Dai [DZ2]. This
result can be thought of as an odd dimensional analogue of the Atiyah-Patodi-Singer
index theorem described in Section 3.

This section is divided into three subsections. In Subsection 4.1, we extend the
definition of Toeplitz operators to the case of manifolds with boundary. In Subsec-
tion 4.2, we define an n-invariant for cylinders which will appear in the statement
of the main result to be described in Subsection 4.3.

5.1. Toeplitz operators on manifolds with boundary

Let M be an odd dimensional oriented spin manifold with (nonempty) bound-
ary OM. Then OM is also oriented and spin. Let g”™ be a Riemannian metric on
T M such that it is of product structure near the boundary M. Let S(T'M) be the
Hermitian bundle of spinors associated to (M, g"™). Since OM # (), the Dirac op-
erator D : T'(S(T'M)) — I'(S(T'M)) is no longer elliptic. To get an elliptic operator,
one needs to impose suitable boundary conditions, and it turns out that again we
will adopt the boundary conditions introduced by Atiyah, Patodi and Singer [APS].

Let Danr : T(S(TM)|om) — T(S(T'M)|on) be the canonically induced Dirac
operator on the boundary OM. Then Dy, is elliptic and (formally) self-adjoint.
For simplicity, we assume here that Dgys is invertible, that is, ker Dgps = 0.

Let Pypr>0 denote the Atiyah-Patodi-Singer projection from L2(S(T'M)|anr)
to LQEO(S(TM)|3M). Then (D, Pyar,>0) forms a self-adjoint elliptic boundary prob-
lem. We will also denote the corresponding elliptic self-adjoint operator by Dp,,, ..

Let L%DaM,>o,>O(S<TM)) be the space of the direct sum of eigenspaces of non-
negative eigenvalues of Dp,,, .,. Let Pp,,, ., >0 denote the orthogonal projection
from L?(S(T'M)) to LQPaM,Zo,zo(S(TM))'

Now let CN be the trivial complex vector bundle over M of rank N, which
carries the trivial Hermitian metric and the trivial Hermitian connection. We extend
Ppyy 50,20 to act as identity on C¥.

Let g : M — U(N) be a smooth unitary automorphism of C¥. Then g extends
to an action on S(T'M)® C¥ by acting as identity on S(T'M).
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Since g is unitary, one verifies easily that the operator gPyar,>0g~ ! is an orthog-
onal projection on L2((S(TM)®C™)|onr), and that gPans >09 ™t — P, >0 is a pseu-
dodifferential operator of order less than zero. Moreover, the pair (D, Py >09™ ")
forms a self-adjoint elliptic boundary problem. We denote its associated elliptic
self-adjoint operator by D

Let L?

9Pon,>09 1"

gPaM,>og*120(S(TM)®CN) be the space of the direct sum of eigenspaces
of nonnegative eigenvalues of Dypyysog-1- Let Pypyy, < og-1,>0 denote the orthogo-
nal projection from L?(S(TM)® C¥) to LiPaM,>og*1,20(S(TM) ® CN).

Clearly, if s € L2(S(TM) @ CV) verifies Pans >0(s|anr) = 0, then gs verifies

9Por,>09" ((95)loar) = 0.

Definition 5.1 The Toeplitz operator Ty is defined by
Ty, = ngaM,zog’l,ZogPPaM,ZO»ZO :

L?DaM,ZU,zo (S(TM)® CN) — L2

N
9Psn,>097 1,20 (S(TM) ®C ) :
One verifies that Ty is a Fredholm operator. The main result of this section
evaluates the index of T, by more geometric quantities.

5.2. An n-invariant associated to g

We consider the cylinder [0,1] x OM. Clearly, the restriction of g on OM
extends canonically to this cylinder.

Let Dljo,1jxam be the restriction of D on [0, 1] x M. We equip the boundary
condition Pypr >0 at {0} x OM and the boundary condition Id — gPypr>09~ ' at
{1} x OM. Then (Dlo,1)xons Porr,>0,1d — gPonrr,>09~ ") forms a self-adjoint elliptic
boundary problem. We denote the corresponding elliptic self-adjoint operator by

Py, >0,9Pon,>097 1

Let (Dpyy »0.9Pons »09-1» 8) De the n-function of s € C which, when Re(s) >>

0, is defined by
sgn(\)
n (DPaM,Zo,gPaM,zogfl’S> = Z |>\|s ’
A#£0

where A runs through the nonzero eigenvalues of Dp,,, _ gPors 509-1-
It is proved in [DZ2] that under our situation, n(DpaM.’ZO’gpaM’zogfl,
extended to a meromorphic function on C which is holomorphic at s = 0.
Let 7(Dp,,, 20,gPons»0g-1) be the reduced n-invariant defined by

s) can be

n (DPz)M,zo,gPaM,Zog’l>

dim ker (DpaM,zo,gpaM,zog’l) +1n (DPaM,zoﬂPaM,zog’l)
5 .
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5.3. An index theorem for T

Let VTM be the Levi-Civita connection associated to the Riemannian metric
g™ . Let R™ = (VTM)2 be the curvature of VI™. Also, we use d to denote
the trivial connection on the trivial vector bundle CN over M. Then ¢ 'dg is a
['(End(CY)) valued 1-form over M.

Let ch(g,d) denote the odd Chern character form (cf. [Z]) of (g, d) defined by

(dim M—1)/2 ol 1 n+1 ) o1
ch(g, d) = ; (2n+1)!<27r\/_1) Tr{(g dg) }

Let Pys denote the Calderén projection associated to D on M (cf. [BW]). Then
Py is an orthogonal projection on L2((S(TM) ® CN)|anr), and that Pas — Panr>o0
is a pseudodifferential operator of order less than zero.

Let 7,(Pons, >0, 9Por,>09 ", Pur) € Z be the Maslov triple index in the sense
of Kirk and Lesch [KL, Definition 6.8].

We can now state the main result of [DZ2], which generalizes an old result of
Douglas and Wojciechowski [DoW], as follows.

Theorem 5.2 The following identity holds,

N RTM
indT, = - /M A < - > ch(g, d) + 71 (Do gPonr 00 )
—7u (Port, >0, 9Pors, 09~ Pr) -

The following immediate consequence is of independent interests.

Corollary 5.3 The number

R RTM
A{ A < o ) Ch(g,d) -n (DPE)M,zoagPaM,zog’l)

15 an integer.

The strategy of the proof of Theorem 5.2 given in [DZ2] is the same as that
of the heat kernel proof of (4.2). However, due to the appearance of the boundary
OM, one encounters new difficulties. To overcome these difficulties, one makes use
of the recent result on the splittings of 1 invariants (cf. [KL]) as well as some ideas
involved in the Connes-Moscovici local index theorem in noncommutative geometry
[CM] (see also [CH]). Moreover, the local index calculations appearing near OM is
highly nontrivial. We refer to [DZ2] for more details.
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