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0. Introduction

In [1], gravitational anomaly cancellation formulas are derived from direct computations. In particular, in dimension 12,
the Alvarez-Gaumé and Witten “miraculous cancellation” formula can be written as

{L(TX, V)12 — (8A(TX, V™) ch(TeX, VI¥)} 12 — 32(A(TX, V*)}(12) (0.1)

where X is a twelve-dimensional Riemannian manifold, V' is the associated Levi-Civita connection, TcX is the complexi-
fication of TX (with the induced Hermitian connection V'¢*) and L(TX, V™), A(TX, V™) are the Hirzebruch characteristic
forms (see (1.1)).

In [2], Liu generalizes (0.1) to general 8m + 4 dimensions by developing modular invariance properties of characteristic
forms. Actually, in [2], Liu obtains a more general cancellation formula by including an auxiliary bundle W. More precisely,
assume X to be 8m + 4 dimensional and W be a rank 2! Euclidean vector bundle over X with a Euclidean connection V¥
and curvature RY = VW2, if p;(TX, VI*) = p;(W, VW), then the following identity holds:

(8m+4)
~ =1 u m
{A(TX, V™) det/2 (Zcosh (4RW)>} = Y2t (X, V) ch(b, (TeX, We, ©)) ", (02)

T —o

where the b, (TcX, Wc, C?) are virtual complex vector bundles with connections over X canonically determined by (TX, V¥)
and (W, V%), In dimension 12, by direct computation, (0.2) becomes
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(12)
{Z(Tx, V™) det!/? (2 cosh (;RW» }

= 213 [A(TX, V™) ch(We, Vo))" — 2121 — 4) {A(x, v™)} ™. (0.3)
When (TX, V*) = (W, VW), (0.2) gives
1~ m N
5 (X VI = §7 00m6r (A e1x, V) ch(b, (TeX, TeX, €)} . (0.4)

r=0
We obtain, as an application [3], by the Atiyah-Hirzebruch divisibility [4], that (0.4) implies the Ochanine divisibility [5],
which asserts that the signature of an 8k 4 4-dimensional smooth closed spin manifold is divisible by 16.

To study higher dimensional Rokhlin congruence, Han and Zhang [6,7] extend the “miraculous cancellation” formulas
of Alvarez-Gaumé, Witten and Liu to a twisted version where an extra complex line bundle (or equivalently a rank 2 real
oriented vector bundle) is involved. More precisely, if £ is a rank 2 real oriented Euclidean vector bundle equipped with a
Euclidean connection V¢ and ¢ = e(£, V?) is the associated Euler form, when p;(TX, V) = p;(W, VYY), the following
identity holds:

= (8m-+4)
A(TX, V™X) det!/? (2 cosh (%RW»
cosh? (£)
m ~ c\ ) (8m+4)
=) gremier [A(Tx, V™) ch(b, (TeX, We, &) cosh (5)] , (0.5)
r=0

where the b, (TcX, Wc, &) are virtual complex vector bundles with connections over X canonically determined by
(TX, V™), (W, V) and (&, V¥). Obviously, when & is trivial and ¢ = 0, (0.5) reduces to (0.2).
When dimX = 12 and (TX, V¥) = (W, V%), (0.5) gives

~ (12)
L(TX, V™)
cosh? (£)
™y X TeX ™ e n TX\ (€ | o—C c\ 2
- {[SA(TX, V™)ch(TeX, V1) — 32A(TX, V™) — 24A(TX, V™) (e + e~ — 2)] cosh (5)} , (0.6)
which extends the Alvarez-Gaumé and Witten “miraculous cancellation” formula (0.1) in dimension 12.
Note that (0.2) and (0.5) only hold under the condition p; (TX, V*) = p;(W, V"W). In this paper, we study what happens
if we remove this condition. We find that the difference between the left hand sides and the right hand sides in (0.2) and
(0.5) can actually be written in the form

(p1(TX7 VTX) — D1 (W7 VW)) - R,

where R is some characteristic form canonically determined by (TX, V™), (W, VW) and (&, V¢). For example, we find that
in dimension 12, the following identity holds (for simplicity, we drop the connections):

\/_—1 (12)
{Z(D() det!/2 (2 cosh <4RW)> } — 23 A ch(Wo) ' + 21721 — 4) {Ax) |

T
e 1) —p1W)) _ 1

p1(TX) — p1(W)

®)
x [X(TX) (2'73ch(We) — 272(1 — 4)) — A(TX) det /2 <2 cosh (gw))} } . (0.7)

We will give similar general results for 8m + 4 and 8m dimensions in Theorem 1.1 and discuss various special cases in
Corollaries 1.2-1.5. We obtain our generalized anomaly cancellation formulas still by developing modular invariance of
characteristic forms.

In obtaining our cancellation formulas, we were also inspired by the Green-Schwarz mechanism. In [8], Green and
Schwarz discovered that the anomaly in type I string theory with the gauge group SO(32) cancels because of an extra
“classical” contribution from a 2-form field. One key step is that when the gauge group is 496 dimensional, the anomaly
I1 can be written as (cf. [9])

I = (p1(Z) — p1(F))Is. (0.8)
Our cancellation formulas in Theorem 1.1 and its corollaries are of the same pattern. We hope that they will find applications
in physics.

= (p1(TX) — p1(W)) :
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1. Results

The purpose of this section is to state our main results. We first recall the definitions of some characteristic forms to be
used in Section 1.1 and then present our generalized anomaly cancellation formulas in Section 1.2.

1.1. Some characteristic forms

Let X be a 4k-dimensional Riemannian manifold. Let V™ be the associated Levi-Civita connection and R”* = V™*- 2 be
the curvature of VX, Let A(TX, V™) and L(TX, V™) be the Hirzebruch characteristic forms defined respectively by (cf. [10])

. ERD(
ATX, V) =det'? | — 22— _
sinh (?R”{)
" (1.1)
—1pTX
TTX, V™) = det'? | — 22—
tanh (gRTX)

Let F, G be two Hermitian vector bundles over X carrying Hermitian connections V¥, V¢ respectively. Let Rf = V2
(resp. R® = V& 2) be the curvature of V¥ (resp. V). If we set the formal difference H = F — G, then H carries an induced
Hermitian connection V¥ in an obvious sense. We define the associated Chern character form as (cf. [10])

ch(H, V") = tr |:exp (fRF)] —tr |:exp <5R6>i| . (1.2)

For any complex number ¢, let
Ac(F) =Cly +tF+t?A>(F) +---,  S;(F)=Clx +tF + t’S*(F) + - - -

denote respectively the total exterior and symmetric powers of F, which live in K (X)[[t]. The following relations between
these two operations [11, Chap. 3] hold:

A¢(F)
A(G)

Se(F) = A(F=G) = (1.3)

o
Ae(F)’

The connections V¥, V¢ naturally induce connections on A.F, S;F etc. Moreover, if {w;}, {w;'} are formal Chern roots for
Hermitian vector bundles F, G respectively, then [12, Chap. 1]

ch (4¢(F), vA®) = TT(1 + e”r). (1.4)

We have the following formulas for Chern character forms:

1 1
ch (A (F), VA+®) ~ [(1—e=t)’

(5P, V) = s
ch (At(F)7 VAz(F)) U(l + e®it)

_ A (F=G)y —
ch (At(F G)? \Y% ) - ch (A[(G), vA[(G)) - l_[(-l + ewj/t) .
J

(1.6)

1.2. Statement of the results

We make the same assumptions and use the same notation as in Section 1.1.

Let W be a rank 2I real Euclidean vector bundle over X carrying a Euclidean connection VW. Let RY = V"2 be the
curvature of VW. If W is the spin, let A(W) = ST (W) @ S~ (W) be the spinor bundle of W with the induced connection
VAW) 1t is not hard to see that

ch(A(W), VAW)) = det'/? (2 cosh (;RW» )

Let p1(TX, VX) and p (W, VW) be the first Pontryagin forms of (TX, V'*) and (W, VW) respectively.
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Let £ be a rank 2 real oriented Euclidean vector bundle over X carrying a Euclidean connection V¥. Let ¢ = e(&, V¥) be
the Euler form canonically associated with V¢,

For simplicity, from now on, when there is no ambiguity, we will write characteristic forms without specifying the
connections.

In the following, we will define some virtual bundles with connections and some differential forms on X associated with
(TX, V™), (W, VW) and (&, V?). N

If E is a vector bundle (real or complex) over X, set E = E — dim E in KO(X) or K (X).

If E is a real Euclidean vector bundle over X carrying a Euclidean connection V£, then its complexification Ec = E ® C
is a complex vector bundle over X carrying a canonically induced Hermitian metric derived from that of E, as well as a
Hermitian connection V¢ induced from V£,

If w is a differential form, denote the degree j component of w by w?.

Letqg = e2™V=17 with t € H, the upper half of the complex plane. Let TcX be the complexification of TX.

Set the Witten bundle (cf. [6,7,13])

O2TeX, We, é) = Q) Sp (X @ R4, We =260 @ @) 4,1 o) ® Q) 40 o), (1.7)
u=1 v=1

r=1 s=1

which is an element in K (X)[[q% 1.
Clearly, @, (TcX, W, &) admits a formal Fourier expansion in q'/? as

O(TeX, W, &) = Bo(TeX, W, &c) + B1(TeX, We, a2 + -+ -, (18)
where the B; are elements in the semi-group formally generated by complex vector bundles over X. Moreover, they carry
canonically induced connections denoted by V5 and we let V®2 be the induced connections with q'/?-coefficients on &,
from the V5.

Consider the following g-series:

1 e 1
) =—-46 dq" = - +6q+6¢*+---, 1.9
(D) 4+;;q 4 T 69+64"+ (1.9)
" dodd
() 1+i2( D" = — —q+702+ (1.10)
E1(T) = — — —_—— = cee .
1 16 n=1 d|n 16 K K
1 = n/2 1 1/2
M =-5-3) ) "= -3¢ -3¢, (1.11)
n:]ddggd
o0
52({):2 Z d3qn/2:q]/2+8q+...’ (1‘12)
n=1 dn
n/d odd

and the Eisenstein series

E (1) =1 —24Z<Zd> q" = 1—24q — 72¢* — 96¢° —

n=1 dn

Remark 1.1. §; and &, will only be used later in the proof of our results. We list them here for completeness.

Now we define the virtual bundles with connections and the differential forms on X associated with (TX, V™¥), (W, V%)
and (&, V¥%). This will be done in two cases separately.
Case 1: dimX = 8m + 4.

Define virtual complex vector bundles b, (TcX, Wc, &c) on X, 0 < r < m, via the equality

m+1
2

m
O (TeX, We, ) = ) b;(882)"™ el mod ¢ - K(O)[Ig? ], (1.13)
r=0

Explicitly, define b, (TcX, Wc, &c) by comparing the g-coefficients of the following identity:
Bo(TcX, We, &) + B1(TcX, We, £0)g™? + - -+
=bo(—1—24¢"% —24q — -- ™" + by (—1—24¢"* — 24 — - "' (q"* + 8q + - - )
+by(—1—24¢"7 —24q — - )" (@'? + 8+ )’
+ o+ b(—1—-24¢"%? —24q — - - )12 (G2 L g4+ ) + - -
1/2 1/2 m m+1 1
+bn(—1—-24q/° —24q—---)(q'“+8q+---)"modq 2 -KX)[q2].
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Note that on the right hand side of the above equality, the coefficient of g/, 1 < r < m, must be of the form

(_1)2m+]72rbr + ar,r—lbr—l + ar,r—Zbr—Z +- ar,ObO»
where the a,j, 1 <j <r — 1, are all integers. One has

By = —by,
B = —b1 — 24(2m + 1)b0,

B, = _br + ar.r—1br—1 + ar,r—Zbrfz +---+ ar,ObOs

Bn = _bm + am,mflbmfl + am,m72bm72 +- am,ObO-

One can see by induction that each b,, 0 < r < m, is a canonical integral linear combination of B;(TcX, W¢, &c),0 <j <.

These b, carry canonically induced metrics and connections.
By expanding the right hand side of (1.7), we have

By =C, By = —Wc + 3& + C*°.
Therefore, one has

bo = —By = —C, by = —By — 24(m + 1)bg = W¢ — 3&c + C*m—2H+30,

Define degree 8m differential forms B,(V™*, V¥, V&) on X, 0 < r < m, via the equality

2O (P1 TP W) _ 1 c &
A(TX) cosh (7) ch (O3 (TeX, We, &)
p1(TX) — p1(W) 2

m
=" B.(85)*™ ey mod "F - 2% ()t 1.
r=0

e 2 E2O@1T) P W) _

a—p W)+ we have

Expanding
e E2MP1IX)—p1(W) _ 4

p1(TX) — p1(W)

1 1/1 2
= ﬂEz(r) + 7 (ﬂ@(ﬂ) P1(TX) — p1(W))

+

1/1 3
a3 <ﬂEz(r)> (P1(TX) — p1(W))> + - -

where the ¢;, j > 0, are all polynomials of (p1(TX) — p1(W)) with rational coefficients. For instance,

e 1) —p1(W)) _ 1

p1(TX) — p1 (W)
1

Cop =

’

1 1 1
c1=—1— = x2x —(P1(IX) —p1(W)) — - x 3 x E(pl(m) —p(W))? — -

2! 24 3!
From (1.15), we see that the §,, 0 < r < m, are defined by

[ (Z chf> A(TX) cosh (%) ch (Bo + B1g"* + Byg + - - -)

j=0

(8m)

= Bo(—1—24q"% —24q — - )™ 4 B1(—1—24¢"* —24q —-- )" '(¢"* +8q + - --

+B2(=1-249"2 —24q — - )" (@"? + 8 + )’

44 B(—1—24q"% —24q — . )P (V2 L 8g 4 ) -

+Bm(—1-24q"% —24q — - (@' +8q + - )"

(_,Br + ar,rfl,Brfl + ar,r72,3r72 +- 4 ar.O,BO)qr/2 mod q

r=0

KX)[q?].

(1.14)

(1.15)
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Since the ¢;, j > 0, are all polynomials of (p1(TX) — p1(W)), one can see by induction that each 8., 0 < r < m, is a canonical
linear combination of degree 8m forms of the type {c(p;(TX) — p1(W))“A(TX) cosh (£) ch(B)}®™, 0 <j <.
From the above definitions of 8., 0 < r < m, we see that

—Bo = {COK(TX) cosh (%) ch(By) o ,

By —242m + 1o = [COZ(TX) cosh (%) ch(Bl)]mm) .

Therefore by using By, B; calculated above, we have

21 P11 W) _ 1 N R
Bo=— A(TX) cosh (7) ,
p1(IX) — p1(W) 2

(8m)

B, = —24(2m + 1)By — {COK(IX) cosh (%) ch(Bl)} (1.16)

(8m)

c
p1(IX) — p1(W) A(TX) cosh ( ) (ch(We — 38c) + 48m — 21 + 30)

e P T)—pIW) _ 1
2
We would like to point out that although

e2a P1TO-D1W) _ 1 __ c (8m)
Po = A(TX) cosh () eh(bo)
pi(IX) — p1(W) 2
and
o2 (P1TO—p1(W)) _ 1 c 8m)
B1= A(TX) cosh <7) ch(by) ,
T e @) = pw) 2) b
generally,
e 1 T—PIW)) _ 1 __ c 8m)
b # A cosh (Z) bt . =2
p1(TX) — p1(W) 2

Case 2: dimX = 8m.
Define virtual complex vector bundles z, (TcX, Wc, &c) on X, 0 < r < m, via the equality

m+1

m
O (TcX, We, ) = ) 2:(88)™%'e} mod ¢"F - K(M)[[q? ], (117)
r=0

Explicitly, define z, (TcX, Wc, &c) by comparing the g-coefficients of the following identity:
Bo(TcX, We, &) + B1(TceX, We, £0)g™? + - -+
=zo(—1—24q"* —24q — - )" + z;(—1—24¢'> — 24q — - )" 2(¢"/* + 8q + - )
+2(—1—-24q"% = 24q — - )" *(q"* + 8q + - )’
4otz (—1—24¢"7 = 24q — - - "2 (g 2 4 8q+ - ) + - -
+2n(q"? + 8+ )" mod ¢"F - K(X)llg? ]
Note that on the right hand side of the above equality, the coefficient of ¢'/2, 1 < r < m, must be of the form
(=1)*™ 2z + dyy1Zro1 4+ dry2zr—p + - + dr 020,
where thed; ;, 1 <j <r — 1, are all integers. One has
By = zo,
B1 = z1 + 48mz,,

Br =z + dr,r—lzr—l + dr,r—2zr—2 +---+ dr,OZOs

Bm =Zn+ dm,m—lzm—l + dm,m—zzm—z +--+ dm,OZO~
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By induction, each z,(TcX, Wc, &c), 0 < r < m, is a canonical integral linear combination of the B;j(TcX, Wc, §c), 0 <j <.
These z, carry canonically induced metrics and connections.

We have
=6 (1.18)
71 = By — 48mzg = —W + 3&¢ — C48m—2H6, :
Define degree 8m — 4 differential forms ¢, (V™, VW, Vé)onX, 0 < r < m, via the equality
e HEOGITO—PIW) _ 1 c @m=4)
ATX) cosh (5 ) ¢h (O(TeX, W, &)
p1(TX) — p1(W) 2
u m+1 1
= 5(88) " ey modq 2 - 254 (X)[q2]. (1.19)

r=0
Explicitly, the ¢, 0 < r < m, are defined via

00 (8m—4)
{ (Z chf> A(TX) cosh (%) ch (Bo + B1g"/ + Boq + - -)}

j=0
= Go(—1-24¢"2 —24g — - )?" + &1(=1-24¢"2 — 249 — - )" (@' + 8q + )
+0(—1-24¢"7 — 24— - )" *(q'? + 8+ --)°
+o o(=1-240"7 = 24g — )P (@2 +8g+ ) o+ Gn(@! + 8 4"
m
mt1 1
=@ + drrorlem F drralra + -+ drof0)g”? mod ¢"F - K(O[g2].
r=0
Like for B, by induction, we see that each &, 0 < r < m, is a canonical linear combination of degree 8m — 4 forms of the
type {c(p1(TX) — p1(W))?A(TX) cosh (§) ch(B)}®"¥, 0 <j <.
We can see that

o= {C()//q\(’[x) cosh (%) ch(By) }(8%4)

’

—~ c (8m—4)
¢ +48mgy = {COA(TX) cosh (5) ch(By) .

So we have

21 (P1TO—p1 (W) _ q__ o)
Lo = A(TX) cosh (5) .

p1(TX) — p1(W)

)
— 48m¢, (1.20)

3 |

{COZ(TX) cosh (%) ch(By)

eﬁ(ﬂl(m)—m(w)) -1
| @ —piw)
Like for B, generally,

2 P1DO—PIW) _ 1 c Em=4
o # A(TX) cosh <5> ch(z) , T>2.

(8m—4)
A(TX) cosh (g) (ch(W¢ — 3&c) + 48m — 21 + 6)} .

p1(TX) — p1(W)
We can now state our main theorem as follows.
Theorem 1.1. (1) When dim X = 8m + 4, one has
—~ (8m+4)
A(TX) det!/? (2 cosh (‘{l—?RW))

cosh? (£)

m . c\ | @8m+4)
— Y2 AMO (b, (TeX. We. o)) cosh (5|
r=0

= ((TX) — p1(W)) - BV, VW, V¥, (1.21)
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where
m
%(VTX’ VW’ sz) — Zzl+2m+176rﬂr(v7'x’ VW’ V‘E)
r=0
Y 1/2 V=1pw (@&m)
ezlj(pl(TX)fpl(W)) _1 A@X) det (2 cosh (?R ))
- : — ) (1.22)
p1(TX) — p1(W) cosh?® ()
(2) When dim X = 8m, one has
~ (8m)
A(TX) det!/? (2 cosh (ng» m = o\ ) @m)
; = D224 fRIX)ch(z (TeX, We. o)) cosh (5 )|
cosh” () 2
= (01 (TX) — (W) - 3(V™, VW, V¥), (1.23)
where
m
3V, VW, VE) = ) oty (v VY V)
r=0
o~ (8m—4)
i G1O-p1 W) _ 1 A(TX) det'/? (2 cosh (%Rw»
_ . — . (1.24)
p1(TX) — p1(W) cosh?® ()
We immediately obtain that
Corollary 1.2 (Han and Zhang [7]). If p1(TX, V*) = py(W, VW), then
(1) when dim X = 8m + 4, the following identity holds:
~ (8m-+4)
A(TX) det'/? (2 cosh (ng» m = c ] 8m+4)
i =) piemiiee {A(TX)ch(b,(TcX, W, £)) cosh (7)} :
cosh? (5) 2
(1.25)
(2) when dim X = 8m, the following identity holds:
~ (8m)
A(TX) det'? (2 cosh (%RW» m = cN ) 6m
_ =Y 2o AT ch(@ (TeX, We, €y cosh (£) ] (126)
cosh? (5) 2
In Corollary 1.2, when dimX = 8m + 4 and (W, V%) = (IX, V™), one has
1| T G om_6r [~ c\ | Bm+4)
A/ =) oomer {A(TX)ch(br(TcX, TeX, &)) cosh <7)} . (1.27)
8 | cosh* (%) = 2
This formula is used in [7] to study higher dimensional Rokhlin type congruences.
When (&, V&) = (R?, d), from Theorem 1.1, we obtain that
Corollary 1.3. (1) When dim X = 8m + 4, one has
(8m+4)
~ -1 m ~
:A(TX) det!/? (2 cosh <4RW>> } — ) " 2HRmHST (A(TX)ch(by (TeX, W CZ))}(SmH)
7 r=0
= (p1(TX) — p1(W)) - BV, VY, d), (1.28)
where
m
%(VD{, vW’ d) — Z 21+2m+1—6r'8r(v'[7(’ vW’ d)
r=0

p1(TX) — p1(W)

L 1T —py (W) — &m)

ez -1 ~ —1

- { - A(TX) det'/? (2 cosh <4RW>>} . (1.29)
TT
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(2) When dim X = 8m, one has

= ®m
{Z(D() det!/? (2 cosh (MRV")) } — Y 2O AT chi(z, (TeX, We, €)™

r=0
= (p1(TX) — p1(W)) - 3(V*, V¥, d), (1.30)
where

3V VY d) = ) 2ty (VX VY d)

r=0

1 (8m—4)

2 P1MX)=p1W)) _ 1 _ /1

S -A(TX) det'? [ 2 cosh | ——R" . (1.31)
p1(TX) — p1 (W) 4w

It is interesting to notice that the above anomaly cancellation formulas also imply some integrality results.
From Corollary 1.3, we can see that if X is an 8m + 4-dimensional closed spin manifold and W is a 2I-dimensional spin
vector bundle over X, then by the Atiyah-Singer index theorem,

/(pl(TX) —pi(W)) - B(VZ VWV d) = Ind(D* ® A(W)) — Z 2H2mHI=614d DX @ b, (TcX, We, C2), (1.32)
X r=0

where DX is the Dirac operator on X and A(W) is the spinor bundle of W. So when | > 4m — 1, fx(pl(D() —p1(W)) -
B(VX, VW d) is an integer. Moreover, if X is a string manifold (p;(X) = 0),

/pl(W) BV, VY d) (1.33)
X

is an integer.
Similarly, we can see that if X is an 8m-dimensional closed spin manifold and W is a 2I-dimensional spin vector bundle
over X, then by the Atiyah-Singer index theorem,

/ (P1(TX) = pr(W)) - 3(V™, VW, d) = Ind(D¥ ® A(W)) — Z 2M2m=6"[ndDX @ b, (TeX, We, C2). (1.34)
X

r=0

Sowhen! > 4m,
/X(pl(m) —p(W)) -3V, V7Y, d) (1.35)
is an integer. Moreover, if X is a string manifold, then
/m(W) 3V VY d) (1.36)
X

is an integer.
From Corollary 1.3, we immediately obtain:

Corollary 1.4 (Liu [2]). If p1(TX, V®) = p1(W, VW), then

(1) When dimX = 8m + 4, the following identity holds:

ﬁ (8m—+4) m
A(TX) det'/? <2cosh (4RW>> =) 22 LATX ) ch(by (TeX, We, €)Y (1.37)
T
r=0
(2) When dimX = 8m, one has
(8m)
—~ =1 w“
A(TX) det'/? (2 cosh (4RW>> = 3" 2H2S A (TX)ch(z (TeX, We. €)} ™" (1.38)
TT
r=0
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In Corollary 1.4, when dim X = 8m + 4 and (W, V) = (TX, V™), one has [2,3]

} (8m-+4) } (8m+4)

=) 25m5 {A(TX)ch(by (TcX, TeX, €))
r=0

1
: (Tmx) (1.39)

This formula implies the Ochanine divisibility [5], which asserts that the signature of an 8k + 4-dimensional smooth closed
spin manifold is divisible by 16.

We give, as examples, the explicit formulas for when the dimension of X is 4, 8 and 12. Using (1.14), (1.16), (1.18) and
(1.20), by direct computations, we have:

Corollary 1.5. (1) When dim X = 4, the following identities hold:

~ (4)
A(TX) det'/? (2 cosh (ng»

cosh? (£)

-~ (4)
+ 24 A cosh (5) ] = =210 — i), (1.40)

«/j (4)
A(TX) det!/? (2 cosh (MRW)> } + 2% AT} = =23y (TX) — pr(W)); (1.41)

(2) when dim X = 8, the following identities hold:

~ (8)
A(TX) det'/? (2 cosh (ng))
cosh? (£)

_ {[_21_4g(m)ch(wc) + 231 4+ 8)A(TX) + 3 - 2 *A(TX) (e + e € — 2)] cosh (%) }<8)

e PT)—P1W) _ q

p1(TX) — p1(W)

= (p1(IX) — p1(W))

x| A(TX) cosh (%) (—2'*ch(Wo) + 221+ 8) + 3 274(¢° + e — 2))

~ (©))
A(TX) det' 2 (2.cosh (+TRY )

cosh (2] : (1.42)
®)
IX(TX) det'/? (2 cosh (“{;RW)) } + 274 [AmX)chwo) } ¥ — 2721+ 8) [Amx) ) ©
e 1) —p1(W)) _ 1
= (p1(TX) — p1(W
P1(TX) =1 (W) ) —
\/_—] (4)
x [Z(m (—2""4ch(Wo) + 23 (1 + 8)) — A(TX) det'/? (2 cosh (4”RW>>i| } ; (1.43)

(3) when dim X = 12, the following identities hold:

A(TX) det!/? (2 cosh (ng»

cosh? (%)

(12)

{ =37, -2 vy 137 R 1™
— [[23Amx)ch(we) — 27231 — 4)ATX) — 3 - 273ATX) (¢ + € —2)]cosh(5>}

o2 P1TO-PIW)) _ q

= X) — w
P1TX) = W) § =
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x| A(TX) cosh (%) (23ch(We) — 2-2(1 — 4) — 3- 23 + e~ — 2))

-~ (8)
A(TX) det'/? (2 cosh (%RW))

cosh? (§)

, (1.44)

TT

\/_—1 (12)
{Z(TX) det!/? (2 cosh (4RW>> } — 273 [Am0Ochwo) ) + 2720 - 4) {Aax) )

e2a P1(TX)—p1(W)) _ 1

p1(TX) — p1 (W)

®
x [K(TX) (2'73ch(We) — 2721 — 4)) — A(TX) det'/? (2 cosh (ng)ﬂ } : (1.45)

Remark 1.2. It is not hard to see that (1.41)-(1.44) are respectively equivalent to the following identities:
A(TX) det/? (2 cosh (%RW))
cosh? (£)

= (P1(TX) — p1(W)) {

21 P1(TX)—p1 (W)

®)

—A(TX) cosh (%) (=2 4ch(W) + 231+ 8) + 3 274" + e — 2)) —o, (1.46)

\/j] ®)
{eiﬁmm—mwﬁ |:Z(TX) det'/? (2 cosh (MRW)> — A(TX) (—2*ch(We) + 22 (1 + 8))i| } =0;  (147)

A(TX) det'/? (2 cosh ( £=1RW
e P1T)—p1(W)) | _ (X) ( ( il ))
cosh? (£)
(12)
—A(TX) cosh (%) (27Pch(We) — 2721 = 4) —3- 213 + e — 2)) =0, (1.48)

ﬁ (12)
{6214@1@‘)‘1’1("")) |:X(TX) det!/? (2 cosh <4;RW)> —A(TX) (2" 3ch(We) — 21721 — 4))} } =0. (1.49)

These formulas are simply in the form of products of e 21 ®1P)=P1W) with the original anomaly cancellation formulas in
dimensions 8 and 12 holding under the condition p;(X) = p1(W).

However, as pointed out on page 6 and page 7, concerning the patterns of 8, and ¢, forr > 2, we know that the anomaly
cancellation formulas for higher (>12) dimensions are not as simple as the above lower anomaly cancellation formulas,

i.e. they are not simply in the form of products of e21 ®1™)~P1W) with the original anomaly cancellation formulas holding
under the condition p;(X) = p;(W).

2. Proofs

In this section, we give the proof of Theorem 1.1. To prepare for the proof in Section 2.2, we will first recall some basic
knowledge about the Jacobi theta functions, modular forms and Eisenstein series in Section 2.1.

2.1. Preliminaries

Let

a b
s = {(° 1)

a,b,c,deZ, ad—bc:l}
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as usual be the modular group. Let
0 -1 1 1
s=(1 @) =)
be the two generators of SL,(Z). Their actions on H are given by
1
S:t—> ——, T:7—>1+1.
T

The four Jacobi theta functions are defined as follows (cf. [14]):

6(v, 1) = 2" sinGro) [ ] [(1 = ) (1 = g (1 — eV Tg)
j=1

010, 7) = 24 cos(rv) [ [[ (1 = )1 + Vg (1 + 72 |

j=1

60,0 =[[[(1 = @)1 =g 2 — e Vg

j=1

3

00,0 = [T[(1 = @)1+ Tg=2) (1 4 eV Tigm12) |

j=1

They are all holomorphic functions for (v, ) € C x H, where C is the complex plane and H is the upper half-plane.
If we act on the theta functions with S and T, the theta functions obey the following transformation laws (cf. [ 14]):

/=1 1 T 12 W
O(v,t+1)=e 4 O(v, 1), 0, —1/t) = \/?1<«/?1> VT O (tu, 1) (2.1)
. 1/2 ,

D, T+1) =" 0, 1), 6 (v, —1/7) = <%> VT, (2y, 7): (2.2)
T \"2 2

6,(v, T+ 1) =03(v, 1), 0, (v, —1/7) = (\/—_71> eI 01(tv, 7); (2.3)
T \"? 2

O3(v, T+ 1) =6, 1), 03 (v, —1/1) = <\/T1> eV Iy 03(tv, 1). (2.4)

Definition 2.1. Let I" be a subgroup of SL,(Z). A modular form over I" is a holomorphic function f () on HU {oo} such that
for any

a b
g=<c d)GF’

the following property holds:

atr +b
fgr)=f <7> = x (@t +d'f(r),
ct+d
where y : I’ — C* is a character of I" and [ is called the weight of f.
Let
4k — 2k—1 n
E2k=1—B—Z > d q (2.5)
L - din

be the Eisenstein series, where By is the 2kth Bernoulli number.
When k > 1, E; is a modular form of weight 2k over SL,(Z). However, unlike for other Eisenstein theories, E;(7) is not
a modular form over SL(2, Z); instead E,(7) is a quasimodular form over SL(2, Z), satisfying

E, (‘" + b) — (ct 4+ d)Es(7) — Bv—ic(cr +d) (2.6)
ct+d T
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In particular, we have

Ex(t + 1) = Ex(7), (2.7)
E, (—%) = 12E,(1) — 6v-1r. (2.8)

T

For the precise definition of quasimodular forms, see [15].
In the following, let us review some level 2 modular forms.
Let

Q@) = { (g Z) € SL,(2)

r°e) = { (‘Cl Z) € SLZ(Z)’ b =0 (mod 2)}

¢ =0 (mod 2)},

be the two modular subgroups of SL,(Z). It is known that the generators of I;(2) are T, ST2ST and the generators of '°(2)
are STS, T2STS (cf. [14]).

Writing simply 6; = 6;(0, t), 1 <j < 3, we have (cf. [16,17])
1 1
81(7v) = §(9§ +65).,  el(n) = 7695‘9?,

1 1
8 (1) = —g(eg‘ +69), 8(1) = E9;‘9;‘.

If I is a modular subgroup, let Mg (I") denote the ring of modular forms over I" with real Fourier coefficients.

Lemma 2.1 (Cf. [2]). One has that §:(t) (resp. £1(t)) is a modular form of weight 2 (resp. 4) over I(2), 8,(t) (resp. £2(t))
is a modular form of weight 2 (resp. 4) over I'°(2) and moreover Mg(I'°(2)) = R[82(T), £2(1)]. Moreover, we have the
transformation laws

(o) = a ()=
S| —— ) = t761(2), el —— ) =17e1(1). (2.9)
T T

2.2. Proof of Theorem 1.1

Set
o0 — (o] — ~ o0 ~ o ~
O1(TcX, We, &) = (X) S (TeX) ® Q) Agr (We — 2E0) ® (R) Agr—172(Ec) © Q) A_g-112 (Ee). (2.10)
u=1 v=1 r=1 s=1

©1(TeX, We, &c) admits a formal Fourier expansion in q'/? as

O1(TcX, We, &) = Ao(TcX, We, &) + A1(TeX, We, E0)q' + - -, (2.11)

where the A; are elements in the semi-group formally generated by complex vector bundles over X. Moreover, they carry

canonically induced connections denoted by V4, and we let V1 be the induced connections with q'/?-coefficients on @;
from the V4.

To prove part 1 of Theorem 1.1 (the 8m + 4-dimensional case), set

(8m-+4)

ATX) det'” (2.cosh (1R )

Py(7) i= | eaB2@®1T)—p1 (W) —
cosh® (%)

ch (©1(TeX, We, &c)) , (2.12)

~ c (8m-+4)
Py(z) == {A(D() cosh (5> ch (O, (TeX, We, gc))} (2.13)
and

e E2OP1T)—P1W)) _ 1 __ c (8m)
Ey(1) = A(TX) cosh (5) ch (O(TeX, We, ) b (2.14)

p1(IX) — p1(W)
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We have

Proposition 2.1. P;(t) is a modular form of weight 4m + 2 over I(2) while P,(t) + (p1(TX) — p1(W))E>(t) is a modular
form of weight 4m + 2 over I"°(2). Moreover, the following identity holds:

1
Py (—;) = 2" (P (1) + (p1(TX) — p1(W)) 2 (7). (2.15)

Proof. Let {£27+/—1y,} (resp. {27 +/—1x;}) be the formal Chern roots for (Wc, V¢) (resp. (TMc, VIMo)). Let ¢ =
2w/ —1u.

By the Chern root algorithm, we have (cf. [6,7,18])

1 4m+2 9/(0 'L') d 91(yk [) 92(0 I) 93(u Z) 02(u l') Emed
P;(7) = 1 E3 (1) (p1(TX)—p1(W)) | | . > | | 4 1 s ’ ’ 2
1( ) =2 {624 ( (XJQ(st C))) < 91(07 [) 912(ua 7-') 93(07 [) 92(07 75) ' ( ‘]6)

j=1 k=1

and
Py (1) + (p1(TX) — p1(W)) &> (7)
_ { e #E2O@1PO-PIWNZ (Tx) cosh (%) ch (O(TcX, We, £¢))

_ | tewmmo-mon “i"—*f(xﬂ/(o,r)) lilez(yjaf) 6200, 7) 65, 7) 1w, D) | o)
- _ T0(x;, ) 62(0,7) ) 62(u, 7) 65(0, 7) 64(0, T) ’ '

j=1 j=1

}(8m+4)

Then we can apply the transformation laws (2.1)-(2.4) for theta functions as well as the transformation laws (2.7)—(2.8)
to (2.16) and (2.17) to get the desired results. O

We can now proceed to prove part 1 of Theorem 1.1 as follows.
Combining Lemma 2.1 and Proposition 2.1, we can write

Py (7) + (p1(TX) — p1(W)) E2(t) = ho(882)*™ ! + h1(882)*™ ey + - - - + hin(882)eY, (2.18)

where h, € 28"4(X),0<r <m.
By the definitions of b, (TcX, We, &) and B, (V™ , VW V¥), it is easy to see thatfor 0 < r < m,

—~ c (8m+4)
e = {ATX) cosh (5 ) chib, (TeX. We )|+ (01 (TX) = pr(W)B (V. V¥, V). (2.19)
Therefore (simply denoting b, (TcX, W, &) and B,(V™X, VW, V) by b, and 8,),

m ~ (8m-+4)
Po(0) + (Pr(TX) = pr(W))E2(r) = ) ([A(m cosh (5) e} + (pr(1X) — p1(W))ﬁr> (832%™ 7el,

r=0
(2.20)

By (2.9) and (2.15), we have

P = 2 P ! X W) & !
1(7) = 1:4m+2|: 2 <—;> + (P1(TX) — p1(W)) &, <—T>i|

!

2 ~ c (8m+4)
3 [({A(TX) cosh (5 ) chtbo) |+ (pr(DX) pl(wnﬂo)

1 2m+1 . c (8m+4)
x (882 (—;>> ot <{A(D<) cosh (5) ch(bm)} + (1 (TX) — p](W))ﬁm>

) e() ]

~ (8m-+4)
2! [({A(TX) cosh (%) ch(bo)} + (p1(TX) — pl(W))ﬁ()) (85" 4 ...

. c (8m+4)
+ ({A(m cosh (5) e} + (1 (70 p1<W))ﬂm) (881)85"] . (221)
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Comparing the constant terms of the two sides of (2.21), one has

A(TX) det/? (2 cosh (ng»

24 P1TX)—p1 (W)

cosh? (£)
" amti—er |5 ¢ @m+4)
=Y 2 {A(TX) cosh (5) ch(br)} + (01 (TX) — prW))B; ) - (2.22)
r=0
So we have
~ (8m+4)
A(TX) det!/? (2 cosh (@Rw)) m o G
T [4+2m+1—6r |7,
o ) - ; 2 {A(TX)ch(b,(TcX, W, £)) cosh (5)}
= (P(TX) — p1(W)) - BV, VW, V5, (2.23)

where

m
%(VD(’ VW’ VS) — Z 21+2m+1—6rﬂr(v'[)(’ VW’ Vg)

r=0
~ (8m)
e G1@O-p1wW) _ 1 A(TX) det'/? (2 cosh (%RW))
p1(TX) — p1(W) cosh? (£)
To prove part 2 of Theorem 1.1 (the 8m-dimensional case), set
~ " ST ow @8m)
. A(TX) det (2 cosh (?R ))
Qi(1) = { e E1O=P1W) =G ch (O1(TeX, We, ) | (2.24)
cosh? (&
2
—~ c (8m)
Qx(r) = {A(TX) cosh (5 ) ch (©2(TeX. We. &0)) | (2.25)
and
@ 2E2OB1MO-p1 W) _ {_ c ®m=4
M) = A(TX h(—) h (6(TeX, We, . 2.26
2(7) 1 (1) — pr (W) (TX) cos )¢ (@2 (Tc ¢, &) (2.26)

Like for the 8m + 4-dimensional case, one has:

Proposition 2.2. Q(t) is a modular form of weight 4m over I5(2) while Qx(t) + (p1(TX) — p1(W))I1,(7) is a modular form
of weight 4m over I"°(2). Moreover, the following identity holds:

1
Q (—;) =2'7"(Qu(0) + (11 (TX) — pr W) ITy(D)). (2.27)

Then one can prove part 2 of Theorem 1.1 by adopting an idea similar to that in the above proof of part 1 of Theorem 1.1.
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