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Abstract

We first introduce an invariant index for G-equivariant elliptic differential operators on a locally com-
pact manifold M admitting a proper cocompact action of a locally compact group G. It generalizes the
Kawasaki index for orbifolds to the case of proper cocompact actions. Our invariant index is used to show
that an analog of the Guillemin–Sternberg geometric quantization conjecture holds if M is symplectic with
a Hamiltonian action of G that is proper and cocompact. This essentially solves a conjecture of Hochs and
Landsman.
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1. Introduction

The main purpose of this paper is to generalize the Guillemin–Sternberg geometric quanti-
zation conjecture [5], which was proved in [12], to the case of non-compact spaces and group
actions. Here we will consider the framework considered by Hochs and Landsman in [9].

✩ With an Appendix by Ulrich Bunke, NWF I - Mathematik, Universität Regensburg, 93040 Regensburg, Germany.
E-mail address: ulrich.bunke@mathematik.uni-regensburg.de.

* Corresponding author.
E-mail addresses: mathai.varghese@adelaide.edu.au (V. Mathai), weiping@nankai.edu.cn (W. Zhang).
0001-8708/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.aim.2010.03.023



V. Mathai, W. Zhang / Advances in Mathematics 225 (2010) 1224–1247 1225
To be more precise, let (M,ω) be a locally compact symplectic manifold. Assume that
there exists a Hermitian line bundle (L,hL) over X carrying a Hermitian connection ∇L such

that
√−1
2π

(∇L)2 = ω. Let J be an almost complex structure on T M such that ω(·, J ·) de-
fines a Riemannian metric gT M on T M . Let DL : Ω0,∗(M,L) → Ω0,∗(M,L) be the canon-
ically associated Spinc-Dirac operator (cf. [16, Section 1]). Let DL± be the restrictions of DL

on Ω0, even
odd (M,L) respectively.

Let G be a locally compact group with Lie algebra g. Suppose that G acts on M properly.
The proper G-action ensures that the isotropy subgroups Gx = {g ∈ G | gx = x} are compact
subgroups of G for all x ∈ M , all the orbits Gx = {gx | g ∈ G} � M are closed, and moreover
the space of orbits M/G is Hausdorff (cf. [13]).

We assume that the action of G on M lifts on L. Moreover, we assume the G-action preserves
the above metrics and connections on T M,L, and J . Then DL± commute with the G-action.

The action of G on L induces naturally a moment map μ : M → g∗ such that for any V ∈ g,
s ∈ Γ (L), if VM denotes the induced Killing vector field on M , then the following Kostant
formula for Lie derivative holds,

LVM
s = ∇L

VM
s − 2π

√−1〈μ,V 〉s. (1.1)

We make the assumption that 0 ∈ g∗ is a regular value of μ and that G acts freely on μ−1(0).
Then the Marsden–Weinstein symplectic reduction (MG = μ−1(0)/G,ωMG

) is a symplectic
manifold. Moreover, (L,∇L) descends to (LG,∇LG) over XG so that the corresponding curva-

ture condition
√−1
2π

RLG = ωG holds. The G-invariant almost complex structure J also descends
to an almost complex structure on T MG, and hL, gT M descend to hLG , gT MG respectively. Let
DLG denote the corresponding Spinc-Dirac operator on MG.

Following [9], we make the assumption that the quotient space M/G is compact, that is, the
G-action on M is cocompact. Then MG = μ−1(0)/G is also compact.

In this paper, we will first define in Section 2 what we call the G-invariant index associated
to DL+, denoted by indG(DL+), which generalizes the usual definition in the compact case to the
non-compact case.

For any positive integer p, let Lp denote the p-th tensor power of L. Then it admits the
canonically induced G-action as well as the G-invariant Hermitian metric and connection.

We can now state the main result of this paper, which might be thought of as a “quantiza-
tion commutes with reduction” result, in the sense of a conjecture of Hochs and Landsman [9,
Conjecture 1.1], as follows.

Theorem 1.1. In the general case where G is merely assumed to be locally compact, there exists
p0 > 0 such that for any integer p � p0,

indG

(
DLp

+
) = ind

(
D

L
p
G+
)
. (1.2)

Moreover, if g∗ admits an AdG-invariant metric, then one can take p = 1 in (1.2).

Remark 1.2. In the special case where G (and thus M) are compact, Theorem 1.1 is the
Guillemin–Sternberg geometric quantization conjecture [5] first proved by Meinrenken in [12]
(see the excellent survey of Vergne [18] for further related works). In the special case where
G is non-compact and admits a normal discrete subgroup Γ such that Γ acts on M freely and
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that G/Γ is compact,1 Theorem 1.1 is closely related to [9, Theorem 1.2]. While in the spe-
cial case where G is semisimple and acts on G ×K N , with K the maximal compact subgroup
of G acting Hamiltonianly on a compact symplectic manifold N , Theorem 1.1 should be closely
related to the quantization formula of Hochs obtained in [7]. In fact, in the formulas of Hochs
and Hochs–Landsman, the left-hand side of the quantization formula is interpreted by using non-
commutative K-theories. Thus, in combining with our result, in the case considered by them,
our invariant index admits the non-commutative K-theoretic interpretation. In fact, in the Ap-
pendix to this paper, Bunke establishes such an interpretation. Combining with Kasparov’s index
theorem [10], one gets a topological counterpart to our analytic index.

Since here one is dealing with non-compact group actions on non-compact spaces, one cannot
apply the Atiyah–Bott–Segal–Singer equivariant index theorem directly as in [12] to prove The-
orem 1.1. Instead, we will generalize the analytic proof of the Guillemin–Sternberg conjecture
due to Tian and Zhang [16] to the current situation.

On the other hand, one can show that the finiteness of dim(KerDL±)G, the dimensions of
the G-invariant subspaces of Ker(DL±), holds for any equivariant Dirac type operator on spaces
with proper cocompact actions. Moreover, we will show that the vanishing properties of the half
kernel of Spinc-Dirac operators due to Braverman [4], Borthwick and Uribe [2] and Ma and
Marinescu [11] still hold for DLp

when p > 0 is large. Combining with Theorem 1.1, one gets

Theorem 1.3. There exists p1 > 0 such that for any integer p � p1, one has

dim
(
KerDLp

+
)G = dim

(
KerD

L
p
G+
)
,

dim
(
KerDLp

−
)G = dim

(
KerD

L
p
G−
) = 0. (1.3)

Remark 1.4. Just as in [16], one can twist Lp by an arbitrary G-equivariant vector bundle F

over M carrying a G-invariant Hermitian metric and a G-invariant Hermitian connection (that is,
replace Lp by Lp ⊗ F ). Then all the results of this paper still hold when p > 0 is large enough.
In particular, if we chose F = Λ∗,0(T ∗M), then we get a non-compact quantization formula for
the signature quantization considered in [17] and [6].

Remark 1.5. Our method also works for the case where the action of G on μ−1(0) is not free.
Then MG = μ−1(0)/G is an orbifold, and (1.2) and (1.3) still hold if we replace the right-hand
sides by the corresponding orbifold indices. We leave this to the interested reader.

The rest of this paper is organized as follows. In Section 2, for any locally compact man-
ifold M admitting a proper cocompact action of a locally compact group G, and any G-
equivariant Dirac type operator D on M , we introduce what we call the G-invariant index
indG(D). In Section 3, we generalize the analytic techniques developed in [16] to give a proof
of Theorem 1.1. In Section 4, we prove the vanishing properties of the G-invariant part of the
half kernel of the equivariant Dirac operator and as a consequence, get Theorem 1.3. Finally, in
Section 5, we consider some examples and applications of our main results.

1 In this case there is an AdG invariant metric on g∗.



V. Mathai, W. Zhang / Advances in Mathematics 225 (2010) 1224–1247 1227
2. The invariant index for proper cocompact actions

Let M be a locally compact manifold. Let G be a locally compact group. Let dg be the left
invariant Haar measure on G.

We make the assumption that G acts on M properly and cocompactly, where by proper action
we mean that the following map

G × M → M × M, (g, x) 
→ (x, gx) (2.1)

is proper (that is, the inverse image of a compact subset is compact), while by cocompact we
mean that the quotient M/G is a compact space.

One of the basic properties for such an action is that there exists a smooth, non-negative,
compactly supported cut-off function c on M such that

∫
G

c
(
g−1x

)2
dg = 1 (2.2)

for any x ∈ M (cf. [3, Section 7.2.4, Proposition 8]). This cut-off function allows one to get
G-invariant objects from the originally not necessarily G-invariant ones.

As an example, for any Riemannian metric gT M on T M one gets an “averaged” G-invariant
metric

∫
G

c
(
h−1x

)2(
h∗gT M

)
(x) dh (2.3)

on T M .
From now on, we assume that gT M is G-invariant.
Let cl(T M) be the Clifford algebra bundle associated to (T M,gT M). Then it admits a natu-

rally induced G-action as well as a G-invariant Hermitian metric gcl(T M).
Let E be a complex vector bundle over M such that E = E+ ⊕ E− is a Z2-graded cl(T M)-

module and that it admits a G-action, preserving the Z2-grading of E, lifted from the action of G

on M . Let gE be a Z2-graded G-invariant Hermitian metric on E, let ∇E be a Z2-graded G-
invariant Hermitian connection on E. The averaging procedure similar to that in (2.3) guarantees
the existence of gE and ∇E .

Let e1, . . . , edimM be an oriented orthonormal basis of T M . We define a Dirac type opera-
tor DE to be the operator acting on Γ (E),

DE =
dimM∑
i=1

c(ei)∇E
ei

+ A : Γ (E) → Γ (E), (2.4)

where A ∈ Γ (End(E)) exchanges E±.
We make the assumption that DE is G-equivariant.
Let Γ (E) carry the natural inner product such that for any s, s′ ∈ Γ (E) with compact sup-

ports,
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〈
s, s′〉 = ∫

M

〈
s(x), s′(x)

〉
E

dx. (2.5)

Let ‖ · ‖0 denote the associated L2-norm. Let L2(M,E) denote the completion of Γ (E) with
respect to the inner product ‖ · ‖0.

Since M/G is compact, there exists a compact subset Y of M such that G(Y) = M (cf. [15,
Lemma 2.3]).

Let U , U ′ be two open subsets of M such that Y ⊂ U and that the closures U and U ′ are both
compact in M , and that U ⊂ U ′. The existence of U , U ′ is clear.

Then it is easy to construct a smooth function f : M → [0,1] such that f |U = 1 and
Supp(f ) ⊂ U ′.2

We now consider the space Γ (E)G, the subspace of G-invariant sections of Γ (E).
By using the property that G(Y) = M , it is easy to see that there exists a positive constant

C > 0 such that for any s ∈ Γ (E)G,

‖s‖U,0 � ‖f s‖0 � ‖s‖U ′,0 � C‖s‖U,0, (2.6)

where for V = U or U ′,

‖s‖2
V,0 =

∫
V

〈
s(x), s(x)

〉
E

dx. (2.7)

Let H0
f (M,E)G be the completion of the space {f s: s ∈ Γ (E)G} under the norm ‖ · ‖0

associated to the inner product (2.5). Let H1
f (M,E)G be the completion of {f s: s ∈ Γ (E)G}

under a (fixed) G-invariant first Sobolev norm associated to the inner product (2.5).
Let Pf be the orthogonal projection from L2(M,E) to its subspace H0

f (M,E)G.

It is clear that Pf DE maps an element of H1
f (M,E)G into H0

f (M,E)G.

Proposition 2.1. The induced operator

Pf DE : H1
f (M,E)G → H0

f (M,E)G (2.8)

is a Fredholm operator.

Proof. For any s ∈ Γ (E)G, by (2.4), one has

DE(f s) = f DEs + c(df )s, (2.9)

where we identify the one form df with its metric dual (df )∗.
Since DE is G-equivariant, it is clear that Pf (f DEs) = f DEs, while in view of (2.6),

∥∥Pf

(
c(df )s

)∥∥
0 �

∥∥c(df )s
∥∥

0 � C1‖s‖U,0 (2.10)

for some constant C1 > 0.

2 With this function, one can construct the cut-off function c by c(x) = f (x)∫ −1 2 1/2 for any x ∈ M .

( G f (g x) dg)



V. Mathai, W. Zhang / Advances in Mathematics 225 (2010) 1224–1247 1229
Thus, one has, by also proceeding as in (2.6),

∥∥Pf DE(f s)
∥∥

0 �
∥∥f DEs

∥∥
0 − C1‖s‖U,0 � C2‖s‖U,1 − C3‖s‖U,0 (2.11)

for some constants C2,C3 > 0.
On the other hand, by (2.9) and by proceeding as in (2.6), one verifies that

‖f s‖1 � C4
(‖f s‖0 + ∥∥DE(f s)

∥∥
0

)
� C5‖s‖U,0 + C6‖s‖U,1 (2.12)

for some constants C4,C5,C6 > 0.
From (2.6), (2.11) and (2.12), one gets

∥∥Pf DE(f s)
∥∥

0 � C7‖f s‖1 − C8‖f s‖0 (2.13)

for some constants C7,C8 > 0.
Since f is of compact support, from the Gärding type inequality (2.13) one sees that Pf DE

is a Fredholm operator. �
Remark 2.2. Besides the Fredholm property in Proposition 2.1, the following self-adjoint prop-
erty also holds: for any s, s′ ∈ Γ (E)G, one has

〈
Pf DE(f s), f s′〉 = 〈

f s,Pf DE
(
f s′)〉, (2.14)

if DE is formally self-adjoint.

Remark 2.3. If (Ũ , Ũ ′, f̃ ) is another triple of open subsets and the cut-off function as above, then
by taking the deformation ft = (1 − t)f + t f̃ , one gets easily a continuous family of Fredholm
operators Pft D

E .

Now let DE± : Γ (E±) → Γ (E∓) be the restrictions of DE on Γ (E±) respectively.
Then by Proposition 2.1 and (2.14), the induced operator Pf DE+ : H1

f (M,E+)G →
H0

f (M,E−)G is Fredholm. Moreover its index, ind(Pf DE+), does not depend on the choice
of f , in view of Remark 2.3. Similarly, it is also easy to see that this index does not depend on
the choices of G-invariant metrics and connections involved.

Definition 2.4. We call ind(Pf DE+) defined above the G-invariant index associated to DE+ and
denote it by indG(DE+).

Remark 2.5. If M is compact and DE is formally self-adjoint, then one can take f ≡ 1, so that
one has

indG

(
DE+

) = dim
((

kerDE+
)G) − dim

((
kerDE−

)G)
. (2.15)

Remark 2.6. For any s ∈ Γ (E)G, it is clear that f s and s are determined by each other. That is,
if s, s′ ∈ Γ (E)G are such that f s = f s′, then s = s′ as f ≡ 1 on Y . Moreover, by (2.9), (2.10)
and (2.13), one sees easily that the induced operator D̃E : H1 (M,E)G → H0 (M,E)G such that
f f f
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D̃E
f (f s) := f DE(s) (2.16)

is a Fredholm operator. Thus one gets that

dim
(
ker

(
DE

∣∣
Γ (E)G

)) = dim
((

kerDE
)G)

< +∞. (2.17)

In fact, when G is unimodular, we can further identify indG(DE+) as follows.

Theorem 2.7. If G is unimodular, then with the notation above, one has

ind
(
Pf DE+

) = dim
((

kerDE+
)G) − dim

((
kerDE−

)G)
, (2.18)

whenever DE is formally self-adjoint.

Proof. We use the cut-off function f , and set for any x ∈ M ,

c(x) = f (x)

(
∫
G

f (g−1x)2 dg)1/2
. (2.19)

Then

∫
G

c
(
g−1x

)2
dg = 1 (2.20)

for any x ∈ M . Let α denote the positive G-invariant function on M defined by

α(x) =
(∫

G

f
(
g−1x

)2
dg

)1/2

. (2.21)

Let H0
c(M,E)G be the L2 completion of the space {cs: s ∈ Γ (E)G}. Let H1

c(M,E)G be the
corresponding first Sobolev space associated to a (fixed) G-invariant first Sobolev norm.

Let βf : H0
f (M,E)G → H0

c(M,E)G be the isomorphism such that for any s ∈ Γ (E)G,

βf : f s 
→ f
s

α
= cs. (2.22)

Let Pc be the orthogonal projection from L2(M,E) onto H0
c(M,E)G.

For any s ∈ Γ (E)G, one verifies that

βf

(
Pf DE(f s)

) = cDEs + 1

α
Pf

(
c(df )s

)
= PcD

E(cs) − Pc

(
c(dc)s

) + 1
Pf

(
c(df )s

)
. (2.23)
α
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Since Pf DE is Fredholm, from (2.23), one sees easily that PcD
E is a Fredholm operator and

ind
(
Pf DE+

) = ind
(
PcD

E+
)
. (2.24)

Indeed, what Bunke does in his Appendix is to give a KK-theoretic interpretation of the right-
hand side of (2.24).

Moreover, Bunke actually writes out explicitly the projection Pc when G is unimodular. Ac-
cording to Bunke, when G is unimodular, for any μ ∈ Γ (E) with compact support, one has (cf.
Appendix D, where Pc here is exactly Qε there with ε = 1)

(Pcμ)(x) = c(x)

∫
G

c
(
g−1x

)(
g∗μ

)
(x) dg. (2.25)

From (2.20) and (2.25), one computes that for any s ∈ Γ (E)G, one has at x ∈ M that

Pc

(
c(dc)s

) = c

∫
G

c
(
g−1x

)(
g∗(c(dc)s

))
(x) dg = 1

2
c · c

(
d

∫
G

c
(
g−1x

)2
dg

)
s(x) = 0. (2.26)

From (2.26), one gets that for any s ∈ Γ (E)G,

PcD
E(cs) = cDEs + Pc

(
c(dc)s

) = cDEs. (2.27)

When DE is formally self-adjoint, from (2.27) one gets immediately that

dim
(
KerPcD

E±
) = dim

((
KerDE±

)G)
. (2.28)

Combining with (2.24), one gets

indG

(
DE

) = ind
(
PcD

E
) = dim

((
kerDE+

)G) − dim
((

kerDE−
)G)

, (2.29)

which is exactly (2.18). �
Remark 2.8. Remark 2.5 and Theorem 2.7 fully justify the term “G-invariant index” in Defini-
tion 2.4. Moreover, by (2.28), one sees that ker(PcD

E) consists of smooth elements.

Remark 2.9. When G is non-unimodular, Theorem 2.7 still holds if one inserts the modular
factor δ (with dg−1 = δ(g)dg) in the right-hand side of (2.18) as in Bunke’s Appendix. We leave
it to the interested reader.

We now consider the very special case where G acts on M freely, but we no longer assume
that G is unimodular (thus we no longer have Theorem 2.7). Then M/G is a compact manifold,
while E descends to a Hermitian vector bundle EG over M/G carrying an induced Hermitian
connection.

Let D
EG+ : Γ (E+,G) → Γ (E−,G) be associated Dirac operator.
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Proposition 2.10. The following identity holds,

indG

(
DE+

) = ind
(
D

EG+
)
. (2.30)

Proof. For any s ∈ Γ (EG), let s̃ ∈ Γ (E)G be its canonical lift.
It is clear that the map Γ (EG) → {f Γ (E)G} such that s → f s̃ extends canonically to a

bounded linear isomorphism αf : L2(EG) → H0
f (M,E)G.

Lemma 2.11. There exists a constant C > 0 such that for any s ∈ Γ (EG), one has

∥∥(αf )−1Pf DEαf (s) − DEGs
∥∥ � C‖s‖. (2.31)

Proof. From (2.9), one has

DEαf s = DE(f s̃) = f DEs̃ + c(df )s̃. (2.32)

Now, on the principal fibre bundle G → M → M/G, the vertical directions are generated by
elements in the Lie algebra g. Thus, for any X ∈ T V M such that |X| = 1, since s̃ is G-invariant
so that LE

Xs̃ = 0, where LE
X is the Lie derivative along X on E, one has

∥∥f
(∇E

X s̃
)∥∥ = ∥∥f

(∇E
X s̃ − LE

Xs̃
)∥∥ � C1‖f s̃‖ (2.33)

for a (fixed) positive constant C1 > 0.
From (2.33), one verifies easily that

∥∥(αf )−1(f DEs̃
) − DEGs

∥∥ � C2‖s‖ (2.34)

for a (fixed) positive constant C2 > 0.
From (2.34), one sees immediately that

∥∥(αf )−1(Pf

(
f DEs̃

)) − DEGs
∥∥ � C2‖s‖. (2.35)

On the other hand, one finds easily that there are positive constants C3 > 0, C4 > 0, C5 > 0
such that

∥∥(αf )−1Pf

(
c(df )s̃

)∥∥ � C3
∥∥c(df )s̃

∥∥ � C4‖f s̃‖ � C5‖s‖. (2.36)

From (2.32), (2.35) and (2.36), one gets (2.31). �
We now return to the proof of (2.30).
By restricting (2.31) to Γ (E+,G), one deduces that

ind
(
D

EG+
) = ind

(
(αf )−1Pf DE+αf

) = ind
(
Pf DE+

)
, (2.37)

which is exactly (2.30). �
Remark 2.12. It is easy to see that for Proposition 2.10 to hold, one need only to assume that
(the G-equivariant operator) DE+ is G-transversally elliptic.
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3. The geometric quantization formula for proper actions

We now turn back to the situation as in Section 1. In this case, E = Λ0,∗(T ∗M) ⊗ Lp and
Ω0,∗(M,Lp) = Γ (Λ0,∗(T ∗M) ⊗ Lp).

Let DLp
denote the corresponding Spinc-Dirac operator (cf. [16, Section 1]). Clearly, DLp

is
G-equivariant.

Let Ω0,∗(M,Lp)G be the subspace of G-invariant sections of Ω0,∗(M,Lp). It is clear that
any section in Ω0,∗(M,Lp)G is determined by its restriction to Y .

Note that since in the general case where G is assumed to be only locally compact, there
might not be any AdG-invariant metric on g.

Choose any metric on g∗. Let h1, . . . , hdimG be an orthonormal basis of g∗. Denote by Vi the
Killing vector field on X generated by the dual of hi (1 � i � dimG). The point here is that the
function

H = ‖μ‖2 =
dimG∑
i=1

μ2
i (3.1)

might not be G-invariant, thus the associated Hamiltonian vector field XH might not be G-
invariant. We first construct an invariant one out of it.

Recall that the cut-off function c has been defined in (2.2).
Let

XH
G =

∫
G

c
(
g−1x

)2
XH

g dg (3.2)

denote the averaged G-invariant vector field on M , where XH
g denotes the pullback of XH by

g ∈ G.
For any T � 0, set

DLp

T = DLp +
√−1T

2
c
(
XH

G

)
. (3.3)

Then it is G-equivariant. Moreover, it is a formally self-adjoint Dirac type operator in the sense
of (2.4) and thus the results in Section 2 apply here to DLp

T .
From (3.2) and the fact that

XH = 2
dimG∑
i=1

μiVi (3.4)

(cf. [16, (1.19)]), it is clear that at any x ∈ M , XH
G lies in Tx(Gx). Moreover, by (1.1) and (3.4),

one verifies that for any s ∈ Ω0,∗(M,Lp)G,

∇Λ0,∗(T ∗M)⊗Lp

XH
G

s = (
A ⊗ IdLp + 4pπ

√−1HG(x)
)
s, (3.5)

where
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HG =
∫
G

c
(
g−1x

)2 H
(
g−1x

)
dg (3.6)

and

A = ∇Λ0,∗(T ∗M)

XH
G

−
∫
G

c
(
g−1x

)2

(
2

dimG∑
i=1

μi

(
g−1x

)
L

Λ0,∗(T ∗M)
g∗Vi

)
dg (3.7)

is of order zero and does not involve p.
Let U ′ be constructed as in Section 2. Let W be any open neighborhood of μ−1(0) in M . We

first show that the following analogue of [16, Theorem 2.1] holds.

Proposition 3.1. There exists p0 � 1 such that for any integer p � p0, there exist C > 0, b > 0
verifying the following property: for any T � 1 and s ∈ Ω0,∗(M,Lp)G with Supp(s) ∩ U ′ ⊂
U ′ \ W , one has

∥∥Pf DLp

T (f s)
∥∥2

0 � C
(‖f s‖2

1 + (T − b)‖f s‖2
0

)
. (3.8)

Moreover, if g∗ admits an AdG-invariant metric, then one can take p0 = 1.

Proof. One computes first that

∥∥Pf DLp

T (f s)
∥∥

0 = ∥∥Pf

(
f DLp

T s + c(df )s
)∥∥

0 �
∥∥f DLp

T s
∥∥

0 − C1‖f s‖0 (3.9)

for some constant C1 > 0.
On the other hand, one has

∥∥f DLp

T s
∥∥

0 = ∥∥DLp

T (f s) − c(df )s
∥∥

0 �
∥∥DLp

T (f s)
∥∥

0 − C2‖f s‖0 (3.10)

for some constant C2 > 0.
From (3.9) and (3.10), one sees that there exists C3 > 0 such that

∥∥Pf DLp

T (f s)
∥∥2

0 � 1

2

∥∥DLp

T (f s)
∥∥2

0 − C3‖f s‖2
0. (3.11)

Since f s has compact support, one has

∥∥DLp

T (f s)
∥∥2

0 = 〈
DLp

T (f s),DLp

T (f s)
〉 = 〈

D
Lp,2
T (f s), f s

〉
. (3.12)

Now since s is G-invariant, from [16, (1.26)], (3.3), (3.5) and (3.7), one computes that

D
Lp,2
T (f s) = DLp,2(f s) +

√−1T

2

dimM∑
j=1

c(ej )c
(∇T M

ej
XH

G

)
(f s)

− √−1T (A ⊗ IdLp)(f s) + 4pπT HGf s

− √−1T XH
G (f )s + T 2 ∣∣XH

G

∣∣2
(f s). (3.13)
4
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Lemma 3.2. One has H−1
G (0) = μ−1(0).

Proof. By the definition (3.6) of HG, it is clear that for any x ∈ μ−1(0), HG(x) = 0.
Conversely, for any x /∈ μ−1(0), by (2.2), there exists g ∈ G such that c(g−1x) �= 0.

Thus, c(g−1x)μ(g−1x) = c(g−1x)g∗μ(x) �= 0, from which and from (3.6) one gets that
HG(x) �= 0. �

By Lemma 3.2, there exists a constant α > 0 such that

HG(x) � α (3.14)

for any x ∈ U ′ \ W .
Clearly,

Re
(〈√−1XH

G (f )s, f s
〉) = 0. (3.15)

On the other hand, since f has compact support in U ′ and Supp(s) ∩ U ′ ⊂ U ′ \ W , it is easy
to see that there exists a constant C4 > 0 such that

Re

(〈√−1

2

dimM∑
j=1

c(ej )c
(∇T M

ej
XH

G

)
(f s) − √−1(A ⊗ IdLp)(f s), f s

〉)

+ 4pπ〈HGf s,f s〉 � (4pπα − C4)‖f s‖2
0. (3.16)

From (3.12)–(3.16), one sees that there exist constants C5,C6 > 0 such that

∥∥DLp

T (f s)
∥∥2

0 = 〈
D

Lp,2
T (f s), f s

〉
� C5‖f s‖2

1 − C6‖f s‖2
0 + (4pπα − C4)T ‖f s‖2

0. (3.17)

Formula (3.8) follows from (3.11) and (3.17) by taking p0 = C4
πα

in (3.17).
For the remaining situation where g∗ admits an AdG-invariant metric, in this case, both H

and XH are G-invariant, so we are in an exactly similar situation as in [16, Section 2].
Set

FL
T = D

L,2
T + 2

√−1T

dimG∑
i=1

μiLVi
(3.18)

as in [16, (1.30)].
One verifies directly in this case, in view of (3.4), that

〈
D

L,2
T (f s), f s

〉 = 〈
FL

T (f s), f s
〉 − √−1T

〈
XH(f )s, f s

〉
. (3.19)

Now since f has compact support in U ′ and Supp(s)∩U ′ ⊂ U ′ \W , by proceeding in exactly
the same way as in [16, Section 2], one sees that there exist constants C7,C8 > 0 such that for
any T � 1,

Re
(〈
FL(f s), f s

〉)
� C7

(‖f s‖2 + (T − C8)‖f s‖2). (3.20)
T 1 0



1236 V. Mathai, W. Zhang / Advances in Mathematics 225 (2010) 1224–1247
From (3.11), (3.12), (3.15), (3.19) and (3.20), one sees that Proposition 3.1 holds for p0 = 1
in the case where g∗ admits an AdG-invariant metric.

The proof of Proposition 3.1 is completed. �
Remark 3.3. Note that in the general case where g∗ does not admit an AdG-invariant metric,
XH

G might not be the Hamiltonian vector field associated to HG. This makes it difficult here to
get the pointwise estimates like in [16, Proposition 2.2] at zeroes of XH

G , and partially explains
why we need to pass to the uniform estimate for p > 0 large.

Remark 3.4. Proposition 3.1 allows us to localize the proof of Theorem 1.1 to an arbitrarily small
open neighborhood of μ−1(0) ∩ U ′ in U ′, just as in [16] which relies on techniques developed
in [1].

Indeed, for any r > 0, let Wr denote the G-invariant open neighborhood of μ−1(0) in M such
that Wr = {x ∈ M: HG(x) < r}.

Since 0 ∈ g∗ is a regular value of μ and G acts on μ−1(0) freely, one sees easily that when
r > 0 is small enough, G also acts on Wr freely.

Lemma 3.5. One has that 0 ∈ R is a non-degenerate critical value of HG : M → R.

Proof. Let N be the normal bundle to μ−1(0) in M . Let gN be the G-invariant metric on N

induced by the G-invariant orthogonal decomposition

T M|μ−1(0) = T μ−1(0) ⊕ N, g
T M|

μ−1(0) = gT μ−1(0) ⊕ gN . (3.21)

Let P T μ−1(0), P N denote the orthogonal projections from T M|μ−1(0) to T μ−1(0) and N

respectively with respect to (3.21). Let ∇N be the connection on N defined by ∇N =
P N(∇T M |μ−1(0)) where ∇T M is the (G-invariant) Levi-Civita connection associated to gT M .

For any x ∈ μ−1(0), Z ∈ Nx , we identify Z with expTxM(Z) ∈ M . Since M/G is compact,
one verifies easily that when ε > 0 is small enough, the above map induces an identification from
Nε = {Z ∈ N : |Z| < ε} to its image in M .

For any y ∈ μ−1(0) with c(y) �= 0, let Uy be a small enough open neighborhood of y

in μ−1(0) such that c(y′) � 1
2c(y) > 0 for any y′ ∈ Uy , and that there exists εy > 0 and Cy > 0

such that H(y′,Z) � Cy |Z|2 for any Z ∈ Ny′ with |y′| � εy . Moreover, there is an open neigh-
borhood Gy of e in G such that c(g−1y′) � 1

4c(y) and H(g−1y′,Z) � 1
2Cy |Z|2 for any g ∈ Gy

and y′ ∈ Uy . The existence of Uy is clear.
For any x ∈ μ−1(0), let h ∈ G be such that c(h−1x) �= 0. Let Uh−1x be the open neighborhood

of h−1x constructed above. Then hUh−1x is an open neighborhood of x such that for any x′ ∈
hUh−1x and Z′ ∈ Nx′ with |Z′| � εh−1x , one has

HG

(
x′,Z′) =

∫
G

c
(
g−1hh−1x′)2 H

(
g−1x′, g∗Z′)dg (3.22)

� 1
c
(
h−1x

)2 vol(Gh−1x)Ch−1x

∣∣Z′∣∣2
. (3.23)
32
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By using again the fact that U ′ is compact, one can cover U ′ ∩ μ−1(0) by finite open subsets
of M verifying (3.22), from which one sees that there exist C > 0 and ε′ > 0 such that for any
x ∈ U ′ ∩ μ−1(0) and Z ∈ Nx with |Z| � ε′, one has

HG(x,Z) � C|Z|2. (3.24)

From (3.24) and the G-invariance of HG, Lemma 3.5 follows. �
From Lemma 3.5, one deduces the following key property.

Lemma 3.6. There exist ε0 > 0 and C > 0 such that for any x ∈ μ−1(0) and Z ∈ Nx with
|Z| � ε0, one has

∣∣XH
G (x,Z)

∣∣ � C|Z|. (3.25)

Proof. Recall that for any z ∈ M ,

XH
G (z) =

∫
G

c
(
g−1z

)2
XH

g dg. (3.26)

From (3.26) and [16, (1.14)], one verifies that

(dHG)∗(z) =
(

d

∫
G

c
(
g−1z

)2 H
(
g−1z

)
dg

)∗
(3.27)

= JXH
G (z) + 2

∫
G

H
(
g−1z

)
c
(
g−1z

)((
g∗(dc)

)
(z)

)∗
dg. (3.28)

Thus, one has

XH
G (z) = −J (dHG)∗(z) + 2J

∫
G

H
(
g−1z

)
c
(
g−1z

)((
g∗(dc)

)
(z)

)∗
dg. (3.29)

From (3.24), one sees that there exists C′ > 0 such that when z = (x,Z) is close enough
to μ−1(0), one has

∣∣(dHG)∗(z)
∣∣ � C′|Z|. (3.30)

On the other hand, since H(μ−1(0)) = 0 and (dH)|μ−1(0) = 0, one verifies easily that

∂

∂Z

(∫
G

H
(
g−1z

)
c
(
g−1z

)((
g∗(dc)

)
(z)

)∗
dg

)∣∣∣∣
Z=0

= 0. (3.31)

From (3.29)–(3.31), the G-invariance property, as well as the assumption that M/G is com-
pact, one gets (3.25). �
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Formula (3.25) is a direct analogue of [16, (3.17)] and [1, Proposition 8.14]. By this and by
Proposition 3.1, one sees that one can proceed in exactly the same way as in [1, Sections 8 and 9]
and [16, Section 3] to prove that for p > 0 verifying Proposition 3.1, when T > 0 is large enough,
one has

ind
(
Pf DLp

+,T

) = ind
(
D

L
p
G+
)
. (3.32)

Indeed, all one need is to modify suitably according to the appearance of the cut-off function f .
And it is easy to see that this only causes a modification of adding a compact operator to the
Fredholm operators involved and thus does not alter the indices in due course.

From (3.32), the obvious invariance of the independence of ind(Pf DLp

+,T ) with respect to T

(which follows from the Fredholm properties) and Definition 2.4, one completes the proof of
Theorem 1.1.

4. Vanishing properties of cokernels for large p

We take E = Λ0,∗((T ∗M) ⊗ Lp) as in Section 2 and Section 3.
Following Remark 2.6, let

D̃Lp

+ : H1
f

(
M,Λ0,even((T ∗M

) ⊗ Lp
))G → H0

f

(
Λ0,odd((T ∗M

) ⊗ Lp
))G

be the operator defined by

D̃Lp

+ (f s) = f DLp

+ s. (4.1)

From (4.1) and (2.9), one verifies that for any s ∈ Γ (Λ0,even((T ∗M) ⊗ Lp))G,

D̃Lp

+ (f s) = Pf DLp

+ (f s) − Pf

(
c(df )s

)
. (4.2)

By (4.2) and Proposition 2.1, one finds

ind
(
D̃Lp

+
) = ind

(
Pf DLp

+
)
. (4.3)

From (2.14) and (4.2), one finds that for any s′ ∈ Γ (Λ0,odd((T ∗M) ⊗ Lp))G,

(
D̃Lp

+
)∗(

f s′) = Pf DLp

−
(
f s′) + Pf

(
c(df )s′) = f DLp

− s′ + 2Pf

(
c(df )s′)

= DLp

−
(
f s′) − c(df )s′ + 2Pf

(
c(df )s′). (4.4)

From (2.6) and (4.4), one finds that there exists C1 > 0 such that

∥∥(
D̃Lp

+
)∗(

f s′)∥∥
0 �

∥∥DLp

−
(
f s′)∥∥

0 − C1
∥∥f s′∥∥

0. (4.5)

On the other hand, since U ′ has compact closure and f has compact support in U ′, by pro-
ceeding in exactly the same way as in [11, Section 2], one sees that there exist C2,C3 > 0 such
that for any s′ ∈ Γ (Λ0,odd((T ∗M) ⊗ Lp))G,

∥∥DLp

−
(
f s′)∥∥2 � (C2p − C3)

∥∥f s′∥∥2
. (4.6)
0 0
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From (4.5) and (4.6), one sees that when p � 2C3
C2

, one has

∥∥(
D̃Lp

+
)∗(

f s′)∥∥
0 �

(√
C2p

2
− C1

)∥∥f s′∥∥
0. (4.7)

From (4.7), one sees that when p � max{ 8C2
1

C2
,

2C3
C2

}, one has

∥∥(
D̃Lp

+
)∗(

f s′)∥∥
0 � 1

2

√
C2p

2

∥∥f s′∥∥
0, (4.8)

from which one gets

ker
(
D̃Lp

+
)∗ = 0. (4.9)

From (4.1) and (4.9), one deduces the following result.

Theorem 4.1. There exists p0 � 0 such that for any integer p � p0,

ind
(
D̃Lp

+
) = dim

(
KerDLp

+
)G

. (4.10)

Proof of Theorem 1.3. By the vanishing theorem due to Borthwick and Uribe [2], Braver-
man [4] and Ma and Marinescu [11], one sees that when p > 0 is large enough,

ind
(
D

L
p
G+
) = dim

(
KerD

L
p
G+
)
. (4.11)

From Theorem 1.1, Definition 2.4, (4.3), (4.10) and (4.11), one sees that the first equality
in (1.3) holds when p > 0 is large enough.

By using (4.6), one can proceed as in the proof of (4.8) to see that when p > 0 large enough,
the second equality in (1.3) also holds.

The proof of Theorem 1.3 is completed. �
Remark 4.2. Formula (4.9) and the second equality in (1.3) might be regarded as extensions of
the vanishing theorem of the half kernel of Spinc-Dirac operators due to Borthwick and Uribe [2],
Braverman [4] and Ma and Marinescu [11] to the non-compact case.

5. Examples and applications

The main source of examples can be found in the papers of Hochs and Landsman [9] and
Hochs [7], [8] and [19]. In some of their examples, zero is not in the image of the moment map.
In this case, by Theorem 1.3, for p sufficiently large, we deduce that the G-invariant kernels
of DLp

+ and of DLp

− both vanish. That is, for p sufficiently large, DLp
is invertible on the G-

invariant sections in this case.
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Another collection of examples consists of a finitely generated discrete group G acting prop-
erly on a locally compact symplectic manifold (M,ω) such that M/G is compact. In this case,
the moment map is trivial, so that the symplectic reduction of M is just M/G, which is generally
only an orbifold. In the special case when G acts freely and properly discontinuously on M , so
that M/G is a manifold, then Theorem 1.1 is well known and for instance it can be deduced from
a result of Pierrot [14].
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Appendix:
A KK-theoretic interpretation of the G-invariant index

of Mathai–Zhang

by
Ulrich Bunke

Appendix A. The class [D]

We consider a locally compact group G which acts properly on a manifold M with compact
quotient. On M we consider a G-invariant Riemannian metric and a G-invariant generalized
Dirac operator D which acts on sections of a G-equivariant bundle F → M equipped with a
G-equivariant Dirac bundle structure. The G-C∗-algebra C0(M) acts on the G-Hilbert space
E := L2(M,F). The Riemannian manifold M is complete, and therefore by [3] the operator D is
essentially self-adjoint on this Hilbert space with domain Cc(M,F). We consider the G-invariant
operator F := D(D2 + 1)−1/2 defined by function calculus applied to the unique self-adjoint
extension of D. The pair (L2(M,F), F ) is a G-equivariant Kasparov module (see [5], [1])
over (C0(M),C) and represents a class [D] ∈ KKG(C0(M),C).

The group

KG(M) := KKG
(
C0(M),C

)
is called the G equivariant K-homology group of M .

Appendix B. Descent and assembly

Let C∗(G) denote the maximal group C∗-algebra. In this appendix we provide an explicit
description of the Baum–Connes assembly map

μ : KG(M) → K
(
C∗(G)

)
.

Let us first fix some conventions. If A is a C∗-algebra with an action ρ : G → Aut(A), then we
define the convolution product on C0(G,A) by

φ ∗ ψ(h) =
∫
G

φ(g)ρ(g)
[
ψ

(
h−1g

)]
dg,

where dg denotes the left-invariant Haar measure on G. The modular character δ : G → R
∗ is

defined by

d
(
g−1) = δ(g)dg.

The adjoint ∗∗ : A → A is the anti-involution given by

φ∗∗(g) := ρ(g)
[
φ
(
g−1)∗]

,
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where a 
→ a∗ is the anti-involution of A. The C∗-algebra C∗(G,A) is the maximal cross product
of G with A and defined as the closure of the convolution algebra Cc(G,A) with respect to the
norm

‖φ‖ = sup
κ

∥∥κ(φ)
∥∥,

where the supremum is taken over all ∗-representations κ of Cc(G,A). The maximal group
C∗-algebra C∗(G) = C∗(G,C) is obtained in the special case where A := C has the trivial
action of G. The other important example for the present note is the C∗-algebra C0(M) with the

action (g, f ) 
→ g∗f !:= f ◦ g−1, g ∈ G, f ∈ C0(M).
There is the descent homomorphism

jG : KG(M) ∼= KKG
(
C0(M),C

) → KK
(
C∗(G,C0(M)

)
,C∗(G)

)
introduced in [5, 3.11] (we will give the explicit description in the proof of Lemma E.1).
Following [4, Chapter 10] we choose a non-negative cut-off function c ∈ C∞

c (M) such that∫
G

g∗c2 dg ≡ 1. Then we define the projection P ∈ C∗(G,C0(M)) by

P(g) = cg∗cδ(g)1/2 ∈ Cc(M). (B.1)

Since G acts properly on M we observe that P ∈ Cc(G,C0(M)). The relations P 2 = P = P ∗
are straightforward to check,

P 2(g,m) =
∫
G

c
(
h−1m

)
c(m)δ(h)1/2c

(
g−1hh−1m

)
c
(
h−1m

)
δ
(
h−1g

)1/2
dh

= c
(
g−1m

)
c(m)δ(g)1/2 = P(g,m),

P ∗(g,m) = c
(
g−1m

)
c
(
gg−1m

)
δ
(
g−1)1/2

δ(g) = P(g,m).

Let [P ] ∈ K0(C
∗(G,C0(M))) ∼= KK(C,C∗(G,C0(M))) be the class induced by P , which is

independent of the choice of c, since any two such functions c0, c1 can be joined by a path

ct :=
√

tc2
0 + (1 − t)c2

1 which induces a corresponding path of projections.

Definition B.1. The assembly map μ : KG(M) → K(C∗(G)) ∼= KK(C,C∗(G)) is defined as the
composition

KKG
(
C0(M),C

) jG

−→ KK
(
C∗(G,C0(M)

)
,C∗(G)

) [P ]⊗C∗(G,C0(M))···−→ KK
(
C,C∗(G)

)
.

Appendix C. The index

The non-reduced group C∗-algebra of G has the universal property that any unitary represen-
tation of G extends to a representation of C∗(G). In particular, the trivial representation of G

on C has an extension 1 : C∗(G) → C. On the level of K-theory it induces a homomorphism
I : K0(C

∗(G)) → K0(C) ∼= Z.
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If we identify

K
(
C∗(G)

) ∼= KK
(
C,C∗(G)

)
,

then the homomorphism I can be written as a Kasparov product · · · ⊗C∗(G) [1], where [1] ∈
KK(C∗(G),C) is represented by the Kasparov module (C,0).

Definition C.1. We define index : KG(M) → Z to be the composition

KG(M)
μ−→ K

(
C∗(G)

) I−→ Z.

Appendix D. A model

Let ε : G → C
∗ be a character. By L2

loc(M,F)Gε we denote the space of locally square inte-
grable sections of F which transform under G with character ε, i.e. which satisfy

g∗φ = ε(g)φ

for all g ∈ G. Multiplication by c defines a map c : L2
loc(M,F)Gε → L2(M,F). This map is

actually injective and has a closed range Hε ⊆ L2(M,F). In order to see this we define the
continuous maps Eε : L2(M,F) → L2

loc(M,F)Gε and Qε : L2(M,F) → Hε by

Eε(φ) :=
∫
G

ε−1(g)g∗(cφ)dg, Qε(φ) := cEε(φ).

Indeed, we have

h∗Eε(φ)(l) =
∫
G

ε−1(g)(cφ)
(
g−1h−1l

)
dg

=
∫
G

ε−1(h−1z
)
(cφ)

(
z−1l

)
dz

= ε(h)Eε(φ)(l).

For φ ∈ L2
loc(M,F)Gε we have Eε(cφ) = φ, since

Eε(cφ)(h) =
∫
G

ε−1(g)g∗c2(h)g∗φ dg

=
∫
G

g∗c2(h)φ(h)dg

= φ(h).

This implies injectivity of c, and furthermore Qε(cφ) = cφ. Therefore Qε is a projection onto Hε

which is in fact orthogonal for ε = δ−1/2, the square root of the modular character,
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〈Qδ−1/2φ,ψ〉 =
〈
c

∫
G

g∗(cφ)δ1/2(g) dg,ψ

〉
=

∫
G

〈
g∗(cφ), cψ

〉
δ1/2(g) dg

=
∫
G

〈
cφ,

(
g−1)∗

(cψ)
〉
δ1/2(g) dg

!=
∫
G

〈
cφ,g∗(cψ)

〉
δ1/2(g) dg

=
〈
φ, c

∫
G

g∗(cψ)δ1/2(g) dg

〉
= 〈φ,Qδ−1/2ψ〉,

where we use for the marked equality that the measure δ1/2(g) dg is invariant with respect to
inversion g 
→ g−1.

The map c further induces an injective map of Sobolev spaces

c : H 1
loc(M,F)Gε → H 1(M,F),

and we let H 1
ε ⊆ H 1(M,F) denote the closed image under c.

We define the operator D̃ε : H 1
ε → Hε by

D̃ε(cf ) = QεD(cf ). (D.1)

Lemma D.1. The operator D̃ε : H 1
ε → Hε is Fredholm.

Proof. To see this we first choose a G-invariant parametrix R for D which is a G-invariant
pseudo-differential operator of order −1 with finite propagation. This operator induces a G-
equivariant map R : L2

loc(M,F) → H 1
loc(M,F), and therefore

R̃ε := cREε|Hε : Hε → H 1
ε .

We have

D̃εR̃ε = QεDcREε = QεcEε + Qε[D,c]REε + Qεc(DR − 1)Eε.

Using that QεcEε|Hε = 1Hε , and that [D,c] = c(dc) and c are compactly supported operators of
order zero, and R and DR − 1 are of order −1 we see that D̃εR̃ε − 1Hε is compact. In a similar
manner we show that R̃εD̃ε − 1H 1

ε
is compact. �

Note that the index of the operator D̃1 associated to the trivial character is studied in the main
text by Mathai–Zhang. On the other hand, we will see in Proposition D.3 that the index of the
operator D̃δ−1/2 is equal to index([D]). The following result connects both cases.

Lemma D.2. We have index(D̃1) = index(D̃δ−1/2).

Proof. The main idea is that δ1/2 can be connected with the trivial character by the contin-
uous path of characters εt := δ−t/2, t ∈ [0,1]. Let I := [0,1] and consider the C(I)-Hilbert-
modules C(I,L2(M,F)) and C(I,H 1(M,F)). The family of operators Qεt defines projec-
tions Q on C(I,L2(M,F)) and C(I,H 1(M,F)) with images H and H 1. Furthermore, the
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family D̃εt induces an operator D̃ : H 1 → H 0 whose parametrix R̃ is given by the family R̃εt .
These data give a Kasparov module

(
H 1 ⊕ H,

(
0 R̃

D̃ 0

))

over C(I) which is a homotopy (see [1]) between the Kasparov modules

(
H 1

1 ⊕ H1,

(
0 R̃1

D̃1 0

))
,

(
H 1

δ−1/2 ⊕ Hδ−1/2 ,

(
0 R̃δ−1/2

D̃δ−1/2 0

))

representing index(D̃1) and index(Dδ−1/2). �
We can now formulate the main assertion of this note:

Proposition D.3. We have index([D]) = index(D̃δ−1/2).

Appendix E. Proof of Proposition D.3

We first apply jG to the Kasparov module (L2(M,F), F ) representing [D]. Note that by
the universal property of the maximal crossed product the compatible G and C0(M)-actions
on L2(M,F) extend to an action of C∗(G,C0(M)).

Lemma E.1. jG([D])⊗C∗(G) [1] ∈ KK(C∗(G,C0(M)),C) is represented by the Kasparov mod-
ule (L2(M,F), F ).

Proof. According to [5, 3.11], jG([D]) is represented by (C∗(G,L2(M,F)), F̃ ), where
C∗(G,L2(M,F)) is a right C∗(G)-module with a left action by C∗(G,C0(M)). It is a closure
of the space of compactly supported continuous functions f : G → L2(M,F). The operator F̃
is given by (F̃ f )(g) = (F f )(g). The C∗(G)-valued scalar product is given by

〈f1, f2〉(g) =
∫
D

〈
f1(h), f2(hg)

〉
dg.

Furthermore, the left action of C∗(G,C0(M)) is given by

(φf )(g) =
∫
G

φ(h)
(
h∗f

)
(g) dh.

Note that C∗(G,L2(M,F)) ⊗C∗(G) C ∼= L2(M,F) via

f ⊗ v 
→
∫

f (g)dgv.
G
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Therefore jG([D])⊗C∗(G) [1] is represented by the Kasparov module (L2(M,F), F ), where the
left action of C∗(G,C0(M)) on L2(M,F) is given by

(φf ) =
∫
G

φ(h)h∗f dh. � (E.1)

We now compute [P ] ⊗C∗(G,C0(M)) (jG([D]) ⊗C∗(G) [1]). We represent [P ] by the Kasparov
module (PC∗(G,C0(M)),0). We must understand PC∗(G,C0(M))⊗C0(M) L

2(M,F). The op-
erator Qδ−1/2 := cEδ−1/2 is the orthogonal projection L2(M,F) → Hδ−1/2 . If we combine the
formula (E.1) for the action of C∗(G,C0(M)) on L2(M,F) with the definition (B.1) of P we
see that the projection P acts as Qδ−1/2 , and

PC∗(G,C0(M)
) ⊗C∗(G,C0(M)) L2(M,F) = PL2(M,F)

= Qδ−1/2L
2(M,F) = Hδ−1/2 .

Let L : Hδ−1/2 → L2(M,F) denote the inclusion. Since Qδ−1/2 is orthogonal, the operator (D.1)
can be written in the form

D̃ = L∗DL

which makes clear that it is self-adjoint. We form F̃ := D̃δ−1/2(1 + D̃∗
δ−1/2D̃δ−1/2)−1/2. The Kas-

parov module (H, F̃ ) over (C,C) represents index(D̃δ−1/2) ∈ Z under KK0(C,C) ∼= Z. The
assertion of Proposition D.3 immediately follows from

Lemma E.2. [P ] ⊗C∗(G,C0(M)) (jG([D]) ⊗C∗(G) [1]) is represented by the Kasparov module
(H, F̃ ).

Proof. In order to show the claim we employ the characterization of the Kasparov product in
terms of connections (see [5, 2.10]). In our situation we have only to show that F̃ is an F -
connection.

For Hilbert-C∗-modules X,Y over some C∗-algebra A let L(X,Y ) and K(X,Y ) denote
the spaces of bounded and compact adjoinable A-linear operators (see [1] for definitions). For
ξ ∈ PC∗(G,C0(M)) we define θξ ∈ L(L2(M,F),H) by θξ (f ) = ξf . Since F and F̃ are self-
adjoint, we only must show that

θξ ◦ F − F̃ ◦ θξ ∈ K
(
L2(M,F),H

)
.

We have ξ F − F̃ ξ = [ξ, F ] + (F − F̃ )P ξ . Since [ξ, F ] is compact it suffices to show
that (F − F̃ )P is compact. We consider D := (1 − P)D(1 − P) + LD̃L∗. Then by a simple
calculation we have D = D + R, where R is a bounded operator. Let F := D(1 + D2)−1/2.
Then (F − LF̃ L∗)P = (F − F )P . Let c̃ ∈ C∞

c (M) be such that cc̃ = c. Then we have
(F̂ − F )P = (F − F )c̃P . Therefore it suffices to show that (F − F )c̃ is compact. This can
be done using the integral representations for F and F as in [2]. �



V. Mathai, W. Zhang / Advances in Mathematics 225 (2010) 1224–1247 1247
References

[1] Bruce Blackadar, K-Theory for Operator Algebras, second edition, Math. Sci. Res. Inst. Publ., vol. 5, Cambridge
University Press, Cambridge, 1998.

[2] Ulrich Bunke, A K-theoretic relative index theorem and Callias-type Dirac operators, Math. Ann. 303 (2) (1995)
241–279.

[3] Paul R. Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations, J. Funct. Anal. 12 (1973)
401–414.

[4] Erik Guentner, Nigel Higson, Jody Trout, Equivariant E-theory for C∗-algebras, Mem. Amer. Math. Soc. 148 (703)
(2000), viii+86 pp.

[5] G.G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91 (1) (1988) 147–201.


	Geometric quantization for proper actions
	Introduction
	The invariant index for proper cocompact actions
	The geometric quantization formula for proper actions
	Vanishing properties of cokernels for large p
	Examples and applications
	Acknowledgments
	References
	The class [D]
	Descent and assembly
	The index
	A model
	Proof of Proposition D.3
	References


