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Abstract: We establish a general splitting formula for index bundles of families of
Dirac type operators. Among the applications, our result provides a positive answer
to a question of Bismut and Cheeger [BC2].

Introduction

Due to the increasing influence of the topological quantum field theory (cf. [A]),
it becomes very important to study the behavior of natural analytic invariants un-
der the splitting of manifolds. The first splitting formula, for the most fundamen-
tal invariants—the index of Dirac operators, was proved by Atiyah-Patodi-Singer
[APS], in relation with their index theorem for manifolds with boundary. There is
also an alternative approach surrounding the "Bojarski conjecture". For the latter
see the book of Booss-Wojciechowski [BW1] for a thorough discussion.

In this paper, we treat the index bundles associated to families of Dirac type
operators in this framework. Although our results should play a role in the topolo-
gical field theory, our original motivation is in fact to answer a question of Bismut
and Cheeger [BC2, Remark 2.3].

There are family versions of the Atiyah-Patodi-Singer index theorem due to
Bismut-Cheeger [BC1,BC2] and subsequently Melrose-Piazza [MP1,MP2] among
others. These formulas do imply the splitting formula for the Chern character of
index bundles but fail to work on the level of A^-theory. It is the purpose of this
paper to establish the desired splitting formula in full generality on the AT-theoretic
level.

For a family of Dirac operators acting on a closed manifold Z and parametrized
by B, the index bundle lives in either the K or Kl group of the parameter space B,
depending on the parity of dim Z (See [AS1 and AS2]). Now let 7 be a (family
of) closed hypersurface in Z separating it into two pieces Z\, Z2. Since Z\ and Z2

are now (families of) manifolds with boundary, we impose a boundary condition
as in [MP1,2] by choosing a spectral section (c/(l)-spectral section if dim 7 is
even). This is a generalization of the (now classical) Atiyah-Patodi-Singer bound-
ary condition to the family situation. Thus let P\, P2 be two spectral sections (again,
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c/( 1 )-spectral sections if dim 7 is even). These give rise to well-defined index bun-
dles ind(Dz1? PI), md(Dz2,1 — ̂ 2)- Moreover, according to [MP1,2], the difference
[Pi -P2] also defines an element of ̂ dimZ(£).

Theorem 1.1. The following identity holds in KάimZ(B\

mάDz = ind(Z)Zl,Pι) + ind(Z>Z2,1 - P2) + [Pi - P2] (1.8)

In their study of the family index for manifolds with boundary [BC2], Bismut-
Cheeger obtained a certain additivity property for the Chern character of the index
bundle. They then raise the question of whether the additivity already holds in
^-theory. Theorem 1.1 provides an affirmative answer to their question.

The general idea here is to reduce the problem to the (finite) cylinder, although
our methods of proof are quite different in the two cases where dimZ is even,
resp. odd. In the first case we make essential use of Calderon projections, similar to
the approach of Bojarski as developed in [BW1]. Roughly speaking, the Calderon
projection, say, defined by (Z\9 DZl), is the projection onto the boundary values of
harmonic spinors on Z\. Thus contribution to the index bundle from Z\ is effectively
encoded in this projection, which lives in 7. This explains why the index bundle
of the whole manifold is actually the same as that of a collar of the separating
hypersurface, with the Calderon projections as the boundary conditions. However,
Calderon projections are definitely not spectral sections, and for this reason, we
introduce the notion of a generalized spectral section and deal with the splitting
problem in this general framework.

Another point we would like to make is that, unlike the case of a single operator,
the computation on the cylinder is far from immediate. In fact we use the cylinder to
construct a natural deformation (or, homotopy) of a generalized spectral section and
employ a perturbation argument of Atiyah-Singer [AS1] to construct a "majorizing"
generalized spectral section.

In the second case, the reduction to the cylinder is accomplished by adapt-
ing a beautiful idea of Bunke [Bu] in his approach to the splitting formula for
η invariants. In this case we do not have to go to generalized spectral sections
and the "majorizing spectral section" is constructed in [MP1,2]. It thus turns
out that the splitting problem for family indices is much simpler than it was
expected.

There is also a very interesting approach to splitting formulas of index bundles
from the symplectic point of view due to Nicolaescu [N]. Although his splitting
formula does not reach the generality as we stated in this paper, Nicolaescu mainly
concentrates on the real case (vs. the complex case treated here) which is more
complicated.

The rest of this paper is organized as follows. In Sect. 1, we introduce the
notations and state the main splitting theorem of this paper. In Sect. 2, we give a
proof of the splitting formula for the even dimensional fiber case and, in the process,
prove several results which seem to have some interest of their own. Theorem 2.13
generalizes the relative index theorem of [MP1]. And Theorem 2.14 relates the
index bundle of a family of Dirac operators on manifolds with boundary to the
index bundle of some Toeplitz type operators on the boundary. Finally in Sect. 3,
we give the proof of the result for the odd dimensional fiber case.
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1. A Splitting Formula for the Families Index

Let πz : Z — >• M — *> B be a smooth fibration with compact base and connected closed
fibers. We assume that TZ is spin and carries a fixed spin structure.

Let πγ : Y —> M1 — > B be a subfibration of πz such that for each b G B, Yb =
πγl(b) is a closed hypersurface of Zb = π^l(b)9 cutting Zb into two disjoint pieces

Zb = Zιίb\JZ2,b, with ZlbΠZ2,b = Yb. (1.1)

Thus we have also two induced fibrations of manifolds with boundary πz, : Z/ — >
M/ — + #, / = 1,2, with the intersection fibration πy.

We identify a neighborhood of M' in M with π' : [-2,2] x Y -> ί/ = [-2,2] x
M' — > 5, with {0} x 7 = Y. Also we specify the sides of M/, z = 1,2 by requiring
that MI Π [-2,0] x M7 = [-2,0] x M7.

We fix on TY the orientation induced from TZ\. Then TY carries a canonically
induced spin structure.

As usual we require product structures on the collar. Thus, let gτγ be a metric
on TY. Choose the metric gτz on TZ so that

where t is the parameter of [-2,2]. Let S(TZ) be the spinor bundle of (ΓZ,#ΓZ). If
dimZ is even, then one also has the canonical splitting S(TZ) = S+(TZ) 0 S_(ΓZ).

Also, let 7i£ : £ — » M be a complex vector bundle over M and gE be a metric
on E such that 0^|ί/ does not depend on t. Let VE be a unitary connection on
(E,gE) such that V^|t/ does not depend on t.

These data give rise to the family of (twisted) Dirac operators, DZb (b £ B)
acting on Γ(S(TZb) ® Eb). If dimZ is even, we use the same notation Dzb to denote
its restriction on Γ(S+(TZb)®Eb). Let Dzlb, i = 1, 2 be the restriction of DZb on
zα.

Let S(7Y) be the spinor bundle of (TY,gτγ\ If dim Y is even, then the Clifford
action c( jj) on the boundary of MI determines the canonical Z2 splitting S(TΎ) =
S+(TY) ® S-(ΊΎ).

For any b £ B, let Dyά be the (twisted) Dirac operator acting on Γ(S(TYb)®
E\γb) canonically constructed from gτγ,gE and VE. Again in case dim 7 is even,
we use the same notation DYb for its restriction on Γ(S+(TYb) ® E\Yb).

We therefore obtain four smooth families of Dirac operators DZ, Dzl9 Dz2 and
Dy over B, among which two have well-defined index bundles ([AS1,AS2]) (a
suspension construction is involved for the odd dimensional family):

πκLDz E^dimZ(£) (1.3)

and
indDy £KάimY(B). (1.4)

Now since πy is a boundary family, by the cobordism invariance of family
indices (cf. [Sh, MP1 and MP2]), one has

mάDγ = Q. (1.5)

It follows from [MP1,MP2] that there exist (c/(l)- if dim 7 is even) spectral sec-
tions of DY (see also Sect. 2 for more details).
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Let P j , i = 1,2 be two (c/(l)- if dim 7 is even) spectral sections of Dγ. Then
by [MP1, MP2], one obtains two families of elliptic (self-adjoint if dimZ is odd)

boundary problems: (DZl, PI) = {(DZlb, Pιίb)}beB and (£>z2, 1 - P2) = {Φz2,,, 1 -
P2ίb)}beB And according to [MP1,MP2, AS1 and AS2], one gets well-defined index
bundles

ind(DZ2, 1 - P2) 6 KάimZ(B). (1.6)

On the other hand, there is also a K-group element naturally associated to P\,
P2 denoted by ([MP1,MP2])

[Pi -Pι\ eKάimZ(B). (1.7)

The main result of this paper can now be stated as follows.

Theorem 1.1. The following identity holds in Kά[mZ(B\

,, Λ) + indφz2, 1 - P2) + [Pi - PΪ\ (1.8)

Remark 1.2. Equation (1.8) on the cohomological level is immediate from the index
formulas in [MP1 and MP2].

Remark 1.3. In the case where dimZ is even and that kQΐDγb are of constant
dimension, Theorem 1.1 provides a positive answer to a question of Bismut and
Cheeger [BC2, Remark 2.3].

Remark 1.4. Theorem 1.1 holds in fact for general Dirac type operators as our
proof in the next two sections works in such a generality. For the simplicity of our
presentation, we content ourselves with the pure (twisted) Dirac operators case.

2. Splitting: The Even Dimensional Case

In this section we present a proof of Theorem 1.1 for the case where dimZ is even.
It turns out that, for our purpose, we need a generalized version of the concept
of the spectral section of Melrose and Piazza [MP1]. This is because we want to
emphasize the role of Calderon projections.

We make the same assumptions and use the same notation as in Sect. 1. We
also make the extra assumption that dimZ is even in this section.

This section is organized as follows. In a), we introduce generalized spectral
sections and present their basic properties. In b), we prove a family version of the
Bojarski theorem. In c), we prove a family index theorem for cylinders which has
been used in b). In d), we prove a relative family index theorem and use it to
complete the proof of Theorem 1.1.

α) Generalized spectral sections. We first recall the definition of the spectral section
for the family Dγ in [MP1]. By definition a spectral section P of Dγ is a continuous
family P = {Pb}b^B of self-adjoint zeroth order pseudodifferential projections of
L2(S(TYb)®E\γb) such that for any b G B, Pb is a finite dimensional perturbation
of the Atiyah-Patodi-Singer [APS] projection P-^j of Dγb. In particular they all
have the same principal symbol. In view of (1.5), the existence of P is clear via
[MP1].
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We now give the definition of what we call generalized spectral sections.

Definition 2.1. A generalized spectral section Q of Dγ is a continuous fam-
ily of self-adjoint zeroth order pseudodίfferential projections Q = {Qb}b£B with
Qb : L2(S(TYb) ®E\Yb) -* L2(S(TYb)®E\γb\ such that the principle symbol of Q
is the same as that of a spectral section P.

Remark 2.2. As in [MP1], the generalized spectral section can be defined for any
family of self-adjoint elliptic first order pseudodifferential operators with vanishing
index bundle.

Remark 2.3. There are in fact many equivalent definitions of generalized spectral
sections. For example one can use the language of the infinite dimensional Grass-
mannian discussed in [BW1]. Also one can use the infinite dimensional Lagrangian
subspaces as used by Nicolaescu in [N].

One of the most important examples of generalized spectral sections is the fol-
lowing.

Example 2.4. For any b G B, let C/^, / = 1 , 2 be the Calderon projection on
L2 (S(TYb) ®EYb) associated to DZιb (see [BW1] for more details). Then Ci, 1 - C2

are both generalized spectral sections of Dγ (Compare also with [BW1 and N]).

Remark 2.5. In the above example one should be careful about the different orien-
tations on the boundary induced from two bounding pieces. Also, the continuity of
Calderon projections follows easily from the construction, see [Se] (cf. also [BW1,
N]).

We now state some basic properties of generalized spectral sections.
Let Qι, Q2 be two generalized spectral sections of Dγ. For any b e B, set

= Q2,bQι,h : QιLS(ΓYb) ® E\Yb) -> Q2L\S(TYb) ® E n). (2.1)

Then T(Q\>Qι) = {Tb(Q\,Q2)}b^B forms a continuous family of Fredholm operators
over B. Thus according to Atiyah-Singer [AS1], it determines an element

[βi - 62] = indΠβi.βz) G K(B). (2.2)

In particular, if Q\ and Qi are two spectral sections in the sense of [MP1], then one
verifies easily that \Q\ — Qτ\ is the same difference element as defined by Melrose-
Piazza [MP1] (see also (1.7)).

Definition 2.6. Two generalized spectral sections Q\,Q^ of DY are said to be ho-
motopίc to each other if there is a continuous curve of generalized spectral sections
Pu,0^u^l, ofDY such that Qλ = P0, 62 = P\

The following two properties follow easily from some elementary arguments
concerning Fredholm families.

Proposition 2.7. If Qi9 i= 1,2,3, are three generalized spectral sections of DY

such that Q\ and Qi are homotopic to each other, then one has

[Qi-Qί] = [&-&] in K(B). (2.3)
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Proposition 2.8. If Qiy i= 1,2,3 are three generalized spectral sections of Dγ,
then the following identity holds in K(B\

[βi - Q2\ + \Qι - ft] = [β. - ft] (2.4)

Homotopic generalized spectral sections can be constructed in the following way,
which will be used in our proof of the splitting theorem. Given a generalized spectral
section Q of Dγ9 let V — [0, 1] x 7 be the cylinder and Dv the Dirac operator on
V. Consider the subspace (for simplicity we are suppressing the bundles here)

Hi = {«l{i}χy : « Ξ Hϊ(V)9 Dvu = 0, βo(κ|{o}χy) = 0}.

Let I — Q\ denote the orthogonal projection from L2(Y) onto H\.

Proposition 2.9. Q\ defines a generalized spectral section which is homotopic to

βo

Proof. We first show that Q\ defines a generalized spectral section. Let

H(DV) = {u\dv : u G Hλ2(V\ Dvu = 0}

be the Cauchy data space of Dγ and C the Calderon projection. Also, denote
H(Q0) = Imgo x L2(Y). If we denote P the projection of L2(Y) x L2(Y) onto the
intersection H(Dγ) Π//"(βo), then the second component is precisely I — Q\. There-
fore it suffices to show that P is a pseudodiίferential operator of order 0, with the
correct principal symbol.

Consider the map

R : L2(Y) x L2(7) — > L2(Y) x L2(Y) x L2(Y\

taking (MI, u2) to ((I — C)(u\, M2), QQU\). This is a pseudodifferential operator of
order 0 whose kernel is precisely the space H(Dy)nH(Qo). By a result of Seeley
[Se], P is also a pseudodifferential operator of order 0. Moreover one can compute
its principal symbol from that of R. Since the principal symbol of R is given by
that of a spectral section, one verifies the same for P.

Now, for 0 ^ t ^ 1 define

Ht = {u\{t}xY : u G Hϊ(V\ Dvu = 0, Qo(u\{0}xY) - 0},

and Qt accordingly. By the above discussion, for each t, Qt is a generalized spectral
section. To see that this defines a continuous family connecting QQ and Q\ , note that
Ht is the intersection of the Cauchy data space of Vt = [0, t] x Y with the space
Im(?o x L2(Y). Since the Cauchy data space varies continuously with the parameter,
so is Ht. D

b) Family index: A Bo jar ski type theorem. Recall from Example 2.4 that C\, €2 are
the families of Calderon projections of Z)z1? Dz2 respectively. Thus C\ and 1 — CΊ
forms two generalized spectral sections of Dγ.

The main result of this subsection is the following generalization to fibrations
of the Bojarski theorem stated in [BW1, Theorem 24.1].
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Theorem 2.10. The following identity holds in K(B\

Proof. In what follows, we will suppress the subscript b forb^B most of the
time. All the constructions below are understood fiberwise unless stated otherwise.
Also, while being fiberwise, all the procedures will be continuous with respect to
b E B, as will be clear from the context. We will not keep repeating this every time.

Let Zι(-l), Z2(l) be defined by

ZK-1) = Z!-(-l,0]x7,

22(1) = Z 2 -[0, l )x7. (2.6)

Let C\(— 1), C2(l) be the Calderon projections of Z)Zl(-i)> ^>z2(i) respectively. From
the product structures on the collar,

+fl") on u (2 7)

We denote [-1, 1] x Y = V. Let //1(^Cι(-l),C2(l)) be the Hubert space de-
fined by

= {ueHl(V,(S+(TZ)®E)\y):

{ 1 } x y=0}. (2.8)

Then by the unique continuation property of Dirac type operators and
by the definition of Calderon projections (see [BW1] for both), for any u G
//1(F,Cι(-l),C2(l)), there is a unique element u G Hl(Z,S+(TZ)®E) such that

= 0. (2.9)

In this way //1(K,Cι(-l),C2(l)) embeds as a Hubert subspace ofHl(Z,S+(TZ)
). We still note this subspace by 7/1(F,Cι(-l),C2(l)). Of critical importance

here is to note that this embedding is again continuous with respect to b G B.
Let H^ be the orthogonal complement o f H l ( V , Cι(-l), C2(l)) in Hl(Z,S+(TZ)

®E). Denote Λ the orthogonal projection from Hλ(Z,S+(TZ)& E) to

On the other hand, L2(Z,S_(ΓZ) (g) £") has the natural orthogonal splitting

)|z2(i)). (2.10)

Let P be the orthogonal projection from L2(Z,S-(TZ) ®E) to L2(F,(S_(7Z)(8)
^)|F)

Now consider the Fredholm operator
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First of all one has clearly that

(1-P)DZR = Q. (2.11)

Thus DZ has the following decomposition:

Dz = (l-P)Dz(l-R)+PDzR + PDz(l-R). (2.12)

The following lemma is critical to our proof.

Lemma 2.11. The operator (1 — P)DZ(\ — R) is ίnυertible.

Proof, (i) Let α G Hl(Z,S+(TZ) ®E) be such that

(l-P)D z(l-Λ)α = 0. (2.13)

By (2.11), one gets

0. (2.14)

By definition this means that £>zα = 0 on Z\(— 1) UZ2(1), which implies that
α G ImR. Thus one has ker((l - P)DZ(\ - R)} = 0.

(ii) Let β G L2(Z,S-(TZ)®E) be such that

l - Λ ) α , j 8 ) = 0 (2.15)

for any α G Hl(Z,S+(TZ) ®E). Once again by (2.11) and also by the self-
adjointness of P9 one gets

(Dz*,(l-P)β)=0. (2.16)

This implies (1 — P)β G kerDf. Now £>f is also a Dirac operator while (1 — P)β\v
= 0. By the unique continuation property of Dirac operators one sees (1 — P)β —
0. Now as DZ is a Fredholm operator while an orthogonal projection maps a closed
subspace to a closed subspace, one sees again from (2.11) that Im((l — P)Dz(l —
R)) is closed. Thus we get coker((l - P)DZ(\ - R)) = 0.

Combining (i), (ii), we finish the proof of the lemma. D

Now for any u G [0, 1], set

P)Dz(l - R) + PDZR + uPDz(l - R}. (2.17)

By the invertibility of (1 — P)Dz(l — R)9 one verifies directly that for each u G
[0, 1], DZ(U) is a Fredholm operator.

In summary, what we have is a continuous curve of continuous families of Fred-
holm operators Dz(u) = {DZb(u)}b^B, u G [0, 1]. Thus by the homotopy invariance
of the index bundle one gets

indDz = indDz(l) - indDz(0) = ind(l - P)Dz(l -R) + inάPDzR

= inάPDzR = ind(ZV,d(-l), 1 - C2(l)), (2.18)

where (ZV, C\(— 1), 1 — C2(l)) is the corresponding family of elliptic boundary
problems on the cylinders V = {Vb}beB>

The evaluation of the left cylindrical family index will be carried out in the next
subsection.
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c). The family index for cylinders. In this subsection we prove the following result.

Theorem 2.12. Let P, Q be two generalized spectral sections ofDγ. Let (Dv,P,Q)
be the family of elliptic boundary problems defined by

(l-P)ι/| {_ I } χ y = 0, Qu\{l}xγ = 0}. (2.19)

Then the following identity holds in K(B),

P9Q) = [P-Q]. (2.20)

Proof, (i) If the kernels of the family of the Fredholm operators Tb(P9 Q\ b <G B,
defined in (2.1) have constant dimension, then (2.20) can be verified directly with
the help of Proposition 2.9 and Proposition 2.7.

(ii) In the general case, by applying the procedure in [AS1] to the family of
Fredholm operators

T(\ -Q,l-P):(l- Q)L2(Y,S(TY)®E\Y) -> (1 -P)L2(Y,S(IΎ)®E\Y),

(2.21)

one constructs easily a generalized spectral section R of Dγ such that

(1 -Q)L2(Y,S(ΊΎ)®E\Y)c(l - R)L2(Y,S(TY)®E\Y\ (2.22)

and that the family of Fredholm operators T(\ - R, 1 — P) has vanishing cokernels,
which implies that the family T(P,R) has vanishing cokernels.

Now set V\ = [-1,0] x Y, V2 = [0, 1] x Y. Let R' be the generalized spectral
section of Dγ determined by

(1 -R')Hl/\{\} x Y,S(TY)®E\Y)

= Hi}χy : « € H\V2,(S+(TZ)®E)\Vϊ\Dz\V2u = 0,Ru\{0}x¥ = 0}. (2.23)

It is clear that R' is well-defined by (2.23). Furthermore, the two generalized
spectral sections R and R' are homotopic to each other.

Now from (2.23), (2.22) and the unique continuation property of Dirac operators,
one sees immediately that there is a canonical embedding of

H\Vl9P9Q) = {ue Hl(Vι,(S+(TZ)®E)\yι):

(1 - />|{_, }X7 = 0,Qu\{0}xY = 0} (2.24)

into
Hl(V,P,R') = {u€ H\V,(S+(TZ)®E)\γ) :

(1 - P)u\{_l}xY = 0,R'u\{]}xY = 0}. (2.25)

We can then apply the deformation trick (2.17) here to this new pairing. By
using (2.17), one in fact deduces easily that

md(Dv,P,R') = indφKpΛβ) + mdT(l-R,l- Q). (2.26)
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Also since R' is homotopic to R, by the homotopy invariance of the index bundle
and by (i), one finds

md(DV9P9R') = md(Dr,P,R) = [P - R]. (2.27)

From (2.26), (2.27), one then gets

indφ^P, Q) = [P-R]- mdT(Q,R)

-[P- Ql (2.28)

On the other hand, one clearly has

P,β). (2.29)

The proof of Theorem 2.12 is completed by combining (2.28) and (2.29). D
We now complete the proof of Theorem 2.10.
From Theorem 2.12, we have

ind(/V,Cι(-l), 1 - C2(l)) = [Cι(-l) - (1 - C2(l))]. (2.30)

Now Cι(-l) and C2(l) are homotopic to C\, C2 respectively, so we get

ind(ZV,d(-l), 1 - C2(l)) = [Ci - (1 - C2)]. (2.31)

By (2.31), (2.18), the proof of Theorem 2.10 is completed. D

d) A relative index theorem and the proof of Theorem 1.1. In order to deduce
Theorem 1.1 from Theorem 2.10, we now state a relative index theorem.

Let P be a generalized spectral section of Dγ. By now it is clear that (Z)Zl,P)
defines a continuous family of elliptic boundary problems over B and thus determines
an index bundle

ind(DZl, P) e K(B). (2.32)

Let now Q be another generalized spectral section of Dγ. Then one has the
following relative index theorem which extends the corresponding relative index
theorem of Melrose and Piazza [MP1] for spectral sections.

Theorem 2.13. The following identity holds in K(B\

ind(Z)Zl,P) - ind(Z)Zl,β) - [Q-P]. (2.33)

The proof of (2.33) follows in fact from the following general index formula.

Theorem 2.14. The following identity holds in K(B\

ind(DZl, P) = [d - P]. (2.34)

Proof. By combining the methods in b), c), one deduces easily that

ind(Z)Zl,P) - ind(F1? Q, P) - [Ci - P]. (2.35)

Theorem 2.14 follows. D



Splitting of Family Index 313

Proof of Theorem 2.13. One has

ίnd(Dzl9P) - indφzpβ) = [Ci - P] - [d - Q]

= [Q-P], (2.36)

which is exactly (2.33). D

We can now prove Theorem 1.1. In fact we can prove a generalized version
so that PJ, i = 1,2 in (1.8) can be assumed to be generalized spectral sections.

Proof of Theorem 1.1. It is clear that Theorem 2.14 also holds for DZ2. Thus one
has by Theorem 2.10,

indDz = [C, - (1 - C2)] = [Ci - Pi] + [P2 - (1 - C2)] + [Λ - P2]

= ind(Z)Zl,/>,) + ind(DZ2, 1 - />2) + [Λ - P2] (2.37)

The proof of Theorem 1.1 is completed. D

Remark 2.15. Theorem 2.14 is closely related to Theorem 6.2 in Nicolaescu [N].
The difference is that in [N], Nicolaescu works on the real case. It is also assumed
in [N] that all the operators Dzb, b £ B, have the same symbol.1

3. The Case of Odd Dimensional Fibers

In this section we give a proof of Theorem 1.1 for the case where dim Z is odd. We
make the same assumptions and use the same notation as in Sect. 1. We assume in
all this section that dimZ is odd.

The method we present in this section is actually much simpler than that of
Sect. 2. It is based on a beautiful idea of Bunke [Bu] (cf. also [DF]).

Let us first recall the definition of the c/(l)-spectral sections which appeared in
the statement of Theorem 1.1.

Recall that since dimZ is odd, the Clifford action c(-j-f) determines the Z2-
splitting

S(TY) = S+(TY)®S-(TY). (3.1)

Denote by σ the action of this Clifford action on S(TY).
By definition [MP2], a c/(l)-spectral section P of Dγ is simply a spectral section

of DY satisfying that
σP + Pσ = σ. (3.2)

The principal advantage is that if P is a c/(I)-spectral section of Dγ> then for
any b G B, the elliptic boundary problem

(DZltb9Pb):Hl(Zltb,Pb) = {ueHl(Zltb,(S(TZ)®E)\Zltb : Pbu γb = 0}

^L2(Zltb,(S(TZ)®E)\Zltb) (3.3)

is self-adjoint (cf. [BW2, MP2]).

!We are informed by a referee that in a subsequent work Nicolaescu considers the case of family
with varying principal symbols



314 X. Dai, W. Zhang

Similarly, the elliptic boundary problem

(DZ2b, l-Pb): Hl(Z2tb, l-Pb) = {ue H\Z2,b,(S(TZ) ® E)\Z2<b :

(3.4)

is also self-adjoint for any b e B.
Thus we obtain two continuous families of self-adjoint Fredholm operators

(DZl,P) and (Dz2, 1 — P). According to [AS2], they determine the index bundles

ma(DZl9P)eKl(B)9

mά(DZ2,l-P)£K\B). (3.5)

Also recall that the family Dz determines an index bundle

ind£>z eKl(B). (3.6)

Let now Q be another c/(l)-spectral section of Dy. Then there is a well-defined
element [P — Q] E Kl(B\ which is constructed through a suspension argument and
then appeals Definition (2.2) between resulting Fredholm operators, see [MP2] for
more details.

For convenience, we recall the statement of Theorem 1 . 1 as follows.

Theorem 3.1. The following identity holds in Kl(B\

P) + ind(DZ2, 1 - Q) + [P - Q]. (3.7)

Proof. As has been said, we will adapt an idea of Bunke [Bu] to prove (3.7).
Set

Zι(l) = Zi U [0, 1] x 7, Z2(-l) = Z2 U [-1,0] x 7,

F = [-l, l]x7 (3.8)

Let ξ G C°°([-l, 1]) be such that

ί|[-l,-l/2] = 1, 0 ^ £|[-l/2,l/2] ^ 1, ξ|[l/2,l] = 0 (3.9)

and that
y = (l-ξ2Y/2 (3.10)

is also smooth. Clearly ξ extends to Zι(l) by equaling 1 on Zι(-l) = Z\ — (-1,0] x
7. It also extends to Z2(-l) by equaling 0 on Z2(l) = Z2 - [0,1) x 7. Thus y also
extends to Zj(l) and Z2(— 1).

Set

by

1 )^^ (3.11)

Following Bunke [Bu], we define the operators α, b, c, d : H — » //0 fiberwise

(i) a is the multiplication by ξ on Z followed by the transfer to Zι(l),
(ii) b is the multiplication by ξ on V followed by the transfer to Z2(— 1),
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(iii) c is the multiplication by y on Z followed by the transfer to Z2(— 1),
(iv) d is the multiplication by y on V followed by the transfer to Zι(l). (3.12)

Set as in [Bu],

W = a + b + c-d:H^HQ. (3.13)

The fact of critical importance is the following

Lemma 3.2. ([Bu]). The operator W : H — » HQ is unitary.

Another important observation is that if we consider the elliptic boundary prob-
lems (DZl(i),P), (DZ2(_i),l - Q) and (Dv,(\ - g)|{-i}xy,P{i}xy), then one finds
that ([Bu])

= dompz Θ (Dv,(l - β)| {_ι } xy,P| {ι } xy)}. (3.14)

Thus the two operators

D+ := Dz 0 (Dv,(l - β)| {-i}χy,P| {ι } xy) (3.15)

and

D_ := ΪΓ*((Z)Zl(1),P) Θ (A?2(-i), 1 - β)W (3-16)

has the same domain and furthermore one verifies easily that the operator

G :=£>+-£>_ (3.17)

is a bounded operator (cf. [Bu]).
Clearly all the above procedures are continuous with respect to b e B. Thus, by

the trivial linear homotopy, one gets

indD+ = ind£>_ in K\B). (3.18)

Combining (3.15)-(3.18), we get

indDz = mdW*((DZl(i),P) θ Φz2(-i), 1 - Q)W

2, 1 - β) - md(Dy,(l - β)|{-ι}xy,P|{ι}xy). (3.20)

Theorem 3.1 will then follow from (3.20) and the following result.

Theorem 3.3. The following identity holds in Kl(B),

ind(ZV,(l - β)| {_ι } xy,P {ι }χ7) = [β - P]. (3.21)
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Proof. Set V\ = [-1,0] x Y, V2 = [0, 1] x 7. Then by cutting V at {0} x Y and
adapting Bunke's trick to the cylinder V in view of this cutting, one easily deduces
that for any third cl( 1 )-spectral section R of Dγ9 one has the following identity
between index bundles of families of elliptic boundary problem for cylinders,

(3.22)

Now as in [MP2], one can assume R satisfying RP = P and RQ = Q. With this
R, one verifies directly by identifying the virtual index bundles that

ind(/Vp(l - β)| {-i}Xy,Λ| {o}χy) = [β - R] (3.23)

and

{ι}xγ) = [R-P]. (3.24)

By (3.22)-(3.24), one then gets

ind(/V,(l - β)| {_ι }χr,P| {i}χr) = [Q - R] + [R - P] = [Q - PI (3.25)

This proves Theorem 3.3. The proof of Theorem 3.1 is thus also completed. D

Remark 3.4. If we take B = 51, then we get a splitting formula for spectral flows.

Remark 3.5. As in Sect. 2, one can also define generalized cl( 1 )-spectral sections
and prove Theorem 1.1 for them. We leave this easy modification to the interested
reader.

Remark 3.6. The proof of Theorem 1.1 presented above also works for the case
of even dimensional fibers. It thus turns out that the splitting problem for index
bundles is surprisingly simple. We still include the proof in Sect. 2 here in this
paper, just because we think it does have some interest of its own. Also it would
still be interesting if one could modify the method in Sect. 2 to cover the case of
odd dimensional fibers.
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