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Introduction

0.1. Background

M-theory is an 11-dimensional theory that unifies string theories and is the best 
candidate for a theory of quantum gravity [32,30]. The theory has very rich structures 
both in physics and mathematics. In particular, the anomalies and their cancellations 
in the theory are related to profound aspects in geometry and topology. In the recent 
paper [11], Freed and Hopkins proved that there is no parity anomaly in M-theory on 
pin+ manifolds (manifolds not necessarily orientable with the second Stiefel-Whitney 
class ω2 = 0) in the low-energy field theory approximation, which shows the consistency 
of the time-reversal symmetric theory. More precisely, Freed and Hopkins proved that 
the anomaly arising from the Rarita-Schwinger field and the anomaly arising from the 
“Chern-Simons coupling” of the C-field cancel. Earlier, the anomaly cancellation for spin 
manifolds case was discovered by Witten [33].

We first briefly recap the Freed-Hopkins’ anomaly cancellation in the pin+ case [11]
and Witten’s anomaly cancellation in the spin case [33]. Anomaly of an 11-dimensional 
theory is an invertible 12-dimensional theory. Let W be a 12-dimensional pin+ manifold. 
In [11], Freed and Hopkins computed the partition function of the Rarita-Schwinger 
anomaly theory, which is equal to

α̂RS(W ) = exp
(

2π
√
−1 η(TW − 2)

)
,
4
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where η(TW − 2) is the difference of the η-invariant of the Rarita-Schwinger operator 
and twice the η-invariant of the pure Dirac operator. They showed that this partition 
function is a root of unity, independent of the metrics on W and a pin+ bordism invariant. 
This consequently shows that the Rarita-Schwinger partition function factors through a 
homomorphism

α̂RS : π12MTPin+ → C×,

where MTPin+ is the Thom spectra of pin+-manifolds and then determines an invertible 
unitary topological field theory

αRS : MTPin+ → Σ12IC×

with IC× being the character dual to the sphere spectrum. On the other hand, to handle 
the C-field, Freed and Hopkins introduced a new topological structure, namely the mc

structure, a pin+-structure together with a ω1-twisted integer lift of the fourth Stiefel-
Whitney class ω4. The anomaly of the C-field is

α̂C(W ) = exp
(

2π
√
−1 c̃3 − p̄(TW )c̃

48

)
,

where p̄(TW ) is a degree 4 canonical class of the pin+ structure and c̃ is a ω1-twisted 
integer lift of ω4(TW ). They showed that this factors through a homomorphism

α̂C : π12Mmc → C×,

where Mmc is the Thom spectra of mc-manifolds, and then determines an invertible 
topological field theory

αC : Mmc → Σ12IC×.

The following theorem shows that M -theory is anomaly free.

Theorem 0.1 (Freed-Hopkins, [11]). The total anomaly theory αRS ⊗ αC is trivializable.

Freed and Hopkins proved this theorem by determining the generators for the 12-
dimensional bordism group of mc-manifolds after 2-adic completion and verifying that 
α̂RS · α̂C = 1 on those generators.

The anomaly cancellation under the assumption that W is spin was proved by Witten 
in [33]. When W is spin, the partition function of Rarita-Schwinger anomaly theory can 
be expressed via characteristic numbers of W (Proposition 3.5 in [11])

α̂RS(W ) = exp
(

2π
√
−1
〈
Â(TW )ch(TCW − 2)

4 , [W ]
〉)

.
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Let λ = λ(W ) be the first spin class of TW in H4(W ; Z) and x ∈ H4(W ; Z). Let 
c = C(x) = λ + 2x. The anomaly of the C-field is

α̂C(W ) = exp
(

2π
√
−1
〈
c3 − p(TW )c

48 , [W ]
〉)

,

where p(TW ) be the second spin class of TW in H8(W ; Z). The anomaly cancellation 
α̂RS(W )α̂C(W ) = 1 is equivalent to the integrality of the following characteristic number,〈

c3 − p(TW )c
48 + 1

4 Â(TW )ch(TCW − 2), [W ]
〉
.

By the Atiyah-Hirzebruch divisibility, 〈Â(TW ), [W ]〉 is even. Therefore the anomaly 
cancellation is further equivalent to the integrality of〈

c3 − p(TW )c
48 + 1

4 Â(TW )ch(TCW − 4), [W ]
〉
.

Witten showed that x determines an E8-bundle VC(x) on W and the above characteristic 
number is equal to minus half of the index of the Dirac operator DW on W coupled with 
VC(x) by proving the following amazing equality through computation〈

c3 − p(TW )c
48 + 1

2 Â(TW )ch(VC(x)) + 1
4 Â(TW )ch(TCW − 4), [W ]

〉
= 0. (0.1)

Then the desired integrality comes from the Atiyah-Hirzebruch divisibility on the even-
ness of Ind(DVC(x)

W ).
Motivated by the C-field anomaly, Freed and Hopkins developed an algebraic theory of 

cubic forms in [11]. We also briefly review their theory here. Let L be a finitely generated 
free abelian group. Let

〈·, ·, ·〉 : L× L× L → Z (0.2)

be a symmetric trilinear form on L. For convenience, write the trilinear form simply as 
a product. a ∈ L is called a characteristic element if the a ∈ L ⊗ Z/2Z satisfies the 
following identity

a x y ≡ xx y + x y y (mod 2) (0.3)

for any x, y ∈ L ⊗ Z/2Z. Let Lchar ⊂ L be the torsor of characteristic elements in L. 
Let L∗ = Hom(L; Z).

Theorem 0.2 (Freed-Hopkins, Lemma 4.1 in [11]). Let a ∈ Lchar and â be the mod 24 
reduction. There exists a unique b̂ ∈ L∗ ⊗ Z/24Z such that
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b̂(x̂) = 4x̂3 + 6âx̂2 + 3â2x̂ (mod 24) (0.4)

for all x̂ ∈ L ⊗ Z/24Z.

Let h(x) be a degree 3 polynomial whose highest term is 1
6x

3. Then the following 
algebraic identity shows that h is a cubic refinement of the trilinear form xyz:

xyz = h(x+ y + z)− h(x+ y)− h(x+ z)− h(y + z) + h(x) + h(y) + h(z)− h(0). (0.5)

Let a ∈ L, b ∈ L∗. Consider the Witten-Freed-Hopkins polynomial on L:

fa,b(x) = (a + x)3 − b(a + x). (0.6)

It is easy to see that

fa,b(2x) − fa,b(0)
48 (0.7)

is a degree 3 polynomial whose highest term is 1
6x

3, and therefore a cubic refinement of 
xyz; moreover when a is a characteristic element and b satisfies (0.4),

fa,b(2x) − fa,b(0)
48 ∈ Z. (0.8)

Back to the anomaly cancellation in the spin case, L = H4(W ; Z) with the symmetric 
trilinear form of the intersection pairings gives a geometric model for the Freed-Hopkins’ 
algebraic theory of cubic forms. They showed that the spin class λ(W ) is a characteristic 
element and the formula (0.1) tells us that the spin characteristic classes a = λ(W ), b =
p(W ) solve the mod 24 equation (0.4). Moreover from (0.5), we can see that the trilinear 
form of the cup product

〈x ∪ y ∪ z, [W ]〉

for x, y, z ∈ H4(W ; Z) has an integral cubic refinement.
The first purpose of this paper is to show that the amazing equality (0.1) for spin 

manifolds can be obtained by the modularity of a modular form, called twisted Witten 
class, inspired by the theory of elliptic genus [27,22,31,23,18,24,14,19].

Moreover, this modular method can be generalized to spinc case and allows us to 
obtain a spinc version of (0.1) with a new spinc cubic form. Consequently, using index 
theorem for spinc Dirac operators, we can find spinc classes a = λc, b = pc on spinc

manifolds, that solve the weakened (mod 12) congruence equation (0.4) and see that on 
12 dimensional spinc manifolds W ,

2〈x ∪ y ∪ z, [W ]〉
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has an integral cubic refinement. On the other hand, if we stick to the original spin 
cubic form, then it loses analytic interpretations as indices of twisted Dirac operators on 
W . Nevertheless, we find that the analytic interpretations can be rescued on spinc and 
spinω2 manifolds by applying Zhang’s Rokhlin congruence formulas via mod 2 indices 
on 10 dimensional spin or pin− manifolds.

If we further weaken the assumption from spinc to be general orientable manifolds, 
the modular method still works. Actually we are able to obtain an orientable version of 
(0.1) with an orientable cubic form. Consequently, using index theorem for twisted signa-
ture operators, we find characteristic classes a, b on orientable manifolds, that solve the 
weakened (mod 3) congruence equation (0.4) and see that on 12 dimensional orientable 
manifolds W ,

8〈x ∪ y ∪ z, [W ]〉

has an integral cubic refinement.
In all the cases, the Witten-Freed-Hopkins type formulas that we have obtained like 

(0.1) from the modular method are local, i.e., they hold on the level of differential forms. 
This allows us to use the Atiyah-Patodi-Singer index theorem to generalize them to 
manifolds with boundaries.

In the following, let us give a more detailed account of the background and our work 
in various cases.

0.2. Spin case

Let Z be a 12 dimensional smooth manifold. Denote the integral Pontrjagin classes 
and the Stiefel-Whitney classes of Z by pi, ωi respectively. Let x ∈ H4(Z; Z). Following 
Witten [33], x determines an isomorphism class of principal E8 bundles on Z. Let V (x)
denote the real adjoint vector bundle associated to the principal E8 bundle determined 
by the class x. Denote by VC(x) the complexification of V (x). The Chern character of 
VC(x) is (cf. (4.25) in [11])

ch(VC(x)) = 248 − 60x + 6x2 − 1
3x

3. (0.9)

So by the expression of the Chern character in terms of the Chern classes, it is easy to 
see that

x = 1
60c2(VC(x)). (0.10)

Suppose Z is closed and oriented. Let L = H4(Z; Z) and the trilinear form is the cup 
product of three elements in L evaluated on the fundamental class [Z].

Further suppose Z is spin. There is a canonical degree 4 class λ ∈ H4(Z; Z) such that 
2λ = p1 and λ ≡ ω4 (mod 2) ([11]). The following theorem shows that λ is a characteristic 
element.
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Theorem 0.3 (Freed-Hopkins, Lemma 4.4 in [11]). The Stiefel-Whitney class λ = ω4 of 
a closed spin 12-manifold satisfies (0.3) and thus λ is a characteristic element.

For a = λ, Freed and Hopkins showed that there is a characteristic class p ∈ H8(Z; Z)
such that 2p = p2 − λ2 and when b = p, (0.4) is satisfied. This is deduced from 
the beautiful and important anomaly cancellation formula discovered by Witten-Freed-
Hopkins (Theorem 1.2), which is proved by a direct computation, as well as the famous 
Atiyah-Hirzebruch divisibility on 8k+4 dimensional spin manifolds. Adopting the above 
notations, one sees that on a closed spin smooth 12-manifold Z,

fλ,p(2x)
48 (0.11)

is a half integer, which has analytic meaning as (quarter of) indices of certain twisted 
Dirac operators on Z (Theorem 1.2).

On the other hand, let M be a 4m dimensional compact oriented smooth manifold. 
Let

{±2π
√
−1zj , 1 � j � 2m}

denote the formal Chern roots of TCM , the complexification of the tangent vector bundle 
TM of M . The famous Witten genus of M can be written as

W (M) =
〈⎛⎝ 2m∏

j=1
zj

θ′(0, τ)
θ(zj , τ)

⎞⎠ , [M ]
〉

∈ Q[[q]],

with τ ∈ H, the upper half-plane, and q = e2π
√
−1τ . The Witten genus was first intro-

duced in [31] and can be viewed as the loop space analogue of the Â-genus. It can be 
expressed as a q-deformed Â-genus as

W (M) =
〈
Â(TM)ch (Θ (TCM)) , [M ]

〉
,

where

Θ(TCM) =
∞
⊗

n=1
Sqn(˜TCM), with ˜TCM = TCM −C4m,

is the Witten bundle introduced in [31]. When the manifold M is spin, according to 
the Atiyah-Singer index theorem, the Witten genus can be expressed analytically as the 
index of the twisted Dirac operator,

W (M) = Ind(D ⊗ Θ (TCM)) ∈ Z[[q]],

where D is the Atiyah-Singer spin Dirac operator on M . Moreover, if M is string, i.e.
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λ = 1
2p1(TM) = 0,

or even weaker, if M is spin and the first rational Pontrjagin class of M vanishes, then 
W (M) is a modular form of weight 2m over SL(2, Z) with integral Fourier development 
([34]). The homotopy theoretical refinement of the Witten genus on string manifolds 
leads to the beautiful theory of tmf (topological modular form) developed by Hopkins 
and Miller [19]. The string condition is the orientability condition for this generalized 
cohomology theory.

If the string condition λ = 0 does not hold, one constructs the cohomology class (cf.
[14]),

W(TM) = e
1
24E2(τ)·p1(TM)Â(TM)ch (Θ (TCM)) ∈ H4∗(M ;Q)[[q]], (0.12)

where E2(τ) is the Eisenstein series of weight 2 (cf. Chap 2.3 in [7]). We call W(TM)
the Witten class of M .

Let P be a principal E8 bundle over M . In Section 4.2.1, we consider an associated ele-
ment V ∈ K(M)[[q]] constructed from the basic representation of affine E8. Let P1, P2 be 
two principal E8 bundles with the corresponding V1, V2. Let W1, W2 be the complexified 
vector bundles associated to the adjoint representation of E8. Denote

ϕ(τ) =
∞∏

n=1
(1 − qn).

We construct the twisted Witten class (specified to the case when ξ is trivial and c = 0
in (4.18) for the spin case here for simplicity)

Q(V1,V2) := e
1
24E2(τ)·

( 1
30 (c2(W1)+c2(W2)

)
W(TM)ϕ(τ)16ch(V1)ch(V2) ∈ H4∗(M ;Q)[[q]],

(0.13)
and show that the degree 12 component is a modular form of weight 14 over SL(2, Z)
when M = Z is 12 dimensional. Using the fact that the space of modular forms of weight 
14 over SL(2, Z) is 1-dimensional and spanned by E2

4(τ)E6(τ), where E4(τ) and E6(τ)
are the Eisenstein series of weight 4 and 6 respectively (cf. Chap 2.1 in [7]), we deduce a 
factorization formula (4.33). This formula reduces to the Witten-Freed-Hopkins anomaly 
cancellation formula (1.1) (when ξ is trivial and c = 0).

Back to the algebraic theory of cubic forms, consider the polynomial

f̃a,b(x) = 4(a + x)3 − 6a(a + x)2 − (b− 3a2)(a + x) (0.14)

with understanding 3a2 as an element in L∗ by abusing notations.
It is easy to check that

f̃a,b(x) = fa,b(2x) + fa,b(0)
. (0.15)
2
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From (0.5), (0.7) and (0.15), we see that f̃a,b(x)−f̃a,b(0)
24 is a cubic refinement of xyz, and 

when a is a characteristic element and b modulo 24 satisfies (0.4), the following holds,

f̃a,b(x) − f̃a,b(0)
24 ∈ Z. (0.16)

In view of (0.15) and the half integrality of fλ,p(2x)
48 as well as its analytic meaning, 

we see that on a closed 12 dimensional spin manifold Z, when a = λ, b = p,

f̃λ,p(x)
24 (0.17)

is an integer, which has analytic meaning as (half of) the indices of certain twisted Dirac 
operator on Z (Theorem 1.3).

In Section 4.2.2, we show that Theorem 1.3 can actually also be deduced from a fac-
torization formula (4.42) proved there by constructing the twisted Witten class (specified 
to the case when ξ is trivial and c = 0 in (4.35) for the spin case here for simplicity)

R(V) = e
1
24E2(τ)· 1

30 c2(W )W(TZ)ϕ(τ)8ch(V) ∈ H4∗(Z;Q)[[q]]. (0.18)

To consider f̃λ,p(x) defined via (0.15) might look redundant. However we include 
it here because first it arises from the modular form R(V), different from Q(V1, V2); 
secondly, we would like to point out that the relation (0.15) between the cubic form f̃λ,p(x)

24
and the cubic form fλ,p(2x)

48 corresponds exactly to the relation between the corresponding 
modular forms:

R(V) =
√

Q(V,V) · W(TZ) ∈ H4∗(Z;Q)[[q]]. (0.19)

Remark 0.1. The method of constructing Q(V1, V2), R(V) and using their modularities 
to prove factorization formulas appeared in [16] for fiber bundles with 10 dimensional 
fibers. In this paper, we apply this method to 12 dimensional manifolds.

In [11], Freed and Hopkins showed that for a pin+ 12-manifold Z with mc structure 
there exists a characteristic class c̃ ∈ H4(Z; Z̃)/torsion, which is a characteristic element 
in

L = H4(Z; Z̃)/torsion

and a characteristic class p ∈ H8(Z; Z)/torsion such that (0.4) is satisfied. Then

fc̃,p(0)
48 (0.20)

is a half integer. Freed-Hopkins (Theorem 2.2, Theorem 6.2 in [11]) proved the following 
anomaly cancellation
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exp
(
−2πi · fc̃,p(0)

48

)
· exp

(
2πi · η(TZ − 2)

4

)
= 1. (0.21)

We have not recovered this result via modularity yet.

0.3. Spinc and spinω2 cases

Suppose Z is a closed 12 dimensional smooth manifold not necessarily spin. Then the 
classes λ and p in the previous subsection for the spin case do not necessarily exist. By 
abusing notations we just denote 1

2p1 by λ, and 1
2
(
p2 − 1

4p
2
1
)

by p in H∗(Z; Q). The 

original cubic forms fλ,p(2x)
48 and f̃λ,p(x)

24 now only take values in rationals rather than 
integers and lose analytic interpretations as indices of twisted Dirac operators.

In Section 2.1, we will show that the analytic interpretations can be rescued on spinc

and spinω2 manifolds by applying the Rokhlin congruence formulas established in [35,
36,38,39] via mod 2 indices on 10 dimensional spin or pin− manifolds. Let us be more 
precise in the following.

Let K be an 8k + 4 dimensional spinc manifold. Let ξ be the complex line bundle of 
the spinc structure. Let c = c1(ξ) ∈ H2(K; Z). Let U be a characteristic submanifold
of the spinc structure, i.e. an orientable 8k + 2 dimensional submanifold of K such that 
[U ] ∈ H8k+2(K; Z) is dual to c. U carries a canonically induced spin structure up to spin 
cobordism. Let DU be the Atiyah-Singer spin Dirac operator on U .

The Rokhlin congruence formula (2.2) in Theorem 2.1 allows one to write the twisted 
Â-genus on K in terms of mod 2 indices of twisted Dirac operators on U with a correction 
term. Combining (2.2) with the Witten-Freed-Hopkins anomaly cancellation formula 
(1.1) and the new formula (1.2), we obtain Theorem 2.2.

We call an 8k+4 dimensional closed smooth oriented manifold K a spinω2 manifold if 
there exists a rank 2 nonorientable real vector bundle ξ such that ω2(TK) = ω2(ξ). For 
such manifolds, the corresponding Rokhlin congruence formula has been studied in [36]. 
Let U be a characteristic submanifold of the spinω2 structure, i.e. a nonorientable 8k+2
dimensional submanifold of K such that [U ] ∈ H8k+2(K; Z/2Z) is dual to ω2(TK) ∈
H2(K; Z/2Z). U carries a canonically induced pin− structure up to pin− cobordism.

The Rokhlin congruence formula (2.5) in Theorem 2.3 allows one to write the twisted 
Â-genus of K in terms of twisted mod2 analytic indices on U with a correction term. 
Combining (2.5) with the Witten-Freed-Hopkins anomaly cancellation formula (1.1) and 
the new formula (1.2), we obtain Theorem 2.4. Details about spinω2 structures and the 
obstruction classes to them will be studied in Section 6.

Section 2.2 provides another way on spinc manifolds to restore the beautiful nature 
of the Witten-Freed-Hopkins anomaly cancellation formula on spin manifolds. Generally 
there are no characteristic elements on spinc manifolds like λ for spin manifolds. In the 
algebraic theory of cubic forms, suppose a ∈ L is not necessarily a characteristic element, 
then the Freed-Hopkins Theorem 0.2 is weakened to mod 12. More precisely, if â is the 
mod 12 reduction, then there exists a unique b̂ ∈ L∗ ⊗ Z/12Z such that
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b̂(x̂) = 4x̂3 + 6âx̂2 + 3â2x̂ (mod 12) (0.22)

for all x̂ ∈ L ⊗ Z/12Z.
Let Z be a 12 dimensional closed smooth spinc manifold. Let c be the first Chern 

class of the complex line bundle of the spinc structure. In Section 2.2, we will show that 
on Z there exist characteristic classes a = λc ∈ H4(Z; Z), b = pc ∈ H8(Z; Z) such that 
(0.22) holds. This is derived from Theorem 2.5 and Theorem 2.6, in which we show that

fλc,pc
(2x)

24 (0.23)

is a half integer and

f̃λc,pc
(x)

12 (0.24)

is an integer, by demonstrating their analytic meanings using indices of twisted spinc

Dirac operators.
The left hand sides of Theorem 2.5 and Theorem 2.6 provide new cubic forms on spinc

manifolds, generalizing the cubic forms in the spin case when the manifold is spin and 
c = 0. The coefficients appearing in the new cubic forms will be studied in Section 5.

Clearly

h(x) = fλc,pc
(2x) − fλc,pc

(0)
24

is a polynomial of x valued in Z with highest term 1
3x

3. We therefore see that on spinc

12-manifolds, there is an integral cubic refinement only for 2xyz rather than xyz,

2〈x∪y∪z, [Z]〉 = h(x+y+z)−h(x+y)−h(x+z)−h(y+z)+h(x)+h(y)+h(z)−h(0). (0.25)

Theorem 2.5 and Theorem 2.6 are deduced from the factorization formulas (4.33) and 
(4.42), which are proved in Section 4.2 by constructing the generalized Witten class

Wc(TZ) := e
1
24E2(τ)·(p1(TZ)−3c2)Â(TZ)ch (Θ (TCZ, ξC)) ∈ H4∗(Z;Q)[[q]] (0.26)

and the twisted generalized Witten classes

Qc(V1,V2) := e
1
24E2(τ)·

( 1
30 (c2(W1)+c2(W2)

)
Wc(TZ)ϕ(τ)16ch(V1)ch(V2) ∈ H4∗(Z;Q)[[q]],

(0.27)

Rc(V) := e
1
24E2(τ)· 1

30 c2(W )Wc(TZ)ϕ(τ)8ch(V) ∈ H4∗(Z;Q)[[q]]. (0.28)

Applying the Rokhlin congruence (2.1) in Theorem 2.1 to Theorems 2.5 and 2.6, we 

give mod 2 index interpretations of fλc,pc (2x) and f̃λc,pc (x) in Theorem 2.7. Now on 
12 12
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spinc manifolds, we have two types of mod 2 formulas: Theorem 2.2 and Theorem 2.7. 
Subtracting the corresponding sides of these formulas, we obtain Corollary 2.1, which 
involves interesting quadratic forms on 10 dimensional spin manifolds and mod 2 indices. 
This motivates us to introduce an intersection pairing on 10 dimensional closed spin 
manifold in the presence of a complex line bundle. Using the computation of Stong on 
Ωspin

11 (K(Z, 4)) ([28]), we are able to obtain Theorem 2.8, which is more general than 
Corollary 2.1. The quadratic forms appearing in Theorem 2.8 are related to mod 2 indices 
and give interesting quadratic refinements of the intersection pairings. See Remark 2.2.

0.4. Orientable case

Let Z be a 12 dimensional closed smooth oriented manifold without assuming any 
additional topological constraints. In this general situation, we are not able to find char-
acteristic classes a of degree 4 and b of degree 8 such that the mod 12 equality (0.22)
holds for all x ∈ H4(Z; Z).

However, by our modularity method, we find that if

b = 4p2
1 − 7p2

and b̂ = b (mod 3), then the following mod 3 equality holds,

b̂(x̂) = 4x̂3 (mod 3) (0.29)

for all x̂ ∈ H4(Z; Z) ⊗ Z/3Z. In fact, in Theorem 3.1 and Theorem 3.2, we will show 
that when a = −p1,

fa,b(2x)
6 (0.30)

is a half integer and

f̃a,b(x)
3 (0.31)

is an integer, by demonstrating their analytic meanings as indices of twisted signature 
operators.

Now let

h(x) = fa,b(2x) − fa,b(0)
6 ,

which is a polynomial of x with value in Z and highest term 8
6x

3. We therefore see that 
on general oriented 12-manifolds, there is an integral cubic refinement only for 8xyz
rather than for 2xyz or xyz,
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8〈x∪y∪z, [Z]〉 = h(x+y+z)−h(x+y)−h(x+z)−h(y+z)+h(x)+h(y)+h(z)−h(0). (0.32)

We prove Theorem 3.1 and Theorem 3.2 in Section 4.3 by constructing the L̂-Witten 
class and twisted L̂-Witten classes (see (4.47), (4.49) and (4.61)).

Remark 0.2. In view of Theorem 1 in [24], we may obtain formulas more general than 
the ones presented in Section 3. In fact, let F be a spin vector bundle of even rank over 
M such that

1
2p1(F ) = 1

2p1(M)

and S±(F ) be the spinor bundles of F . In the construction of the L̂-Witten class (4.47), 
one can replace the bundle

Θ1 (TCM) ⊗ Θ2 (TCM) ⊗ Θ3 (TCM)

by

Θ1 (FC) ⊗ Θ2 (FC) ⊗ Θ3 (FC)

(see the construction of Θ1, Θ2, Θ3 in (4.43), ((4.44), (4.45)). Then the similar modularity 
method will deduce formulas giving analytic interpretations to some interesting new cubic 
forms (depending on the rank of F ) via the indices of twisted Dirac operators

D ⊗ ((S+(F ) ⊕ S−(F )) ⊗ VC(x)),

D ⊗ ((S+(F ) ⊕ S−(F )) ⊗ TCZ),

D ⊗ ((S+(F ) ⊕ S−(F )) ⊗ (∧2(FC) − S2(FC))),

and

D ⊗ (S+(F ) ⊕ S−(F )).

0.5. Organization of the paper

In Section 1, we review the Witten-Freed-Hopkins formula (Theorem 1.2) and present 
the new type of anomaly cancellation formula (Theorem 1.3). We point out that they 
are special cases of the corresponding anomaly cancellation formulas for spinc manifolds, 
which are given in Section 2.2. As these formulas are consequences of the factorization 
formulas (4.33) and (4.42), which hold on the level of differential forms, Theorems 1.2
and 1.3 have analogues for manifolds with boundary. They are stated in Theorem 1.4.

In Section 2, we give the Witten-Freed-Hopkins anomaly cancellation formulas on 12 
dimensional spinc and spinω2 manifolds. First in Section 2.1, we consider the original 
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cubic forms as in the spin case. We use the Rokhlin congruence formulas in [35,36,38,39]
to express the original cubic forms as mod 2 indices on 10 dimensional characteristic 
submanifolds with correction terms. Then in Section 2.2, for the spinc case, we give new 
cubic forms and anomaly cancellation formulas, which generalize the anomaly cancella-
tion formulas in the spin case. We will also give the mod 2 congruence formulas for the 
new cubic forms as well as the formulas for manifolds with boundary.

In Section 3, we present the anomaly cancellation formulas for 12 dimensional ori-
entable manifolds.

In Section 4, the proofs of the main theorems (Theorems 2.5, 2.6, 3.1 and 3.2) in Sec-
tion 2 and Section 3 will be given. Actually what we prove are the factorization formulas 
(4.33), (4.42), (4.59) and (4.69), which are all equalities on the levels of differential forms.

In Section 5, we study the characteristic class coefficients appearing in the cubic forms 
in Theorems 2.5, 2.6, 3.1 and 3.2.

In Section 6, details about spinω2 structures and the obstruction classes to them are 
studied.
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1. Cubic forms on spin 12-manifolds

In this section, we review the Witten-Freed-Hopkins anomaly cancellation formula, 
present the new type of cancellation formula and point out that they can be deduced 
from the more general formulas for the spinc case in Section 2.2. We will also present 
the corresponding formulas when the manifolds have boundary.

Let Z be a closed spin smooth 12-manifold. Recall that λ ∈ H4(Z; Z) satisfies 2λ = p1.

Theorem 1.1 (Freed-Hopkins [11]). There is a canonical degree 8 integral class p ≡
ω8 (mod 2) such that

2p = p2 − λ2.
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Let V (x) denote the real adjoint vector bundle associated to the principal E8 bundle 
determined by a class x ∈ H4(Z; Z). Denote by VC(x) the complexification of V (x). Let

C(x) = λ + 2x ∈ H4(Z;Z).

One has the following important formula,

Theorem 1.2 (Witten-Freed-Hopkins [33,11]). The following identity holds,〈
C(x)[p− C(x)2]

48 , [Z]
〉

=
〈

1
2 Â(TZ)ch(VC(x)) + 1

4 Â(TZ)ch(TCZ) − Â(TZ), [Z]
〉
.

(1.1)

Proof. Taking ξ = C and c = 0 in Theorem 2.5, one obtains (1.1). �
We also have the following new cancellation formula. Let

C̃(x) = λ + x ∈ H4(Z;Z).

Theorem 1.3. Let

p̃ = p− 3λ2.

The following identity holds,〈
C̃(x)[p̃ + 6λC̃(x) − 4C̃(x)2]

24 , [Z]
〉

=
〈

1
2 Â(TZ)ch(VC(x)) + 1

2 Â(TZ)ch(TCZ) + 122Â(TZ), [Z]
〉
.

(1.2)

Proof. Taking ξ = C and c = 0 in Theorem 2.6, one obtains (1.2). �
Now suppose Z has boundary and let Y be the boundary of Z with the induced spin 

structure. Let gTZ , gV (x) be a Riemannian metric on TZ and a Euclidean metric on V (x)
respectively. Let ∇TZ be the Levi-Civita connection on TZ and ∇V (x) be a Euclidean 
connection on V (x). gTZ , gV (x), ∇TZ , ∇V (x) induce the corresponding Hermitian metrics 
and connections on TCZ and VC(x), the complexifications. Assume all the involved 
metrics and connections are of product structures near ∂Z = Y .

Let DY be the Atiyah-Singer Dirac operator on Y . Let η denote the reduced η-
invariant in the sense of Atiyah-Patodi-Singer [1].

Denote by pi(∇TZ) the i-th Pontrjagin form of (TZ, ∇TZ) (cf. [37]). Denote by 
λ(∇TZ) the characteristic form 1

2p1(∇TZ) and by p(∇TZ) the characteristic form 
1p2(∇TZ) − 1p1(∇TZ)2.
2 8
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In the following, when a connection appears in a bracket of a characteristic class, we 
always mean the corresponding characteristic form determined by this connection.

Denote

x̌ = 1
60c2(VC(x),∇VC(x)).

Let

C(x̌) = λ(∇TZ) + 2x̌

and

C̃(x̌) = λ(∇TZ) + x̌.

As (1.1) and (1.2) hold on the level of forms, by the Atiyah-Patodi-Singer index 
theorem [1], we have the following formulas.

Theorem 1.4.

1
24

∫
Z

C(x̌)[p(∇TZ) − C(x̌)2] ≡ η(DVC(x)
Y ) + 1

2η(D
TCZ
Y ) − 2η(DY ) modZ; (1.3)

and

1
24

∫
Z

C̃(x̌)[p̃(∇TZ) + 6λ(∇TZ)C̃(x̌) − 4C̃(x̌)2]

≡ 1
2η(D

VC(x)
Y ) + 1

2η(D
TCZ
Y ) + 122η(DY ) mod Z.

(1.4)

2. Cubic forms on spinc and spinω2 12-manifolds

In this section, we extend the Witten-Freed-Hopkins anomaly cancellation formulas 
to 12 dimensional spinc and spinω2 manifolds.

2.1. The original cubic forms

Suppose Z is a closed 12 dimensional smooth manifold not necessarily spin. Then 
the characteristic classes λ and p in the above section for the spin case do not neces-
sarily exist. By abusing notations we simply denote 1

2p1 by λ, and 1
2
(
p2 − 1

4p
2
1
)

by p in 
H∗(Z; Q).

Let x ∈ H4(Z; Z). Let V (x) and VC(x) be the same meaning as introduced in the 
beginning of Section 0.2.
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2.1.1. Spinc case
Let K be an 8k + 4 dimensional spinc manifold. Let ξ be the complex line bundle of 

the spinc structure. Let c = c1(ξ) ∈ H2(K; Z). Let U be a characteristic submanifold
of the spinc structure, i.e. an orientable 8k + 2 dimensional submanifold of K such that 
[U ] ∈ H8k+2(K; Z) is dual to c. U carries a canonically induced spin structure up to spin 
cobordism. Let DU be the Atiyah-Singer spin Dirac operator on U .

Denote i : U ↪→ K the embedding. Let N be the normal bundle over U in K and 
e ∈ H2(U ; Z) the Euler class of N . Clearly i∗TK ∼= TU ⊕N .

Let E be a real vector bundle over K. Then i∗E is a real vector bundle over the 
spin manifold U . Let Ind2(i∗E) be the mod 2 index in the sense of Atiyah–Singer [4]
associated to i∗E, which is a spin cobordism invariant. Let EC be the complexification 
of E.

We have the following analytic Rokhlin congruence formula.

Theorem 2.1 (Zhang [35,36,38]).

〈
Â(TK) exp

( c
2

)
ch(EC), [K]

〉
≡ Ind2(Di∗E

U ) mod 2 (2.1)

and

〈
Â(TK)ch(EC), [K]

〉
≡ Ind2(Di∗E

U ) − 1
2

〈
Â(TU)ch(i∗EC) tanh

(e
4

)
, [U ]
〉

mod 2.

(2.2)

Combining (2.2) with Theorems 1.2 and 1.3, we have

Theorem 2.2. If Z is a 12 dimensional closed smooth spinc manifold and U is a charac-
teristic submanifold, then the following identities hold,

〈
C(x)[p− C(x)2]

12 , [Z]
〉

=
〈
2Â(TZ)ch(VC(x)) + Â(TZ)ch(TCZ) − 4Â(TZ), [Z]

〉
≡ Ind2(DTU

U ) + Ind2(DN
U )

− 1
2

〈
Â(TU)ch (2i∗VC(x) + TCU + NC − 4) tanh

(e
4

)
, [U ]
〉

mod 2;

(2.3)

and
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〈
C̃(x)[p̃ + 6λC̃(x) − 4C̃(x)2]

12 , [Z]
〉

=
〈
Â(TZ)ch(VC(x)) + Â(TZ)ch(TCZ) + 244Â(TZ), [Z]

〉
≡ Ind2(Di∗V (x)

U ) + Ind2(DTU
U ) + Ind2(DN

U )

− 1
2

〈
Â(TU)ch(i∗VC(x) + TCU + NC + 244) tanh

(e
4

)
, [U ]
〉

mod 2.

(2.4)

2.1.2. Spinω2 case
We call an 8k+4 dimensional closed smooth oriented manifold K a spinω2 manifold if 

there exists a rank 2 nonorientable real vector bundle ξ such that ω2(TK) = ω2(ξ). Such 
manifolds and the corresponding Rokhlin congruence have been studied in [36] and [39]. 
Let U be a characteristic submanifold of the spinω2 structure, i.e., a nonorientable 8k+2
dimensional submanifold of K such that [U ] ∈ H8k+2(K; Z/2Z) is dual to ω2(TK) ∈
H2(K; Z/2Z). U carries a canonically induced pin− structure up to pin− cobordism.

Denote i : U ↪→ K the embedding. Let N be the normal bundle over U in K and 
e ∈ H2(U, o(TU)) the Euler class of N .

Let E be a real vector bundle over K. Then i∗E is a real vector bundle over the 
pin− manifold U . Let Inda

2(i∗E) be the mod 2 analytic index of the real vector bundle 
i∗E over U , which is defined via η-invariants (cf. [39]). We have the following Rokhlin 
congruence formula.

Theorem 2.3 (Zhang (Theorem A.2 in [39])).

〈
Â(TK)ch(EC), [K]

〉
≡ Inda

2(i∗E) − 1
2

〈
Â(TU)ch(i∗EC) tanh

(e
4

)
, [U ]
〉

mod 2.

(2.5)

Combining (2.5) with Theorem 1.2 and Theorem 1.3, we have

Theorem 2.4. If Z is a 12 dimensional closed smooth spinω2 manifold and U is a char-
acteristic submanifold, then the following identities hold,

〈
C(x)[p− C(x)2]

12 , [Z]
〉

=
〈
2Â(TZ)ch(VC(x)) + Â(TZ)ch(TCZ) − 4Â(TZ), [Z]

〉
≡ Inda

2(TU) + Inda
2(N)

− 1
2

〈
Â(TU)ch (2i∗VC(x) + TCU + NC − 4) tanh

(e
4

)
, [U ]
〉

mod 2;

(2.6)

and
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〈
C̃(x)[p̃ + 6λC̃(x) − 4C̃(x)2]

12 , [Z]
〉

=
〈
Â(TZ)ch(VC(x)) + Â(TZ)ch(TCZ) + 244Â(TZ), [Z]

〉
≡ Inda

2(i∗V (x)) + Inda
2(TU) + Inda

2(N)

− 1
2

〈
Â(TU)ch(i∗VC(x) + TCU + NC + 244) tanh

(e
4

)
, [U ]
〉

mod 2.

(2.7)

2.2. New cubic forms on spinc manifolds

Let Z be a 12 dimensional closed smooth spinc manifold. Let ξ be the complex line 
bundle of the spinc structure. We use ξR for the notation of ξ when it is viewed as an 
oriented real plane bundle. Let c = c1(ξ) ∈ H2(Z; Z). Denote ξC = ξR ⊗R C. Clearly 
ξC = ξ ⊕ ξ.

Since Z is spinc, TZ ⊕ ξR is spin. By a result of McLaughlin (Lemma 2.2, [26]), there 
is a canonical class ρc ∈ H4(Z; Z) associated to the spinc structure such that

2ρc = p1(TZ ⊕ ξR) ∈ H4(Z;Z).

However,

p1(TZ ⊕ ξR) = −c2((TZ ⊕ ξR) ⊗R C)

= −c2(TCZ) − c2(ξ ⊕ ξ) − c1(TCZ)c1(ξ ⊕ ξ)

= p1(TZ) + c2.

(2.8)

So

2ρc = p1(TZ) + c2.

Let

λc := ρc − 2c2 ∈ H4(Z;Z)

and

Cc(x) = λc + 2x ∈ H4(Z;Z).

Theorem 2.5. There is a degree 8 integral class pc such that

pc ≡ ω8 (mod 2),

8pc = 4p2 − p2
1 − 6p1c

2 + 39c4.
(2.9)

Moreover, the following identity holds,
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〈
Cc(x)[pc − Cc(x)2]

24 , [Z]
〉

=
〈
Â(TZ)ec/2ch(VC(x)) + 1

2 Â(TZ)ec/2ch(TCZ)

−1
2 Â(TZ)ec/2ch[ξC ⊗ ξC − ξC + 2], [Z]

〉
.

(2.10)

The existence of pc ∈ H8(Z; Z) is proved in Theorem 5.1. Let

p̃c = pc − 3λ2
c .

In Theorem 5.1, it is also shown that

p̃c ≡ ω8 + ω2
4 + ω4

2 (mod 2),

8p̃c = 4p2 − 7p2
1 + 30p1c

2 − 15c4.
(2.11)

Let

C̃c(x) = λc + x ∈ H4(Z;Z).

Theorem 2.6. The following identity holds,〈
C̃c(x)[p̃c + 6λcC̃c(x) − 4C̃c(x)2]

12 , [Z]
〉

=
〈
Â(TZ)ec/2ch(VC(x)) + Â(TZ)ec/2ch(TCZ)

+ Â(TZ)ec/2ch[−ξC ⊗ ξC + ξC + 246], [Z]
〉
.

(2.12)

These two theorems are consequences of the factorization formulas for degree 12 char-
acteristic forms: (4.33) and (4.42) (proved in Section 4.2) and a direct computation of 
the degree 8 components in (4.33) and (4.42).

Let U be a characteristic submanifold of Z. Let N be the normal bundle over U in 
Z. Applying the Rokhlin congruence formula (2.1), we have

Theorem 2.7. The following identities hold,〈
Cc(x)[pc − Cc(x)2]

12 , [Z]
〉

≡ Ind2(DTU
U ) + Ind2(DN⊗N

U ) mod 2; (2.13)

and 〈
C̃c(x)[p̃c + 6λcC̃c(x) − 4C̃c(x)2]

12 , [Z]
〉

≡Ind (DTU ) + Ind (DN⊗N ) + Ind (Di∗V (x)) mod 2.

(2.14)
2 U 2 U 2 U
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Proof. Clearly i∗TZ ∼= TU ⊕N and i∗ξR ∼= N .
Combining Theorem 2.5 with (2.1), we have, when mod 2,〈

Cc(x)[pc − Cc(x)2]
12 , [Z]

〉
=
〈
2Â(TZ)ec/2ch(VC(x)) + Â(TZ)ec/2ch(TCZ) − Â(TZ)ec/2[ξC ⊗ ξC − ξC + 2], [Z]

〉
=2Ind2(Di∗V (x)

U ) + Ind2(DTU
U ) + Ind2(DN

U ) + Ind2(DN⊗N
U ) + Ind2(DN

U ) + 2Ind2(DU )

=Ind2(DTU
U ) + Ind2(DN⊗N

U ). (2.15)

Combining Theorem 2.6 with (2.1), we have, when mod 2,〈
C̃c(x)[p̃c + 6λcC̃c(x) − 4C̃c(x)2]

12 , [Z]
〉

=
〈
Â(TZ)ec/2ch(VC(x)) + Â(TZ)ec/2ch(TCZ) + Â(TZ)ec/2[−ξC ⊗ ξC + ξC + 246], [Z]

〉
=Ind2(Di∗V (x)

U ) + Ind2(DTU
U ) + Ind2(DN

U ) + Ind2(DN⊗N
U ) + Ind2(DN

U ) + 246Ind2(DU )

=Ind2(DTU
U ) + Ind2(DN⊗N

U ) + Ind2(Di∗V (x)
U ). (2.16)

The desired formulas follow. �
By subtracting the corresponding sides of (2.3) from (2.13), and (2.4) from (2.14)

respectively, and then applying the Poincaré duality, we can show the following through 
direct computations.

Corollary 2.1. Let e be the Euler class of N over U . The following identities hold,

1
64
〈
e ·
{
24i∗C(x)2 − (4p1(TU) + 10e2)i∗C(x) + p1(TU)2

−4p2(TU) + 6p1(TU)e2 − 21e4} , [U ]
〉

≡ Ind2(DN
U ) + Ind2(DN⊗N

U )

+ 1
2

〈
Â(TU)ch (2i∗VC(x) + TCU + NC − 4) tanh

(e
4

)
, [U ]
〉

mod 2;

(2.17)

and

1
64 〈e · {48i∗C̃(x)2 − (28p1(TU) + 10e2)i∗C̃(x) + 7p1(TU)2

− 4p2(TU) + 6p1(TU)e2 − 21e4}, [U ]〉
≡ Ind2(DN

U ) + Ind2(DN⊗N
U )

+ 1 〈
Â(TU)ch(i∗VC(x) + TCU + NC + 244) tanh

(e)
, [U ]
〉

mod 2.

(2.18)
2 4
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Remark 2.1. Note that on the spin manifold U ,

i∗C(x) = 1
2p1(TU) + 2i∗x, i∗C̃(x) = 1

2p1(TU) + i∗x.

The left hand sides of (2.17) and (2.18) give interesting integral quadratic forms on 
H4(U ; Z) after being multiplied by 64.

Motivated by Corollary 2.1 and Remark 2.1, for any 10-dimensional closed spin man-
ifold B with an auxiliary complex line bundle ξ, we consider the following pairing on the 
cohomology classes of degree 4:

Lc : H4(B;Z) ⊗H4(B;Z) → Z

defined by

Lc(x, y) = 〈x ∪ y ∪ c, [B]〉,

where c := c1(ξ) ∈ H2(B; Z) is the first Chern class of ξ and [B] is the fundamental 
class of B. This naturally defines a symmetric bilinear form on the free part of H4(B; Z), 
which we denote by Lc.

Furthermore, it was shown by Stong [28] that the 11-th spin bordism group over 
the Eilenberg-MacLane space K(Z, 4) is trivial, i.e., Ωspin

11 (K(Z, 4)) = 0. Since by Bott-
Samelson [6], K(Z, 4) is homotopy equivalent to BE8 up to 15 skeleton, it is also true 
that

Ωspin
11 (BE8) = 0.

This implies that the circle bundle S(ξ) of ξ, which is spin, bounds a 12-dimensional spin 
manifold W such that any E8-principal bundle over S(ξ) can be extended to W . Again 
by Bott-Samelson [6] that K(Z, 4) is homotopy equivalent to BE8 up to 15 skeleton, the 
isomorphism classes of E8-principal bundles over any manifold M of dimension less than 
15 are in one-one correspondence with the 4-classes in H4(M ; Z). Let x ∈ H4(B; Z)
correspond to a given E8-principal bundle over B. Since the disk bundle D(ξ) of ξ
is homotopy equivalent to B, this E8-principal bundle is extended to D(ξ), and then 
restricted to S(ξ) with a further extension to W . Now gluing D(ξ) with W along S(ξ), 
we get a 12-dimensional closed spinc manifold

Z = D(ξ)
⋃
S(ξ)

W,

such that there exists a principal E8-bundles restricted to the given one over B. It is 
clear that B is a characteristic submanifold of Z. Let V (x) denote the real adjoint bundle 
over B associated to the principal E8-bundle determined by the class x. By Corollary 2.1
and Remark 2.1, we have
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Theorem 2.8.

1
64
〈
c ·
{
24C(x)2 − (4p1(TB) + 10c2)C(x) + p1(TB)2

−4p2(TB) + 6p1(TB)c2 − 21c4
}
, [B]
〉

≡ Ind2(DξR
B ) + Ind2(DξR⊗ξR

B )

+ 1
2

〈
Â(TB)ch (2VC(x) + TCB + ξC − 4) tanh

( c
4

)
, [B]
〉

mod 2;

(2.19)

and

1
64 〈c · {48C̃(x)2 − (28p1(TB) + 10c2)C̃(x) + 7p1(TB)2

− 4p2(TB) + 6p1(TB)c2 − 21c4}, [B]〉
≡ Ind2(DξR

B ) + Ind2(DξR⊗ξR
B )

+ 1
2

〈
Â(TB)ch(VC(x) + TCB + ξC + 244) tanh

( c
4

)
, [B]
〉

mod 2,

(2.20)

where C(x) = 1
2p1(TB) + 2x, and C̃(x) = 1

2p1(TB) + x.

Remark 2.2. It is not hard to check that

1
64
〈
c ·
{
24C(x)2 − (4p1(TB) + 10c2)C(x) + p1(TB)2 − 4p2(TB) + 6p1(TB)c2

−21c4
}
, [B]
〉
,

and

1
64 〈c·{48C̃(x)2−(28p1(TB)+10c2)C̃(x)+7p1(TB)2−4p2(TB)+6p1(TB)c2−21c4}, [B]〉

are quadratic refinements of 3Lc and 6Lc respectively.

Now suppose Z has boundary and let Y be the boundary of Z with the induced spinc

structure. Assume all the involved metrics and connections are of product structures 
near ∂Z = Y . Let Dc

Y be the Atiyah-Singer spinc Dirac operator on Y .
Let

Cc(x̌) = λc(∇TZ) + 2x̌

and

C̃c(x̌) = λc(∇TZ) + x̌.

As (4.33) and (4.42) hold on the level of forms, by the Atiyah-Patodi-Singer index 
theorem [1], we have the following formulas,
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Theorem 2.9. The following identities hold,

1
12

∫
Z

Cc(x̌)[pc(∇TZ)−Cc(x̌)2] ≡ 2η(Dc,VC(x)
Y )+η(Dc,TCZ

Y )−η(Dc,ξC⊗ξC−ξC+2
Y ) mod Z;

(2.21)
and

1
12

∫
Z

C̃c(x̌)[p̃c(∇TZ) + 6λc(∇TZ)C̃c(x̌) − 4C̃c(x̌)2]

≡η(Dc,VC(x)
Y ) + η(Dc,TCZ

Y ) + η(Dc,−ξC⊗ξC+ξC+246
Y ) mod Z.

(2.22)

3. Cubic forms on orientable 12-manifolds

In this section, we give the Witten-Freed-Hopkins type anomaly cancellation formulas 
on 12 dimensional orientable manifolds, without assuming that the manifold is spin, spinc

or spinω2 .
Let Z be a 12 dimensional oriented smooth closed manifold. Let

L̂(x) = x

tanh x
2

(3.1)

be the L̂-polynomial and L̂(TZ) be the L̂-class of TZ (cf. [24]). Let ds be the signature 
operator on Z and W be a complex vector bundle over Z. Then by the Atiyah-Singer 
index theorem ([3])

Ind(ds ⊗W ) = 〈L̂(TZ)ch(W ), [Z]〉.

For x ∈ H4(Z; Z), let

D(x) = −p1 + 2x.

Theorem 3.1. The following identity holds,〈
D(x)[4p2

1 − 7p2 −D(x)2]
6 , [Z]

〉
= 1

32

〈
2L̂(TZ)ch(VC(x)) + 2L̂(TZ)ch(TCZ)

+ L̂(TZ)ch(∧2(TCZ) − S2(TCZ)) − 4L̂(TZ), [Z]
〉
.

(3.2)

Let

D̃(x) = −p1 + x.
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Theorem 3.2. The following identity holds,〈
D̃(x)[p2

1 − 7p2 − 6p1D̃(x) − 4D̃(x)2]
3 , [Z]

〉

= 1
16

〈
L̂(TZ)ch(VC(x)) + 2L̂(TZ)ch(TCZ)

+L̂(TZ)ch(∧2(TCZ) − S2(TCZ)) + 244L̂(TZ), [Z]
〉
.

(3.3)

These two theorems are consequences of the factorization formulas for degree 12 char-
acteristic forms: (4.59) and (4.69) (proved in Subsection 4.3) and direct computations of 
the degree 8 components in (4.59) and (4.69).

Now suppose Z has boundary and let Y be the boundary of Z with the induced 
orientation. Assume all the involved metrics and connections are of product structures 
near ∂Z = Y . Let BY be the signature operator on Y .

Denote

D(x̌) = −p1(∇TZ) + 2x̌

and

D̃(x̌) = −p1(∇TZ) + x̌.

As (4.59) and (4.69) hold on the level of forms, by the Atiyah-Patodi-Singer index 
theorem [1], we have

Theorem 3.3. The following identities hold,

16
3

∫
Z

D(x̌)[4p1(∇TZ)2 − 7p2(∇TZ) −D(x̌)2]

≡2η(BVC(x)
Y ) + 2η(BTCZ

Y ) + η(B∧2(TCZ)−S2(TCZ)
Y ) − 4η(BY ) mod Z;

(3.4)

and

16
3

∫
Z

D̃(x̌)[p1(∇TZ)2 − 7p2(∇TZ) − 6p1(∇TZ)D̃(x̌) − 4D̃(x̌)2]

≡η(BVC(x)
Y ) + 2η(BTCZ

Y ) + η(B∧2(TCZ)−S2(TCZ)
Y ) + 244η(BY ) mod Z.

(3.5)

4. Proofs

The purpose of this section is to give proofs to Theorem 2.5, Theorem 2.6, Theorem 3.1
and Theorem 3.2. In order to conduct the proofs, we first briefly review some basic 
materials on the representation theory of affine E8 following [20] (see also [21]).
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4.1. The basic representation of affine E8

Let g be the Lie algebra of E8. Let 〈 , 〉 be the Killing form on g. Let g̃ be the affine 
Lie algebra corresponding to g defined by

g̃ = C[t, t−1] ⊗ g⊕Cc,

with the bracket

[P (t) ⊗ x + λc,Q(t) ⊗ y + μc] = P (t)Q(t) ⊗ [x, y] + 〈x, y〉Rest=0

(
dP (t)
dt

Q(t)
)
c.

Let ĝ be the affine Kac-Moody algebra obtained from g̃ by adding a derivation t d
dt

which operates on C[t, t−1] ⊗ g in an obvious way and sends c to 0.
The basic representation V (Λ0) is the ̂g-module defined by the property that there is a 

nonzero vector v0 (highest weight vector) in V (Λ0) such that cv0 = v0, (C[t] ⊕Ct d
dt )v0 =

0. Setting Vk := {v ∈ V (Λ0)|t d
dt = −kv} gives a Z+-grading by finite spaces. Since 

[g, d] = 0, each Vk is a representation ρk of g. Moreover, ρ1 is the adjoint representation 
of E8.

Let q = e2π
√
−1τ , τ ∈ H. Fix a basis for the Cartan subalgebra and let {zi}8

i=1 be the 
corresponding coordinates. The character of the basic representation is given by

ch(z1, z2, · · · , z8, τ) :=
∞∑
k=0

(chVk)(z1, z2, · · · , z8)qk = ϕ(τ)−8Θg(z1, z2, · · · , z8, τ),

where ϕ(τ) =
∏∞

n=1(1 − qn) so that η(τ) = q1/24ϕ(τ) is the Dedekind η function; 
Θg(z1, z2, · · · , z8, τ) is the theta function defined on the root lattice Q by

Θg(z1, z2, · · · , z8, τ) =
∑
γ∈Q

q|γ|
2/2e2π

√
−1γ(−→z ),

where −→z = (z1, z2, · · · , z8).
It was proved in [12] that there is a basis for the E8 root lattice such that

Θg(z1, · · · .z8, τ) = 1
2

( 8∏
l=1

θ(zl, τ) +
8∏

l=1

θ1(zl, τ) +
8∏

l=1

θ2(zl, τ) +
8∏

l=1

θ3(zl, τ)
)
, (4.1)

where θ and θi (i = 1, 2, 3) are the Jacobi theta functions (cf. [8] and [15]):

θ(v, τ) = 2q1/8 sin(πv)
∞∏
j=1

[(1 − qj)(1 − e2π
√
−1vqj)(1 − e−2π

√
−1vqj)], (4.2)

θ1(v, τ) = 2q1/8 cos(πv)
∞∏

[(1 − qj)(1 + e2π
√
−1vqj)(1 + e−2π

√
−1vqj)], (4.3)
j=1
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θ2(v, τ) =
∞∏
j=1

[(1 − qj)(1 − e2π
√
−1vqj−1/2)(1 − e−2π

√
−1vqj−1/2)], (4.4)

θ3(v, τ) =
∞∏
j=1

[(1 − qj)(1 + e2π
√
−1vqj−1/2)(1 + e−2π

√
−1vqj−1/2)]. (4.5)

The theta functions satisfy the following transformation laws (cf. [8]),

θ(v, τ + 1) = e
π
√

−1
4 θ(v, τ), θ (v,−1/τ) = 1√

−1

(
τ√
−1

)1/2

eπ
√
−1τv2

θ (τv, τ) ; (4.6)

θ1(v, τ + 1) = e
π
√

−1
4 θ1(v, τ), θ1 (v,−1/τ) =

(
τ√
−1

)1/2

eπ
√
−1τv2

θ2(τv, τ) ; (4.7)

θ2(v, τ + 1) = θ3(v, τ), θ2 (v,−1/τ) =
(

τ√
−1

)1/2

eπ
√
−1τv2

θ1(τv, τ) ; (4.8)

θ3(v, τ + 1) = θ2(v, τ), θ3 (v,−1/τ) =
(

τ√
−1

)1/2

eπ
√
−1τv2

θ3(τv, τ) . (4.9)

4.2. Proof of Theorem 2.5 and Theorem 2.6

Now we are ready to give the proofs.

4.2.1. Proof of Theorem 2.5
The proof of the statement (2.9) about pc can be found in Theorem 5.1.
For the principal E8 bundles Pi, i = 1, 2, consider the associated bundles

Vi =
∞∑
k=0

(Pi ×ρk
Vk) qk ∈ K(Z)[[q]].

Let Wi = Pi ×ρ1 V1, i = 1, 2, be the complex vector bundles associated to the adjoint 
representation ρ1.

By the knowledge reviewed in Section 4.1, we see that there are formally two forms 
yil (i = 1, 2 and 1 � l � 8) on Z such that

ϕ(τ)8ch(Vi) = 1
2

( 8∏
l=1

θ(yil , τ) +
8∏

l=1

θ1(yil , τ) +
8∏

l=1

θ2(yil , τ) +
8∏

l=1

θ3(yil , τ)
)
. (4.10)

Since θ(z, τ) is an odd function about z, one can see that up to degree 12, the term ∏8
l=1 θ(yil , τ) can be dropped and therefore we have

ϕ(τ)8ch(Vi) = 1
2

( 8∏
θ1(yil , τ) +

8∏
θ2(yil , τ) +

8∏
θ3(yil , τ)

)
. (4.11)
l=1 l=1 l=1
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Since θ1(z, τ), θ2(z, τ) and θ3(z, τ) are all even functions about z, the right hand side 
of the above equality only contains even powers of yij’s. Therefore ch(Wi) only consists 
of forms of degrees divisible by 4 (this is actually a basic fact about E8). So

ch(Vi) = 1 + ch(Wi)q + · · · = 1 + (248 − c2(Wi) + · · · )q + · · · . (4.12)

On the other hand,

1
2

( 8∏
l=1

θ1(yil , τ) +
8∏

l=1

θ2(yil , τ) +
8∏

l=1

θ3(yil , τ)
)

= 1+
(

240 + 30
8∑

l=1

(yil)2 + · · ·
)
q+O(q2).

(4.13)
From (4.11), (4.12) and (4.13), we have

8∑
l=1

(
yil
)2 = − 1

30c2(Wi). (4.14)

Let TZ be the tangent bundle of Z and TCZ be its complexification. Let ξ be a rank 
two real oriented Euclidean vector bundle over Z carrying a Euclidean connection ∇ξ. 
Let c = e(ξ, ∇ξ) be the Euler form canonically associated to ∇ξ.

If E is a complex vector bundle over Z, set Ẽ = E − Crk(E). Recall that for an 
indeterminate t,

Λt(E) = C|Z + tE + t2 ∧2 (E) + · · · , St(E) = C|Z + tE + t2S2(E) + · · · , (4.15)

are the total exterior and symmetric powers of E respectively. The following relations 
between these two operations hold (cf. [2]),

St(E) = 1
Λ−t(E) , Λt(E − F ) = Λt(E)

Λt(F ) . (4.16)

Following [9], set

Θ(TCZ, ξC) :=
(

∞
⊗

m=1
Sqm(˜TCZ)

)
⊗
(

∞
⊗

n=1
Λqn(ξ̃C)

)
⊗
(

∞
⊗

u=1
Λ−qu−1/2(ξ̃C)

)
⊗
(

∞
⊗
v=1

Λqv−1/2(ξ̃C)
)

∈ K(Z)[[q]],

where ξC is the complexification of ξ.
Clearly, Θ(TCZ, ξC) admits a formal Fourier expansion in q as

Θ(TCZ, ξC) = C + B1q + B2q
2 · · · , (4.17)
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where the Bj ’s are elements in the semi-group formally generated by complex vector 
bundles over Z. Moreover, they carry canonically induced connections denoted by ∇Bj ’s. 
Let ∇Θ be the induced connection with q-coefficients on Θ.

For 1 � i, j � 2, set

Q(Pi, Pj , ξ, τ) :=
{
e

1
24E2(τ)

(
p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj))
)
Â(TZ)

× cosh
( c

2

)
ch (Θ(TCZ, ξC))ϕ(τ)16ch(Vi)ch(Vj)

}(12)
.

(4.18)

Here

E2(τ) = 1 − 24
∞∑

n=1

⎛⎝∑
d|n

d

⎞⎠ qn (4.19)

is the Eisenstein series. Unlike the other Eisenstein series E2k(τ), k > 1, E2(τ) is not 
a modular form over SL(2, Z), instead E2(τ) is a quasimodular form over SL(2, Z), 
satisfying:

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ) − 6

√
−1c(cτ + d)

π
. (4.20)

In particular, we have

E2(τ + 1) = E2(τ), (4.21)

E2

(
−1
τ

)
= τ2E2(τ) − 6

√
−1τ
π

(4.22)

(cf. Chap 2.3 in [7]).

Lemma 4.1. Q(Pi, Pj , ξ, τ) is a modular form of weight 14 over SL(2; Z).

Proof. Let {±2π
√
−1xk}(1 � k � 6) be the formal Chern roots for (TCZ, ∇TCZ). Let 

c = e(ξ, ∇ξ) = 2π
√
−1u. One has

Q(Pi, Pj , ξ, τ) =
{
e

1
24E2(τ)

(
p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)
)
Â(TZ) cosh

( c
2

)
×ch (Θ(TCZ, ξC))ϕ(τ)16ch(Vi)ch(Vj)

}(12)
=
{
e

1
24E2(τ)

(
p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)
) ( 6∏

k=1

(
xk

θ′(0, τ)
θ(xk, τ)

))

·θ1(u, τ) θ2(u, τ) θ3(u, τ) (4.23)

θ1(0, τ) θ2(0, τ) θ3(0, τ)
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· 1
4

( 8∏
l=1

θ1(yil , τ) +
8∏

l=1

θ2(yil , τ) +
8∏

l=1

θ3(yil , τ)
)

·
( 8∏

l=1

θ1(yjl , τ) +
8∏

l=1

θ2(yjl , τ) +
8∏

l=1

θ3(yjl , τ)
)}(12)

.

Then we can perform the transformation laws (4.6)-(4.9) for the theta functions and 
the transformation laws (4.21), (4.22) for E2(τ) to show that Q(Pi, Pj , ξ, τ) is a modular 
form of weight 14 over SL(2; Z). �

Expanding the q-series, using (4.12), (4.17) and (4.19), we have

e
1
24E2(τ)

(
p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)
)
Â(TZ) cosh

( c
2

)
· ch (Θ(TCZ, ξC))ϕ(τ)16ch(Vi)ch(Vj)

=
(
e

1
24
(
p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj))
)
− e

1
24
(
p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj))
)

·
(
p1(TZ) − 3c2 + 1

30(c2(Wi) + c2(Wj))
)
q + O(q2)

)
· Â(TZ) cosh

( c
2

)
ch(C + B1q + O(q2))(1 − 16q + O(q2))

· (1 + ch(Wi)q + O(q2))(1 + ch(Wj)q + O(q2))

= e
1
24
(
p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj))
)
Â(TZ) cosh

( c
2

)
+ q
(
e

1
24
(
p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj))
)
Â(TZ) cosh

( c
2

)
ch(B1 − 16 + Wi + Wj)

− e
1
24
(
p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj))
) (

p1(TZ) − 3c2 + 1
30(c2(Wi) + c2(Wj))

)
· Â(TZ) cosh

( c
2

))
+ O(q2). (4.24)

It is well known (cf. Chap 2.1 in [7]) that modular forms over SL(2; Z) can be expressed 
as polynomials of the Eisenstein series E4(τ), E6(τ), where

E4(τ) = 1 + 240q + 2160q2 + 6720q3 + · · · , (4.25)

E6(τ) = 1 − 504q − 16632q2 − 122976q3 + · · · . (4.26)

Their weights are 4 and 6 respectively.
Since the weight of the modular form Q(Pi, Pj , ξ, τ) is 14 and the space of modular 

forms of weight 14 over SL(2, Z) is 1-dimensional and spanned by E2
4(τ)E6(τ) (cf. Chap 

2.1 in [7]), it must be a multiple of

E4(τ)2E6(τ) = 1 − 24q + · · · . (4.27)
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So from (4.24) and (4.27), we have

{
e

1
24
(
p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj))
)
Â(TZ) cosh

( c
2

)
ch(B1 − 16 + Wi + Wj)

}(12)

−
{
e

1
24
(
p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj))
) (

p1(TZ) − 3c2 + 1
30(c2(Wi) + c2(Wj))

)
· Â(TZ) cosh

( c
2

)}(12)

= − 24
{
e

1
24
(
p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj))
)
Â(TZ) cosh

( c
2

)}(12)
.

(4.28)

Therefore{
Â(TZ) cosh

( c
2

)
ch(Wi + Wj + B1 + 8)

}(12)

=
(
p1(TZ) − 3c2 + 1

30(c2(Wi) + c2(Wj))
)

·
{
− e

1
24
(
p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)
)
− 1

p1(TZ) − 3c2 + 1
30 (c2(Wi) + c2(Wj))

Â(TZ) cosh
( c

2

)
ch(Wi + Wj + B1 + 8)

+ e
1
24
(
p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)
)
Â(TZ) cosh

( c
2

)}(8)

.

(4.29)

To find B1, we have

Θ(TCZ, ξC)

=
(

∞
⊗

m=1
Sqm(˜TCZ)

)
⊗
(

∞
⊗

n=1
Λqn(ξ̃C)

)
⊗
(

∞
⊗

u=1
Λ−qu−1/2(ξ̃C)

)
⊗
(

∞
⊗
v=1

Λqv−1/2(ξ̃C)
)

=1 + (TCZ − 12 − 3ξ̃C − ξ̃C ⊗ ξ̃C)q + O(q2).
(4.30)

So

B1 = TCZ − 12 − 3ξ̃C − ξ̃C ⊗ ξ̃C. (4.31)

Plugging B1 into (4.29), we have

{
Â(TZ) cosh

( c
2

)
ch(Wi + Wj + TCZ − 4 − 3ξ̃C − ξ̃C ⊗ ξ̃C)

}(12)

=
(
p1(TZ) − 3c2 + 1

30(c2(Wi) + c2(Wj))
)

·
{
− e

1
24
(
p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)
)
− 1

p1(TZ) − 3c2 + 1 (c2(Wi) + c2(Wj))
Â(TZ) cosh

( c
2

)
(4.32)
30
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· ch(Wi + Wj + TCZ − 4 − 3ξ̃C − ξ̃C ⊗ ξ̃C)

+ e
1
24
(
p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)
)
Â(TZ) cosh

( c
2

)}(8)

.

Since ch(Wi), ch(Wj) only contribute degree 4l forms, we can replace cosh
(
c
2
)

by e
c
2 . 

Then in (4.32), putting W1 = W2 = VC(x), we get{
Â(TZ)e c

2 ch(VC(x)) + 1
2 Â(TZ)e c

2 ch(TCZ) − 1
2 Â(TZ)e c

2 ch(4 + 3ξ̃C + ξ̃C ⊗ ξ̃C)
}(12)

=
(
p1(TZ) − 3c2

2 + 1
30c2(VC(x))

)

·
{
−e

1
24
(
p1(TZ)−3c2+ 1

15 c2(VC(x))
)
− 1

p1(TZ) − 3c2 + 1
15c2(VC(x))

Â(TZ)e c
2 ch(A)

+ e
1
24
(
p1(TZ)−3c2+ 1

15 c2(VC(x))
)
Â(TZ)e c

2

}(8)

,

(4.33)

where

A = 2VC(x) + TCZ − 4 − 3ξ̃C − ξ̃C ⊗ ξ̃C.

It is not hard to check that 4 + 3ξ̃C + ξ̃C ⊗ ξ̃C = ξC ⊗ ξC − ξC + 2 and

p1(TZ) − 3c2

2 + 1
30c2(VC(x)) = λc + 2x = Cc(x).

A direct computation shows that the 8-form in the right hand side of (4.33) verifies{
−e

1
24
(
p1(TZ)−3c2+ 1

15 c2(VC(x))
)
− 1

p1(TZ) − 3c2 + 1
15c2(VC(x))

Â(TZ)e c
2 ch(A)

+ e
1
24
(
p1(TZ)−3c2+ 1

15 c2(VC(x)
)
Â(TZ)e c

2

}(8)

= pc − Cc(x)2

24 .

(4.34)

We therefore get (2.10), and have completed the proof of Theorem 2.5.

4.2.2. Proof of Theorem 2.6
For each i, set

R(Pi, ξ, τ)

:=
{
e

1
24E2(τ)

(
p1(TZ)−3c2+ 1

30 c2(Wi)
)
Â(TZ) cosh

( c
2

)
ch (Θ(TCZ, ξC))ϕ(τ)8ch(Vi)

}(12)
.

(4.35)
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Lemma 4.2. R(Pi, ξ, τ) is a modular form of weight 10 over SL(2; Z).

Proof. This can be similarly proved as Lemma 4.1 by seeing that

R(Pi, ξ, τ)

=
{
e

1
24E2(τ)

(
p1(TZ)−3c2+ 1

30 c2(Wi)
)
Â(TZ) cosh

( c
2

)
ch (Θ(TCZ, ξC))ϕ(τ)8ch(Vi)

}(12)

=
{
e

1
24E2(τ)

(
p1(TZ)−3c2+ 1

30 c2(Wi)
) ( 6∏

l=1

(
xl

θ′(0, τ)
θ(xl, τ)

))
θ1(u, τ)
θ1(0, τ)

θ2(u, τ)
θ2(0, τ)

θ3(u, τ)
θ3(0, τ)

·12

( 8∏
l=1

θ1(yil , τ) +
8∏

l=1

θ2(yil , τ) +
8∏

l=1

θ3(yil , τ)
)}(12)

, (4.36)

and then we can perform the transformation laws (4.6)-(4.9) for the theta functions and 
the transformation laws (4.21), (4.22) for E2(τ) to show that R(Pi, ξ, τ) is a modular 
form of weight 10 over SL(2; Z). �

Similar to the proof of Theorem 2.5, expanding the q-series, using (4.12), (4.17) and 
(4.19), we have

e
1
24E2(τ)

(
p1(TZ)−3c2+ 1

30 c2(Wi)
)
Â(TZ) cosh

( c
2

)
ch (Θ(TCZ, ξC))ϕ(τ)8ch(Vi)

=
(
e

1
24
(
p1(TZ)−3c2+ 1

30 c2(Wi)
)

− e
1
24
(
p1(TZ)−3c2+ 1

30 c2(Wi)
) (

p1(TZ) − 3c2 + 1
30c2(Wi)

)
q + O(q2)

)
· Â(TZ) cosh

( c
2

)
ch(C + B1q + O(q2))(1 − 8q + O(q2))(1 + ch(Wi)q + O(q2))

=e
1
24
(
p1(TZ)−3c2+ 1

30 c2(Wi)
)
Â(TZ) cosh

( c
2

)
+ q

(
e

1
24
(
p1(TZ)−3c2+ 1

30 c2(Wi)
)
Â(TZ) cosh

( c
2

)
ch(B1 − 8 + Wi)

− e
1
24
(
p1(TZ)−3c2+ 1

30 c2(Wi)
) (

p1(TZ) − 3c2 + 1
30c2(Wi)

)
Â(TZ) cosh

( c
2

))
+ O(q2).

(4.37)

However modular form of weight 10 must be a multiple of (cf. Chap 2.1 in [7])

E4(τ)E6(τ) = 1 − 264q + · · · . (4.38)

So from (4.37) and (4.38), we have
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{
e

1
24
(
p1(TZ)−3c2+ 1

30 c2(Wi)
)
Â(TZ) cosh

( c
2

)
ch(B1 − 8 + Wi)

}(12)

−
{
e

1
24
(
p1(TZ)−3c2+ 1

30 c2(Wi)
) (

p1(TZ) − 3c2 + 1
30c2(Wi)

)
Â(TZ) cosh

( c
2

)}(12)

= − 264
{
e

1
24
(
p1(TZ)−3c2+ 1

30 c2(Wi)
)
Â(TZ) cosh

( c
2

)}(12)
.

(4.39)

Therefore{
Â(TZ) cosh

( c
2

)
ch(Wi + B1 + 256)

}(12)

=
(
p1(TZ) − 3c2 + 1

30c2(Wi)
)

·
{
−e

1
24
(
p1(TZ)−3c2+ 1

30 c2(Wi)
)
− 1

p1(TZ) − 3c2 + 1
30c2(Wi)

Â(TZ) cosh
( c

2

)
ch(Wi + B1 + 256)

+ e
1
24
(
p1(TZ)−3c2+ 1

30 c2(Wi)
)
Â(TZ) cosh

( c
2

)}(8)

.

(4.40)

Plugging in B1 (see (4.31)), we have

{
Â(TZ) cosh

( c
2

)
ch(Wi + TCZ + 244 − 3ξ̃C − ξ̃C ⊗ ξ̃C)

}(12)

=
(
p1(TZ) − 3c2 + 1

30c2(Wi)
)

·
{
−e

1
24
(
p1(TZ)−3c2+ 1

30 c2(Wi)
)
− 1

p1(TZ) − 3c2 + 1
30c2(Wi)

Â(TZ) cosh
( c

2

)
ch(Wi + TCZ

+ 244 − 3ξ̃C − ξ̃C ⊗ ξ̃C) + e
1
24
(
p1(TZ)−3c2+ 1

30 c2(Wi)
)
Â(TZ) cosh

( c
2

)}(8)

.

(4.41)

Since ch(Wi) only contributes degree 4l forms, we can replace cosh
(
c
2
)

by e
c
2 . Taking 

Wi = VC(x), we have

{
Â(TZ)e c

2 ch(VC(x)) + Â(TZ)e c
2 ch(TCZ) + Â(TZ)e c

2 ch(244 − 3ξ̃C − ξ̃C ⊗ ξ̃C)
}(12)

=
(
p1(TZ) − 3c2 + 1

30c2(VC(x))
){

−e
1
24
(
p1(TZ)−3c2+ 1

30 c2(VC(x))
)
− 1

p1(TZ) − 3c2 + 1
30c2(VC(x))

Â(TZ)

· e c
2 ch(B) + e

1
24
(
p1(TZ)−3c2+ 1

30 c2(VC(x))
)
Â(TZ)e c

2

}(8)

,

(4.42)
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where

B = VC(x) + TCZ + 244 − 3ξ̃C − ξ̃C ⊗ ξ̃C.

It is not hard to check that 244 − 3ξ̃C − ξ̃C ⊗ ξ̃C = 246 − ξC ⊗ ξC + ξC and

p1(TZ) − 3c2 + 1
30c2(VC(x)) = 2λc + 2x = 2C̃c(x).

A direct computation shows that the 8-form in the right hand side of (4.42) verifies{
−e

1
24
(
p1(TZ)−3c2+ 1

30 c2(VC(x))
)
− 1

p1(TZ) − 3c2 + 1
30c2(VC(x))

Â(TZ)e c
2 ch(E)

+ e
1
24
(
p1(TZ)−3c2+ 1

30 c2(VC(x))
)
Â(TZ)e c

2

}(8)

= p̃c + 6λcC̃c(x) − 4C̃c(x)2

24 .

We therefore get (2.12), and have completed the proof of Theorem 2.6.

4.3. Proof of Theorem 3.1 and Theorem 3.2

4.3.1. Proof of Theorem 3.1
Following [9], set

Θ1(TCZ) :=
(

∞
⊗

n=1
Λqn(˜TCZ)

)
∈ K(Z)[[q]], (4.43)

Θ2(TCZ) :=
(

∞
⊗

n=1
Λ−qu−1/2(˜TCZ)

)
∈ K(Z)[[q1/2]], (4.44)

Θ3(TCZ) :=
(

∞
⊗

n=1
Λqu−1/2(˜TCZ)

)
∈ K(Z)[[q1/2]]. (4.45)

Construct ([25])

Φ(TCZ) = Θ(TCZ) ⊗ Θ1 (TCZ) ⊗ Θ2 (TCZ) ⊗ Θ3 (TCZ) ∈ K(Z)[[q]] (4.46)

and define

WL̂(TZ) = e−
1
12E2(τ)·p1(TZ)L̂(TZ)ch(Φ(TCZ)) ∈ H4∗(TZ,Q). (4.47)

We call WL̂(TZ) the L̂-Witten class of TZ.
Perform the formal Fourier expansion in q as

Φ(TCZ) = Θ(TCZ)⊗Θ1 (TCZ)⊗Θ2 (TCZ)⊗Θ3 (TCZ) = C +D1q +D2q
2 · · · , (4.48)
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where the Dj ’s are elements in the semi-group formally generated by complex vector 
bundles over Z. Moreover, they carry canonically induced connections denoted by ∇Dj ’s. 
Let ∇Φ be the induced connection with q-coefficients on Φ.

For 1 � i, j � 2, construct the twisted L̂-Witten class

e
1
24E2(τ)

(
−2p1(TZ)+ 1

30 (c2(Wi)+c2(Wj))
)
L̂(TZ)ch (Φ(TCZ))ϕ(τ)16ch(Vi)ch(Vj) ∈ H4∗(Z,Q)

(4.49)
and denote

QL(Pi, Pj , τ)

=
{
e

1
24E2(τ)

(
−2p1(TZ)+ 1

30 (c2(Wi)+c2(Wj))
)
L̂(TZ)ch (Φ(TCZ))ϕ(τ)16ch(Vi)ch(Vj)

}(12)
.

(4.50)

Lemma 4.3. QL(Pi, Pj , τ) is a modular form of weight 14 over SL(2; Z).

Proof. Let {±2π
√
−1xk}(1 � k � 6) be the formal Chern roots for (TCZ, ∇TCZ). One 

has

QL(Pi, Pj , τ)

=
{
e

1
24E2(τ)

(
−2p1(TZ)+ 1

30 (c2(Wi)+c2(Wj))
)
L̂(TZ)ch (Φ(TCZ))ϕ(τ)16ch(Vi)ch(Vj)

}(12)

=26

{
e

1
24E2(τ)

(
−2p1(TZ)+ 1

30 (c2(Wi)+c2(Wj)
) ( 6∏

k=1

xk
θ′(0, τ)
θ(xk, τ)

θ1(xk, τ)
θ1(0, τ)

θ2(xk, τ)
θ2(0, τ)

θ3(xk, τ)
θ3(0, τ)

)

· 1
4

( 8∏
l=1

θ1(yil , τ) +
8∏

l=1

θ2(yil , τ) +
8∏

l=1

θ3(yil , τ)
)

·
( 8∏

l=1

θ1(yjl , τ) +
8∏

l=1

θ2(yjl , τ) +
8∏

l=1

θ3(yjl , τ)
)}(12)

. (4.51)

Then we can perform the transformation laws (4.6)-(4.9) for the theta functions and 
the transformation laws (4.21), (4.22) for E2(τ) to show that QL(Pi, Pj , τ) is a modular 
form of weight 14 over SL(2; Z). �

Expanding the q-series, using (4.12), (4.19) and (4.48), we have

e
1
24E2(τ)

(
−2p1(TZ)+ 1

30 (c2(Wi)+c2(Wj)
)
L̂(TZ)ch (Φ(TCZ))ϕ(τ)16ch(Vi)ch(Vj)

=
(
e

1
24
(
−2p1(TZ)+ 1

30 (c2(Wi)+c2(Wj))
)

− e
1
24
(
−2p1(TZ)+ 1

30 (c2(Wi)+c2(Wj))
) (

−2p1(TZ) + 1
30(c2(Wi) + c2(Wj))

)
q + O(q2)

)
· L̂(TZ)ch(C + D1q + O(q2))(1 − 16q + O(q2))(1 + ch(Wi)q + O(q2)) (4.52)
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· (1 + ch(Wj)q + O(q2))
=e

1
24
(
−2p1(TZ)+ 1

30 (c2(Wi)+c2(Wj))
)
L̂(TZ)

+ q

(
e

1
24
(
−2p1(TZ)+ 1

30 (c2(Wi)+c2(Wj))
)
L̂(TZ)ch(D1 − 16 + Wi + Wj)

− e
1
24
(
−2p1(TZ)+ 1

30 (c2(Wi)+c2(Wj))
) (

−2p1(TZ) + 1
30(c2(Wi) + c2(Wj))

)
L̂(TZ)

)
+ O(q2).

Since the weight of the modular form Q(Pi, Pj , τ) is 14, it must be a multiple of

E4(τ)2E6(τ) = 1 − 24q + · · · . (4.53)

So from (4.52) and (4.53), we have

{
e

1
24
(
−2p1(TZ)+ 1

30 (c2(Wi)+c2(Wj))
)
L̂(TZ)ch(D1 − 16 + Wi + Wj)

}(12)

−
{
e

1
24
(
−2p1(TZ)+ 1

30 (c2(Wi)+c2(Wj))
)

·
(
−2p1(TZ) + 1

30(c2(Wi) + c2(Wj))
)
L̂(TZ)

}(12)

= − 24
{
e

1
24
(
−2p1(TZ)+ 1

30 (c2(Wi)+c2(Wj))
)
L̂(TZ)

}(12)
.

(4.54)

Therefore{
L̂(TZ)ch(Wi + Wj + D1 + 8)

}(12)

=
(
−2p1(TZ) + 1

30(c2(Wi) + c2(Wj))
)

·
{
−e

1
24
(
−2p1(TZ)+ 1

30 (c2(Wi)+c2(Wj)
)
− 1

−2p1(TZ) + 1
30 (c2(Wi) + c2(Wj))

L̂(TZ)ch(Wi + Wj + D1 + 8)

+ e
1
24
(
−2p1(TZ)+ 1

30 (c2(Wi)+c2(Wj)
)
L̂(TZ)

}(8)

.

(4.55)

To find D1, we have

Φ(TCZ) =
(

∞
⊗

m=1
Sqm(˜TCZ)

)
⊗
(

∞
⊗

n=1
Λqn(˜TCZ)

)
⊗
(

∞
⊗

n=1
Λ−qu−1/2(˜TCZ)

)
⊗
(

∞
⊗

n=1
Λqu−1/2(˜TCZ)

)
=1 + (2T Z + ∧2(T Z) − S2(T Z) − 12)q + O(q2).

(4.56)
C C C
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So

D1 = 2TCZ + ∧2(TCZ) − S2(TCZ) − 12. (4.57)

Plugging D1 into (4.55), we have

{
L̂(TZ)ch(Wi + Wj + 2TCZ + ∧2(TCZ) − S2(TCZ) − 4)

}(12)

=
(
−2p1(TZ) + 1

30(c2(Wi) + c2(Wj))
)

·
{
−e

1
24
(
−2p1(TZ)+ 1

30 (c2(Wi)+c2(Wj)
)
− 1

−2p1(TZ) + 1
30 (c2(Wi) + c2(Wj))

L̂(TZ)ch(Wi + Wj + 2TCZ

+ ∧2(TCZ) − S2(TCZ) − 4) + e
1
24
(
−2p1(TZ)+ 1

30 (c2(Wi)+c2(Wj)
)
L̂(TZ)

}(8)

.

(4.58)

Putting W1 = W2 = VC(x), we get〈
2L̂(TZ)ch(VC(x)) + 2L̂(TZ)ch(TCZ)

+ L̂(TZ)ch(∧2(TCZ) − S2(TCZ)) − 4L̂(TZ), [Z]
〉

=
(
−2p1(TZ) + 1

15c2(VC(x))
){

−e
1
24
(
−2p1(TZ)+ 1

15 c2(VC(x))
)
− 1

−2p1(TZ) + 1
15c2(VC(x))

L̂(TZ)ch(C)

· +e
1
24
(
−2p1(TZ)+ 1

15 c2(VC(x))
)
L̂(TZ)

}(8)

,

(4.59)

where

C = 2VC(x) + 2TCZ + ∧2(TCZ) − S2(TCZ) − 4.

Note that the 4-form

−2p1(TZ) + 1
15c2(VC(x)) = 2D(x).

A direct computation shows that the 8-form in the right hand side of (4.59) verifies{
−e

1
24
(
−2p1(TZ)+ 1

15 c2(VC(x))
)
− 1

−2p1(TZ) + 1
15c2(VC(x))

L̂(TZ)ch(C)

+ e
1
24
(
−2p1(TZ)+ 1

15 c2(VC(x))
)
L̂(TZ)

}(8)

= 8
3
(
4p2

1 − 7p2 −D(x)2
)
.

(4.60)
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We therefore get (3.2), and have completed the proof of Theorem 3.1.

4.3.2. Proof of Theorem 3.2
For each i, construct the twisted L̂-Witten class

e
1
24E2(τ)

(
−2p1(TZ)+ 1

30 c2(Wi)
)
L̂(TZ)ch (Φ(TCZ))ϕ(τ)8ch(Vi) ∈ H4∗(Z,Q) (4.61)

and set

RL(Pi, τ) =
{
e

1
24E2(τ)

(
−2p1(TZ)+ 1

30 c2(Wi)
)
L̂(TZ)ch (Φ(TCZ))ϕ(τ)8ch(Vi)

}(12)
. (4.62)

Lemma 4.4. RL(Pi, τ) is a modular form of weight 10 over SL(2; Z).

Proof. This can be similarly proved as Lemma 4.3 by seeing that

RL(Pi, τ)

=
{
e

1
24E2(τ)

(
−2p1(TZ)+ 1

30 c2(Wi)
)
L̂(TZ)ch (Φ(TCZ))ϕ(τ)8ch(Vi)

}(12)

=26

{
e

1
24E2(τ)

(
−2p1(TZ)+ 1

30 c2(Wi)
) ( 6∏

k=1

xk
θ′(0, τ)
θ(xk, τ)

θ1(xk, τ)
θ1(0, τ)

θ2(xk, τ)
θ2(0, τ)

θ3(xk, τ)
θ3(0, τ)

)

·12

( 8∏
l=1

θ1(yil , τ) +
8∏

l=1

θ2(yil , τ) +
8∏

l=1

θ3(yil , τ)
)}(12)

,

(4.63)

and then we can perform the transformation laws (4.6)-(4.9) for the theta functions and 
the transformation laws (4.21), (4.22) for E2(τ) to show that RL(Pi, τ) is a modular 
form of weight 10 over SL(2; Z). �

Expanding the q-series, using (4.12), (4.19) and (4.48), we have

e
1
24E2(τ)

(
−2p1(TZ)+ 1

30 c2(Wi)
)
L̂(TZ)ch (Φ(TCZ))ϕ(τ)8ch(Vi)

=
(
e

1
24
(
−2p1(TZ)+ 1

30 c2(Wi)
)

− e
1
24
(
−2p1(TZ)+ 1

30 c2(Wi)
) (

−2p1(TZ) + 1
30c2(Wi)

)
q + O(q2)

)
· L̂(TZ)ch(C + D1q + O(q2))(1 − 8q + O(q2))(1 + ch(Wi)q + O(q2))

=e
1
24
(
−2p1(TZ)+ 1

30 c2(Wi)
)
L̂(TZ)

+ q

(
e

1
24
(
−2p1(TZ)+ 1

30 c2(Wi)
)
L̂(TZ)ch(D1 − 8 + Wi) (4.64)
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− e
1
24
(
−2p1(TZ)+ 1

30 c2(Wi)
) (

−2p1(TZ) + 1
30c2(Wi)

)
L̂(TZ)

)
+ O(q2).

However modular form of weight 10 must be a multiple of

E4(τ)E6(τ) = 1 − 264q + · · · . (4.65)

So from (4.64) and (4.65) we have

{
e

1
24
(
−2p1(TZ)+ 1

30 c2(Wi)
)
L̂(TZ)ch(D1 − 8 + Wi)

}(12)

−
{
e

1
24
(
−2p1(TZ)+ 1

30 c2(Wi)
) (

−2p1(TZ) + 1
30c2(Wi)

)
L̂(TZ)

}(12)

= − 264
{
e

1
24
(
−2p1(TZ)+ 1

30 c2(Wi)
)
L̂(TZ)

}(12)
.

(4.66)

Therefore

{
L̂(TZ)ch(Wi + D1 + 256)

}(12)

=
(
−2p1(TZ) + 1

30c2(Wi)
)

·
{
−e

1
24
(
−2p1(TZ)+ 1

30 c2(Wi)
)
− 1

−2p1(TZ) + 1
30c2(Wi)

L̂(TZ)ch(Wi + D1 + 256)

+ e
1
24
(
−2p1(TZ)+ 1

30 c2(Wi)
)
L̂(TZ)

}(8)

.

(4.67)

Plugging in D1 (see (4.57)), we have

{
L̂(TZ)ch(Wi + 2TCZ + ∧2(TCZ) − S2(TCZ) + 244)

}(12)

=
(
−2p1(TZ) + 1

30c2(Wi)
){

−e
1
24
(
−2p1(TZ)+ 1

30 c2(Wi)
)
− 1

−2p1(TZ) + 1
30c2(Wi)

L̂(TZ)

· ch(Wi + 2TCZ + ∧2(TCZ) − S2(TCZ) + 244)

+ e
1
24
(
−2p1(TZ)+ 1

30 c2(Wi)
)
L̂(TZ)

}(8)

.

(4.68)

Taking Wi = VC(x), we have
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{
L̂(TZ)ch(VC(x) + 2TCZ + ∧2(TCZ) − S2(TCZ) + 244)

}(12)

=
(
−2p1(TZ) + 1

30c2(VC(x))
){

−e
1
24
(
−2p1(TZ)+ 1

30 c2(VC(x))
)
− 1

−2p1(TZ) + 1
30c2(VC(x))

L̂(TZ)

· ch(D) + e
1
24
(
−2p1(TZ)+ 1

30 c2(VC(x))
)
L̂(TZ)

}(8)

,

(4.69)

where

D = VC(x) + 2TCZ + ∧2(TCZ) − S2(TCZ) + 244.

Note that the 4-form

−2p1(TZ) + 1
30c2(VC(x)) = 2D̃(x).

A direct computation shows that the 8-form in the right side of (4.69) verifies{
−e

1
24
(
−2p1(TZ)+ 1

30 c2(VC(x))
)
− 1

−2p1(TZ) + 1
30c2(VC(x))

L̂(TZ)ch(D) + e
1
24
(
−2p1(TZ)+ 1

30 c2(VC(x))
)
L̂(TZ)

}(8)

=8
3

(
p2
1 − 7p2 − 6p1D̃(x) − 4D̃(x)2

)
.

We then get (3.3), and have completed the proof of Theorem 3.2.

5. The characteristic classes in the cubic forms

The spinc characteristic classes are determined by Duan [10] by computing the integral 
cohomology of its classifying space BSpinc. Let c ∈ H2(BSpinc) be the class with the 
mod 2 reduction

c ≡ ω2 mod 2,

where ω2 is the second Stiefel-Whitney class. Then by a theorem of Duan [10] (cf. Thomas 
[29])

H∗(BSpinc) ∼= Z[c, q1, q2, q3, . . .] ⊕ (the 2−torsion part), (5.1)

where qi is called the the i-th universal spinc class with deg(qi) = 4i. The spinc classes 
determine the Pontrjagin classes. In the low dimensions, we have

p1 = 2q1 + c2,

p2 = 2q2 + q2
1 ,

p = q .

(5.2)
3 3
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The relations between spinc classes and Stiefel-Whitney classes can be described by the 
mod 2 reductions of spinc classes (cf. Benson-Wood [5]). In the low dimensions,

q1 ≡ ω4 mod 2,

q2 ≡ ω8 mod 2,

q3 ≡ ω2
6 mod 2.

(5.3)

To obtain spin characteristic classes, we can simply let c = 0 in (5.1) and (5.2). In this 
case, (5.3) is still valid. Notice that in Freed-Hopkins [11], they denoted q1 by λ and q2
by p. With the above in hand, it is easy to calculate the following

Theorem 5.1. Let M be any spinc manifold with the determinant class c ∈ H2(M).
(i) One has

4p2 − p2
1 − 6p1c

2 + 39c4 = 8(q2 − 2q1c2 + 4c4).

Hence,

pc = 4p2 − p2
1 − 6p1c

2 + 39c4

8

is well defined and

pc ≡ ω8 mod 2.

(ii) One has

4p2 − 7p2
1 + 30p1c

2 − 15c4 = 8(q2 − 3q2
1 + 4q1c2 + c4).

Hence

p̃c = 4p2 − 7p2
1 + 30p1c

2 − 15c4

8

is well defined and

p̃c ≡ ω8 + ω2
4 + ω4

2 mod 2.

(iii) pc and p̃c satisfy

p̃c = pc − 3λ2
c ,

where

λc = 1(p1 − 3c2) = q1 − c2,
2
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and

λc ≡ ω4 + ω2
2 mod 2.

Theorem 5.2. For any orientable manifold,

4p2
1 − 7p2 ≡ ω2

4 mod 2,

p2
1 − 7p2 ≡ ω4

2 + ω2
4 mod 2.

6. Obstruction classes of spinξ and spinω2 structures

Definition 6.1. An oriented closed manifold M is called spinξ if its second Stiefel-Whitney 
class w2(M) can be realized as that of some real vector bundle ξ of rank 2 over M , that 
is,

ω2(M) = ω2(ξ).

The concept spinξ is a generalization of spinc. Indeed, M is spinc when ξ can be 
chosen to be orientable. However, there are non-spinc spinξ manifolds.

Definition 6.2. An oriented closed manifold M is called spinω2 if ω2(M) can be realized 
as that of some nonorientable real vector bundle ξ of rank 2 over M .

Recall that the obstruction class to spinc structure is the third integral Stiefel-Whitney 
class W3(M) ∈ H3(M ; Z). In contrast, we need to use cohomology with local coefficients
(or twisted cohomology) to investigate the obstructions of spinξ and spinω2 structures. 
There are two standard ways to define cohomology with local coefficients: via module 
over the group ring of fundamental group, or via bundle of groups (for instance, see 
Hatcher, Section 3.H of [17]). They correspond to each other in a natural way.

Here, we deal with the obstruction problem for the homotopy lifting diagram

BO(2)

ω2

M
ω2(M)

f

K(Z/2Z, 2),

(6.1)

where K(Z/2Z, 2) is Eilenberg-MacLane space, and ω2 represents the second universal 
Stiefel-Whitney class. For the classifying space BO(2), the first universal Stiefel-Whitney 
class

ω1 ∈ H1(BO(2);Z/2Z) ∼= Hom(π1(BO(2)),Aut(Z) ∼= Z/2Z)
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determines a bundle of groups Zω1 → BO(2) with fibre Z. Moreover, BO(2) is a gener-
alized Eilenberg-MacLane space in the sense of Gitler [13], and by Theorem 7.18 of [13], 
for any t ∈ H1(M ; Z/2Z) ∼= Hom

(
π1(M), π1(BO(2))

)
[M,BO(2)]t ∼= H2(M ;Zt), (6.2)

where the set [M, BO(2)]t ⊆ [M, BO(2)] consists of the classes of maps f such that f∗ = t

on fundamental groups, and the local coefficient (or the bundle of groups) Zt = t∗(Zω1). 
From the short exact sequence of bundles of groups

0 → Zt 2→ Zt → Z/2Z → 0,

there exists a long exact sequence of cohomology with local coefficients

· · · → H2(M ;Zt) 2→ H2(M ;Zt) ρ2→ H2(M ;Z/2Z) βt

→ H3(M ;Zt) → · · · , (6.3)

where ρ2 is the mod-2 reduction to the cohomology with the untwisted coefficient Z/2Z, 
and βt is the t-twisted Bockstein homomorphism. Let us call W t

3(M) := βt(ω2(M)) the 
third t-twisted integral Stiefel-Whitney class. Set M = BO and t = ω1, we have the third 
universal t-twisted integral Stiefel-Whitney class

Wω1
3 := βω1(ω2).

In particular, for t = 0 W 0
3 (M) = W3(M) is the usual third integral Stiefel-Whitney 

class.

Theorem 6.1. An oriented closed manifold M is spinξ if and only if

W t
3(M) = 0,

for some t ∈ H1(M ; Z/2Z).

Proof. From the exactness of the sequence (6.3), W t
3(M) = 0 is equivalent to that 

ω2(M) = ρ2(ct) for some ct ∈ H2(M ; Zt), which by (6.2) is equivalent to the existence 
of a real vector bundle ξt of rank 2 such that ω1(ξt) = t and ω2(ξt) = ω2(M). �

In particular, the theorem recovers the obstruction result for spinc structure and 
determines the obstruction class for spinω2 structure as well.

Corollary 6.1. An oriented closed manifold M is spinω2 if and only if

W t
3(M) = 0,

for some t ∈ H1(M ; Z/2Z) and t �= 0.
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