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Symplectic Reduction and Family Quantization

Weiping Zhang

§1 Introduction and the statement of the main results

The purpose of this paper is to generalize the Guillemin-Sternberg geometric quantiza-

tion conjecture [GS], which has been proved in various generalities in [DGMW], [G], [GS],

[JK], [M1], [M2], [V] to the case of families.

To be more precise, let Z → M
π−→ B be a smooth fibration with connected closed

fibers and base, and let TZ be the associated vertical tangent bundle. For any b ∈ B, we

denote by ib : Zb = π−1(b) ↪→ M the canonical embedding.We make the basic assumption

that there exists a smooth 2-form ω ∈ Γ(∧2(T∗Z)) such that for any b ∈ B, ωb = i∗bω

is a symplectic form over Zb. Then what we have is a smooth fibration of symplectic

manifolds.

Let J be an almost complex structure on TZ such that

g(u, v) = ω(u, Jv), u, v ∈ Γ(TZ) (1.1)

defines a smooth Euclidean metric on TZ. We assume the existence of J. Let TZ ⊗ C =
T (1,0) Z⊕T (0,1) Z be the canonical splitting of the complexification of TZ with respect to J.

Let E be a Hermitian vector bundle over M carrying a Hermitian connection ∇E.

Then for any b ∈ B, ∇Eb = i∗b∇E is a Hermitian connection on Eb = i∗bE.

For any b ∈ B, one can construct from the geometric objects ωb, Jb = J|TZb , and

(Eb,∇Eb) the Spinc-Dirac operator
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DEb+ : Ω
0,even(Zb, Eb) = Γ

(
∧even

(
T (0,1)∗ Zb ⊗ Eb

))
−→ Ω0,odd(Zb, Eb) = Γ

(
∧odd

(
T (0,1)∗ Zb ⊗ Eb

)) (1.2)

in a standard way (see [TZ1, Sect. 1(a)]). Then DEM/B,+ = {DEb+ }b∈B forms a smooth family

of Spinc-Dirac operators parametrized by B.

Now let G be a compact connected Lie group with Lie algebra g. We make the

assumption that the total manifold M admits a smooth G-action such that G preserves

every Zb, b ∈ B, and that there is a smooth map µ :M → g∗ such that the G action on each

Zb, b ∈ B, is Hamiltonian with the moment map given by µb = µ|Zb → g∗. Furthermore,

we assume that 0 ∈ g∗ is a regular value of µ. For simplicity, we also assume that the

G-action on µ−1(0) is free. Then on each fiber Zb, one can construct in the usual way the

Marsden-Weinstein reduction (ZG,b = µ−1b (0)/G,ωG,b) (see [GS] and [TZ1, Sect. 3(a)]).

These reduction spaces together form a smooth fibration of symplectic manifolds

(ZG,ωG) −→ MG =
µ−1(0)

G

πG−−−→ B. (1.3)

Also, we assume that the G action preserves the almost complex structure J and the

Hermitian vector bundle (E,∇E), which in turn induce canonically the almost complex

structure JG on TZG and the Hermitian vector bundle (EG,∇EG) over MG, respectively.

In particular, one can construct as in (1.1) a smooth family of Spinc-Dirac operators

DEGMG/B,+
= {DEG,b+ }b∈B with each DEG,b+ acting on

DEG,b+ : Ω0,even(ZG,b, EG,b) −→ Ω0,odd(ZG,b, EG,b). (1.4)

Now let g (and thus g∗ also) be equipped with an AdG-invariant metric. Let

H = |µ|2 be the norm square of µ. Let XH ∈ Γ(TZ) be such that for any b ∈ B, XH
b = XH|Zb

is the Hamiltonian vector field associated to Hb = H|Zb .

Set B(XH) = {x ∈ M : XH(x) = 0}.

Let hi, 1 ≤ i ≤ dimG, be an orthonormal base of g∗. Let Vi, 1 ≤ i ≤ dimG, be the

dual base of hi, 1 ≤ i ≤ dimG. Then we can write µ as

µ =

dimG∑
i=1

µihi, (1.5)

with each µi a real function on M.

For any V ∈ g, set1

rEV = LEV −∇EV , (1.6)

1We use the same notation V to denote the vector field it generates onM.
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where LEV denotes the infinitesimal action of V on E.

Assumption 1.1 (see [TZ1, (4.4)]). For any x ∈ B(XH), one has

√
−1

dimG∑
i=1

µi(x)r
E
Vi
(x) ≥ 0. (1.7)

Now for any b ∈ B, denote by Ω0,∗(Zb, Eb)G the G-invariant subspace of

Ω0,∗(Zb, Eb). Then, since G preserves everything, the restriction of the Spinc-Dirac oper-

ator in (1.1) to Ω0,∗(Zb, Eb)G,

DEbG,+ : Ω
0,even(Zb, Eb)

G −→ Ω0,odd(Zb, Eb)
G, (1.8)

is well defined. Furthermore, one verifies easily that the smooth family of operators

DEM/B,G,+ = {DEbG,+}b∈B admits a well-defined index bundle

indDEM/B,G,+ ∈ K(B) (1.9)

in the sense of Atiyah and Singer (see [AS]).

Similarly, the smooth family of operators DEGMG/B,+
= {DEG,b+ }b∈B has a well-

defined index bundle

indDEGMG/B,+
∈ K(B). (1.10)

We can now state the main result of this paper as follows.

Theorem 1.2. If µ−1(0) 	= ∅, and Assumption 1.1 holds, then one has the following iden-

tity in K(B):

indDEM/B,G,+ = indDEGMG/B,+
. (1.11)

When B = {pt.}, Theorem 1.2 was proved in [TZ1, Theorem 4.2] as an extension of

the Guillemin-Sternberg geometric quantization conjecture (see [GS]).2Thus,Theorem 1.2

may be thought of as a generalization to families of the Guillemin-Sternberg conjecture.

We combine the analytic approach to the Guillemin-Sternberg conjecture devel-

oped in [TZ1] with the homotopy invariance property of the index bundle (see [AS]) to

2The original Guillemin-Sternberg conjecture was stated for the case where E is the prequantum line bundle
over the underlying symplectic manifold. It has been proved in various generalities in [DGMW], [G], [GS], [JK],
[M1], [M2], [V], with the most general result first obtained by Meinrenken (see [M2]).
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proveTheorem 1.2.The proof turns out to be surprisingly simpler than what has been ex-

pected.

An important class of examples of fibrations of symplectic manifolds is the class

of symplectic fibrations studied in [GLS]. Furthermore, when Z → M
π−→ B is also a holo-

morphic fibration, one can refine (1.11) to an identity between sheafs of direct images,

extending the holomorphic quantization formulas in [Te] and [Z] to the family case.

The rest of this paper is organized as follows. In Section 2, we present our proof of

Theorem 1.2 and describe some of its immediate consequences. In Section 3, we discuss

the above-mentioned refinement in the holomorphic case. There is also an Appendix in

which we prove a family extension of the rigidity theorem of the canonical Spinc-Dirac

operators on symplectic manifolds, which plays a role in Section 2(c) for one of the

applications of Theorem 1.2.

§2 Proof of Theorem 1.2

This section is organized as follows. In (a), we recall the analytic arguments in [TZ1],

which now apply to the fiberwise Spinc-Dirac operators in our situation. In (b), we prove

Theorem 1.2. Section (c) contains some immediate consequences of Theorem 1.2.

We make the same assumption and use the same notation as in Section 1.

(a) Deformations of the fiberwise Dirac operators and the

associated estimates

Let b ∈ B be fixed temporarily.

Following [TZ1, Definition 1.2], for any T ∈ R, let DEbG,+,T be the deformation of

DEbG,+ given by

DEbG,+,T = DEbG,+ +

√
−1T

2
c
(
XH
b

)
: Ω0,even(Zb, Eb)

G −→ Ω0,odd(Zb, Eb)
G, (2.1)

where c(XH
b ) is the notation for the Clifford action of XH

b (see [TZ1, Sect. 1(a)]).

We now describe the analytic arguments in [TZ1], which rely heavily on [BL, Sects.

8, 9], in a little more detailed version than what is seen in [TZ1].

As in [BL], we first introduce some notation of Sobolev spaces. For q ≥ 0, let Eq±,b
(resp., Fq±,b) be the set of sections of ∧even / odd(T (0,1)∗ Zb) ⊗ Eb over Zb (resp.,

∧even / odd(T (0,1)∗ ZG,b) ⊗ EG,b over ZG,b) that lie in the q-th Sobolev space. We always

use ‖ · ‖0 as the notation for the standard L2-norms. We denote the G-invariant part of

E
q
±,b by Eq,G±,b .
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Now since µ−1b (0) 	= ∅ and Assumption 1.1 holds, one sees easily that one can

proceed as in the proof in [TZ1] of [TZ1, Theorem 4.2] to get the following results.

There exists a sufficiently small G-invariant open neighborhood Ub ⊂ Zb of

µ−1b (0) and a linear map JT,b : F
q
±,b → E

q,G
±,b for T > 0, which is the analogue of the

map defined in [BL, Definition 9.4]3 , such that for any u ∈ Ω0,∗(ZG,b, EG,b), one has

JT,bu ∈ Ω0,∗(Zb, Eb)G with Supp JT,bu ⊂ Ub. Let Eq,GT,±,b be the image of Fq±,b in Eq,G±,b by

JT,b. Then JT,b : F
0
±,b → E0,GT,±,b is an isometry.

Let E0,GT,±,b,⊥ be the orthogonal space to E0,GT,±,b in E0,G±,b. Let pT,±,b, pT,±,b,⊥ be the

orthogonal projection operators from E0,G±,b to E0,GT,±,b, E
0,G
T,±,b,⊥, respectively. Then we have

the following decomposition of DEbG,+,T :

DEbG,+,T =

4∑
i=1

DT,b,i (2.2)

with

DT,b,1 = pT,−,bD
Eb
G,+,TpT,+,b, DT,b,2 = pT,−,bD

Eb
G,+,TpT,+,b,⊥,

DT,b,3 = pT,−,b,⊥DEbG,+,TpT,+,b, DT,b,4 = pT,−,b,⊥DEbG,+,TpT,+,b,⊥. (2.3)

By proceeding as in [TZ1, Sects. 2, 3, and 4(a)] and [BL, Sects. 8, 9], we obtain the

following proposition, which consists of the fiberwise analogues of [BL, Theorems 9.8,

9.10 and 9.14] in our situation.

Proposition 2.1. (a) As T → +∞,

J−1T,bDT,b,1JT,b = DEG,bQ,+ +O

(
1√
T

)
: Ω0,even(ZG,b, EG,b) −→ Ω0,odd(ZG,b, EG,b),

(2.4)

where DEG,bQ,+ is the Dirac type operator on ZG,b defined in [TZ1, Definition 3.12].

(b) There exist Cb,1 > 0, Cb,2 > 0, and Tb,0 > 0 such that for any T ≥ Tb,0 , and

any s ∈ E1,GT,+,b,⊥ = E0,GT,+,b,⊥ ∩ E1,G+,b, s ′ ∈ E1,GT,+,b, then

‖DT,b,2s‖0 ≤ Cb,1

(‖s‖1√
T
+ ‖s‖0

)
,

‖DT,b,3s ′‖0 ≤ Cb,1

(‖s ′‖1√
T
+ ‖s ′‖0

)
, (2.5)

3See [Z, Sect. 1(b)] for a more explicit description of the construction of JT,b .
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and

‖DT,b,4s‖0 ≥ Cb,2

(
‖s‖1 +

√
T‖s‖0

)
. (2.6)

The easy but important observation is that the above fiberwise construction can

be made to depend on b ∈ B continuously. We have then a continuous family of Fredholm

operators

DEbG,+,T : E
1,G
+,b −→ E0,G−,b, b ∈ B, (2.7)

admitting the decompositions (2.2), (2.3) with each {DT,b,i}b∈B a continuous family of

bounded linear operators mapping from E1,G+,b ’s to E0,G−,b ’s.

Furthermore, the positive constants Tb,0 , Cb,1 , Cb,2 in Proposition 2.1 can be

chosen to be independent of b ∈ B. In what follows, we simply denote them by T0 , C1 ,

C2 , respectively.

(b) Proof of Theorem 1.2

We work in the category of continuous families of Fredholm operators rather than that

of differential operators.

For any u ∈ R, b ∈ B, set

DEbG,+,T (u) = DT,b,1 +DT,b,4 + u (DT,b,2 +DT,b,3) : E
1,G
+,b −→ E0,G−,b. (2.8)

The following easy lemma plays a key role in our proof of Theorem 1.2.

Lemma 2.2. There exists T1 > 0 such that for any u ∈ [0, 1] and T ≥ T1 , {DEbG,+,T (u)}b∈B
is a continuous family of Fredholm operators over B.

Proof. We need only to show the Fredholm property on each fiber.

From the second part of Proposition 2.1 and from (2.2), (2.8), one sees that there

exists C3 > 0 such that for any T ≥ T0 , u ∈ [0, 1], and s ∈ E1,G+,b, one has

∥∥∥DEbG,+,Ts−DEbG,+,T (u)s
∥∥∥
0
≤ C3

(‖s‖1√
T
+ ‖s‖0

)
. (2.9)

On the other hand, by the Bochner type formula for DEb,2G,+,T proved in [TZ1,

Corollary 1.7], one deduces easily that there exist C4 , C5 > 0 such that for any T ≥ T0 ,

∥∥∥DEbG,+,Ts∥∥∥
0
≥ C4‖s‖1 − C5

√
T‖s‖0 . (2.10)
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From (2.9), (2.10), one gets

∥∥∥DEbG,+,Ts−DEbG,+,T (u)s
∥∥∥
0
≤ C3

C4
√
T

∥∥∥DEbG,+,Ts∥∥∥
0
+ (C3 + C5)‖s‖0 . (2.11)

From (2.11) and the Fredholm property of DEbG,+,T , one obtains the Fredholm

property of DEbG,+,T (u) for sufficiently large T . �

Recall that the index bundle construction [AS] applies well to continuous families

of Fredholm operators and that the homotopy invariance property for index bundles still

holds in this situation.

Thus by Lemma 2.2, we have the following identity of index bundles:

ind
{
DEbG,+,T

}
b∈B
= ind

{
DEbG,+,T

}
b∈B
(0) = ind {DT,b,1 +DT,b,4 }b∈B

= ind {DT,b,1 }b∈B + ind {DT,b,4 }b∈B in K(B),
(2.12)

where in the last line, each DT,b,1 (resp., DT,b,4), b ∈ B, is now regarded as a Fredholm

operator mapping from E1,GT,+,b (resp., E1,GT,+,b,⊥) to E0,GT,−,b (resp., E0,GT,−,b,⊥).

On the other hand, by an obvious analogue of the first part of [BL, Prop. 9.16],

which follows from the third part of Proposition 2.1 and its adjoint analogue, one has

ind {DT,b,4 }b∈B = 0 in K(B). (2.13)

From (2.12), (2.13), one gets

ind
{
DEbG,+,T

}
b∈B
= ind {DT,b,1 }b∈B in K(B). (2.14)

Now by the first part of Proposition 2.1, one deduces easily that when T is large

enough, one has

ind
{
J−1T,bDT,b,1JT,b

}
b∈B = ind

{
DEG,bQ,+

}
b∈B

in K(B). (2.15)

From (2.14), (2.15), and again the homotopy invariance property of the index

bundle, one gets for T sufficiently large that

ind
{
DEG,b+

}
b∈B
= ind

{
DEG,bQ,+

}
b∈B
= ind

{
DEbG,+,T

}
b∈B

= ind
{
DEbG,+

}
b∈B

in K(B),
(2.16)

which is exactly (1.11).

The proof of Theorem 1.2 is completed. �
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Remark 2.3. The deformation trick in (2.8) allows us to avoid the small eigenvalue prob-

lem (see [TZ1, Theorem 3.13]), which is not easy to handle in the family case when the

kernel of the involved Spinc-Dirac type operators jumps. However, this may destroy the

Z-grading nature in holomorphic contexts. Thus, as we see in the next section, the full

strength of the analytic arguments in [TZ1] as well as its holomorphic refinement in [Z]

is in force in holomorphic situations.

(c) Some immediate consequences

The first example is certainly when E is a fiberwise prequantum line bundle and verifies

fiberwise the Kostant formula (see [Ko]; see also [TZ1, (1.13)]). In this case, one gets a

direct generalization of the Guillemin-Sternberg conjecture (see [GS]) to the family case.

For the second example, we take E = C, the trivial complex line bundle with the

trivial G-action on it. Assumption 1.1 clearly holds for it. On the other hand, by a family

rigidity theorem to be proved in the Appendix, we have

indDCM/B,+ = indDCM/B,G,+ in K(B). (2.17)

From (1.11) and (2.17), we get the following consequence, which extends the

corresponding result of Tian and Zhang (see [TZ1, Theorem 0.3]) and Meinrenken and

Sjamaar (see [MS]) to the family case.

Corollary 2.4. If µ−1(0) 	= ∅, then the following identity holds:

indDCM/B,+ = indDCGMG/B,+
in K(B). (2.18)

When µ−1(0) = ∅, one has the following vanishing result, which holds, for exam-

ple, for the fiberwise prequantum line bundles.

Theorem 2.5. If µ−1(0) = ∅ and the inequality (1.7) is strict, then one has

indDEM/B,G,+ = 0 in K(B). (2.19)

Proof. In this case, one can apply the arguments in [TZ1, Sect. 2] to show that when T

is large enough, every DEbG,+,T , b ∈ B, is invertible. Thus one has

ind
{
DEbG,+,T

}
b∈B
= 0 in K(B). (2.20)
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Formula (2.19) then follows from (2.1), (2.20), and the homotopy invariance of

the index bundle. �

Remark 2.6. By using the methods in this paper, one can also prove a family extension

of the weighted quantization formula obtained in [TZ2].

§3 Holomorphic family quantizations

In this section, we further assume that Z → M
π−→ B is a holomorphic fibration with J

the complex structure on TZ. We also assume that G acts holomorphically on the total

space M, as well as on the Hermitian (now assuming) holomorphic vector bundle E, and

∇E is the holomorphic Hermitian connection on E.

For any b ∈ B, let H0,∗(Zb, Eb) (resp., H0,∗(ZG,b, EG,b)) be the Dolbeault cohomol-

ogy with coefficient Eb (resp., EG,b) (see [TZ1, Sect. 4(d)]). Let H0,∗(Zb, Eb)G be the G-

invariant part of H0,∗(Zb, Eb). We make the asumption that dimH0,∗(Zb, Eb)G (and thus

dimH0,∗(ZG,b, EG,b) also, by the results in [Z]), is locally constant. Then H0,∗(Zb, Eb)G

(resp., H0,∗(ZG,b, EG,b)), b ∈ B, form a holomorphic vector bundle H0,∗(Z, E)G (resp.,

H0,∗(ZG, EG)) over B.

The following result refines Theorem 1.2 in this situation.

Theorem 3.1. If µ−1(0) 	= ∅ and Assumption 1.1 holds, then one has the following

identification of holomorphic vector bundles over B:

H0,∗(Z, E)G � H0,∗(ZG, EG). (3.1)

Proof. Let b ∈ B be fixed temporarily. Following [TZ1, (1.21)], for any T ∈ R, set

∂
Eb
T = e−T |µb|2 /2∂

Eb
eT |µb|2 /2 : Ω0,∗(Zb, Eb) −→ Ω0,∗(Zb, Eb). (3.2)

Similarly, let

∂
EG,b
Q : Ω0,∗(ZG,b, EG,b) −→ Ω0,∗(ZG,b, EG,b) (3.3)

be defined as in [TZ1, (3.54)] (see also [Z, (1.8)]).

The main result of [Z] is an explicit construction of the quasi-isomorphisms

rb :
(
Ω0,∗(Zb, Eb)G, ∂

Eb
T

)
−→ (

Ω0,∗(ZG,b, EG,b), ∂
EG,b
Q

)
, b ∈ B, (3.4)

when T is sufficiently large.
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Now, for the present holomorphic fibration situation, the fiberwise quasi-

isomorphism rb is holomorphic with respect to b ∈ B. Thus, under the assumptions

on the constant dimension of the fiberwise Dolbeault cohomologies, {rb}b∈B provides an

identification of the corresponding holomorphic vector bundles over B,

H0,∗T (Z, E)
G � H0,∗Q (ZG, EG). (3.5)

On the other hand, one has the obvious identifications of holomorphic vector

bundles

H0,∗T (Z, E)
G � H0,∗(Z, E)G (3.6)

and

H0,∗Q (ZG, EG) � H0,∗(ZG, EG). (3.7)

Formula (3.1) follows from (3.5), (3.6), and (3.7). �

As a holomorphic refinement of Corollary 2.4, we take again E = C, the trivial

complex line bundle over M with the trivial G-action. In this case, one has the following

holomorphic refinement of the rigidity property (2.17),

H0,∗(Z,C) = H0,∗(Z,C)G, (3.8)

which can be verified directly.

From Theorem 3.1 and (3.8), one gets the following corollary.

Corollary 3.2. If µ−1(0) 	= ∅ and dimH0,∗(Zb,Cb), b ∈ B, are constant, then one has the

following identification of holomorphic vector bundles over B:

H0,∗(Z,C) � H0,∗(ZG,CG). (3.9)

Remark 3.3. When the assumption that dimH0,∗(Zb,Cb), b ∈ B, are constant does not

hold, then (3.1) and (3.9) should hold at the level of analytic sheafs of the corresponding

direct images, which may also be proved by using the quasi-isomorphisms in (3.4). We

leave this to the interested reader.

Remark 3.4. The results in this section are closely related to the relative quantization

formula proved in the projective case by Teleman (see [Te, (5.2)]).
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Appendix A family rigidity theorem for

Spinc-Dirac operators

The purpose of this Appendix is to present a proof of the rigidity result (2.17). We make

the same assumptions and use the same notation as in Section 1.

It is easy to see that in order to prove (2.17), we need only to assume that G = S1 ,

the circle group.

Let (E,∇E) be the Hermitian vector bundle in Section 1. We no longer assume

that it verifies Assumption 1.1, unless this is emphasized otherwise.

Let V be the unit base of the Lie algebra of S1 . We use the same notation, V, to

denote the vector field it generates on M. Then for any b ∈ B, Vb = V |b ∈ Γ(TZb) is a

Killing vector field on Zb.

Let F be one of the connected components of the fixed point set of the S1 action

on M. Then the projection π : M → B induces a fibration πF : F → B, with each fiber

Fb = π−1F (b) being one of the connected components of the fixed point set of the S1

action on Zb. Let N be the normal bundle to F in M. We identify it with the orthogonal

complement to TZ ∩ T F in TZ. Then each Nb = N|Zb is the normal bundle to Fb in Zb and

carries an almost complex structure JNb , an induced Hermitian metric, as well as an

induced Hermitian connection.

Let b ∈ B be fixed temporarily.

The fiberwise Lie derivative
√
−1LV,b =

√
−1LV |Zb acts on Nb as a covariantly

constant invertible selfadjoint operator commuting with JN,b. Let Nb,+, Nb,− be the

positive and negative eigenbundles of
√
−1LV,b|Nb , respectively.Then JNb preservesNb,±,

and one has the canonical splittings

Nb,± ⊗C = N
(1,0)
b,± ⊕N

(0,1)
b,± . (A.1)

Let Sym(N(1,0)b,+ ) (resp., Sym(N(0,1)b,− )) be the total symmetric power of N(1,0)b,+ (resp.,N(0,1)b,− ).

Then Sym(N(0,1)b,− ) ⊗ Sym(N(1,0)b,+ ) ⊗ det(N(1,0)b,+ ) ⊗ Eb|Fb is an infinite dimensional vector

bundle over Fb, on which
√
−1LV,b acts as a covariantly constant selfadjoint operator. Fur-

thermore, for any λ ∈ Z, its λ-eigen-subbundle, denoted by (Sym(N(0,1)b,− )⊗ Sym(N(1,0)b,+ )⊗
det(N(1,0)b,+ )⊗ Eb|Fb)

λ, is finite dimensional.

Let DEbFb,λ,+(V) be the twisted Spinc-Dirac operator defined by

DEbFb,λ,+(V) : Ω
0,even

(
Fb,

(
Sym

(
N
(0,1)
b,−

)
⊗ Sym

(
N
(1,0)
b,+

)
⊗ det

(
N
(1,0)
b,+

)
⊗ Eb|Fb

)λ)

−→Ω0,odd

(
Fb,

(
Sym

(
N
(0,1)
b,−

)
⊗ Sym

(
N
(1,0)
b,+

)
⊗ det

(
N
(1,0)
b,+

)
⊗ Eb|Fb

)λ)
.

(A.2)
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Then {DEbFb,λ,+(V)}b∈B form a smooth family of elliptic differential operators over B,which

admits an index bundle

ind
{
DEbFb,λ,+(V)

}
b∈B

∈ K(B). (A.3)

On the other hand, one can also construct a smooth family of the restrictions of

the Spinc-Dirac operators

DEbλ,+ : Ω
0,even(Zb, Eb)

λ −→ Ω0,odd(Zb, Eb)
λ, (A.4)

where Ω0,∗(Zb, Eb)λ is the eigen-subspace of Ω0,∗(Zb, Eb) on which
√
−1LV,b acts as mul-

tiplication by λ, which admits an index bundle

ind
{
DEbλ,+

}
b∈B

∈ K(B). (A.5)

The first main result of this Appendix can be stated as follows.

Theorem A.1. The following identity holds in K(B) for any λ ∈ Z:

ind
{
DEbλ,+

}
b∈B
=

∑
F

ind
{
DEbFb,λ,+(V)

}
b∈B

. (A.6)

Proof. Following Witten (see [W]; see also [T, Sect. 2] and [WZ, (3.5)]), for any T ∈ R, we

consider the following family of operators parametrized by B:

D̃Ebλ,T,+ = DEbλ,+ +
√
−1Tc(V) : Ω0,even(Zb, Eb)

λ −→ Ω0,odd(Zb, Eb)
λ, b ∈ B. (A.7)

Recall that when B = {pt.}, a proof of (A.6) has been given in the holomorphic

context in [WZ], in which the arguments work with obvious modifications in the sym-

plectic case, by taking T → +∞ in (A.7). Furthermore, the method in [WZ] is again based

on [BL] and in particular on estimates similar to those in Proposition 2.1 of this paper

(see [WZ, Prop. 3.5]).

Formula (A.6) then follows easily by combining the arguments in [WZ], which

apply here fiberwise, with the method in Section 2(b). �

Now we take E = C. One verifies easily that for any b ∈ B, the restriction of√
−1LV,b to Sym(N(1,0)b,+ ) ⊗ det(N(1,0)b,+ ) is positive, while its restriction to Sym(N(0,1)b,− ) is

nonnegative. Thus, if λ < 0, then one has

(
Sym

(
N
(0,1)
b,−

)
⊗ Sym

(
N
(1,0)
b,+

)
⊗ det

(
N
(1,0)
b,+

))λ
= 0. (A.8)
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From (A.6) and (A.8), one finds that if λ < 0, then

ind
{
DEbλ,+

}
b∈B
= 0 in K(B). (A.9)

Similarly, by changing V to −V, one can show that (A.9) also holds for λ > 0.

Since (A.9) holds for every nonzero λ, one deduces (2.17) easily. �

RemarkA.2. In fact, the above arguments work for families of almost complex manifolds

as well. One then gets (2.17) as a family extension of the rigidity theorem for the canonical

Spinc-Dirac operators on almost complex manifolds (see [H]).

Remark A.3. Now if we assume that E in Theorem A.1 also verifies Assumption 1.1 in

Section 1, then by combining Theorems 1.2 and A.1, one gets that if µ−1(0) 	= ∅, then

indDEGMG/B,+
=

∑
F

ind
{
DEbFb,λ=0,+(V)

}
b∈B

in K(B), (A.10)

which is of interest itself.
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