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Hopf cyclic cohomology and Hodge theory for proper actions
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Abstract. We introduce a Hopf algebroid associated to a proper Lie group action on a smooth
manifold. We prove that the cyclic cohomology of this Hopf algebroid is equal to the de
Rham cohomology of invariant differential forms. When the action is cocompact, we develop
a generalized Hodge theory for the de Rham cohomology of invariant differential forms. We
prove that every cyclic cohomology class of the Hopf algebroid is represented by a generalized
harmonic form. This implies that the space of cyclic cohomology of the Hopf algebroid is
finite dimensional. As an application of the techniques developed in this paper, we discuss
properties of the Euler characteristic for a proper cocompact action.

Mathematics Subject Classification (2010). 58B34; 53D19.

Keywords. Cyclic cohomology, Hodge theory, proper action, Euler characteristic.

1. Introduction

Let G be a Lie group, and M be a smooth manifold. We assume that G acts on M
properly. As theG-action is proper, the quotientM=G is a Hausdorff stratified space.
Some of the examples of such spaces are considered already in [14].

In this paper, inspired by Connes and Moscovici’s Hopf cyclic theory [2], [3], we
introduce a Hopf algebroid to study the “local symmetries” of this stratified space.

Hopf algebroid was introduced by Lu [11] in generalizing the notion of Hopf alge-
bra. Connes and Moscovici [4] applied this concept to generalize that of symmetry of
“noncommutative spaces”. They developed a beautiful theory of cyclic cohomology
for a Hopf algebroid, and used it to study the transverse index theory.

Our Hopf algebroid associated to the G-action on M is a generalization of the
Hopf algebroid introduced in the first author’s joint work with Kaminker [7]. It
is shown in [7] that if � is a discrete group acting on a smooth manifold M , the
graded commutative algebra of differential forms on the action groupoid M Ì �

is a topological Hopf algebroid with the coalgebra and antipode structures defined
by taking the dual of the groupoid structure. In the case of a Lie group G action,
instead of considering the algebra of differential forms on the groupoid M Ì G, we
consider the algebra H .G;M/ of differential forms valued functions on G. The
similar construction as in [7] defines a Hopf algebroid structure on this algebra.
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We are able to compute the cyclic cohomology of this Hopf algebroid, which is
equal to the differentiable cohomology of the groupoidM ÌG � M with coefficient
in differential forms on M considered by Crainic [5]. As the G-action is proper,
Crainic’s result implies that the cyclic cohomology of the Hopf algebroid H .G;M/

is equal to the de Rham cohomology of G-invariant differential forms on M .
Our main result of this paper is to prove a “Hodge theorem” for G-invariant

differential forms on M when the G-action is cocompact. Our approach to this
generalized Hodge theory is inspired from the third author’s joint work with Mathai
[12]. Our strategy is to study a generalized de Rham Laplace–Beltrami operator on
the space of G-invariant differential forms on M . With some elliptic estimates, we
are able to prove that this operator has essentially the same properties as the standard
Laplace-Beltrami operator on a compact manifold. This allows to prove that every
cyclic cohomology class of the Hopf algebroid is uniquely represented by a harmonic
form of our generalized Laplace-Beltrami operator, which implies that the cyclic
cohomology of our Hopf algebroid is finite dimensional.

Theorem 1.1. Let G be a Lie group acting properly and cocompactly on a smooth
manifoldM . The cyclic cohomology groups of H .G;M/ are of finite dimension.

The above result allows us to introduce the Euler characteristic for a proper co-
compact action of a Lie group G as the alternating sum of the dimensions of the de
Rham cohomology groups of G-invariant differential forms. We are able to gener-
alize the following two classical results about Euler characteristic to the case of a
proper cocompact G-action.

(1) The Poincaré duality theorem holds for twisted de Rham cohomology groups of
G-invariant differential forms. In particular, when the dimension of M is odd,
the Euler characteristic of a proper cocompact G-action on M is 0;

(2) When there is a nowhere vanishing G-invariant vector field on M , the Euler
characteristic of a proper cocompact G-action is also 0.

The paper is organized as follows. In Section 2, we introduce the Hopf algebroid
H .G;M/ and compute its Hopf cyclic cohomology. In Section 3, we study a gen-
eralized Laplace–Beltrami operator, and prove that every Hopf cyclic cohomology
class of H .G;M/ can be uniquely represented by a generalized harmonic form. In
Section 4, we introduce and study the Euler characteristic for a proper cocompact
G-action.
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2. Cyclic cohomology of Hopf algebroids

2.1. Hopf algebroids. In [11], Lu introduced the notion of a Hopf algebroid as
a generalization of a Hopf algebra. Connes and Moscovici [4] introduced cyclic
cohomology for Hopf algebroids. Since then, many authors have studied cyclic theory
for Hopf algebroids, e.g. [8]–[10]. Oriented by our application, we take the simplest
approach for the definition of cyclic cohomology of a Hopf algebroid, cf. [8], which
is also close to Connes and Moscovici’s original approach. We refer the interested
readers to [9] and [10] for the beautiful systematic study of the general theory.

Let A and B be unital topological algebras. A (topological) bialgebroid structure
on A, over B , consists of the following data.

i) A continuous algebra homomorphism ˛ W B ! A called the source map and
a continuous algebra anti-homomorphism ˇ W B ! A called the target map,
satisfying ˛.a/ˇ.b/ D ˇ.b/˛.a/ for all a; b 2 B .

In this paper, by tensor product ˝ we always mean topological tensor product.
Let A˝B A be the quotient of A˝A by the right A˝A ideal generated by ˇ.a/˝
1 � 1˝ ˛.a/ for all a 2 B .

ii) A continuous B-B bimodule map � W A ! A ˝B A, called the coproduct,
satisfying

(a) �.1/ D 1˝ 1;

(b) .�˝B Id/� D .Id ˝B �/� W A ! A˝B A˝B A,

(c) �.a/.ˇ.b/˝ 1 � 1˝ ˛.b// D 0 for a 2 A, b 2 B ,

(d) �.a1a2/ D �.a1/�.a2/ for a1; a2 2 A.

iii) A continuous B-B bimodule map � W A ! B , called the counit, satisfying

(a) �.1/ D 1;

(b) ker � is a left A ideal;

(c) .� ˝B Id/� D .Id ˝B �/� D Id W A ! A;

(d) �.˛.b/ˇ.b0/a/ D b�.a/b0 and �.aa0/ D �.a˛.�.a0/// D �.aˇ.�.a0/// for
any a; a0 2 A, b; b0 2 B .

A topological para-Hopf algebroid is a topological bialgebroid A, over B , which
admits a continuous algebra anti-isomorphism S W A ! A such that

S2 D Id; Sˇ D ˛; mA.S ˝B Id/� D ˇ�S W A ! A

and

S.a.1//.1/a.2/ ˝B S.a
.1//.2/ D 1˝B S.a/:

In the above formula we have used Sweedler’s notation for the coproduct �.a/ D
a.1/ ˝B a

.2/.
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We note that in the above definition one may allowA andB to be differential graded
algebras and require all of the above maps to be compatible with the differentials and
to be of degree 0. Thus one would have a differential graded (para) Hopf algebroid
(cf. [6]).

We remark that as is pointed out in [9], Sec.2.6.13, with our definition any para-
Hopf algebroid is a Hopf algebroid as was used in [9] and [10]. Therefore, for
simplicity, in the following, we will abbreviate “para-Hopf algebroid” to “Hopf al-
gebroid”.

2.2. Hopf algebroid H .G; M/. Let G be a Lie group acting on a smooth mani-
fold M .

Define B to be the algebra of differential forms onM , and A to be the algebra of
B-valued functions on G. Both A and B are differential graded algebras with the de
Rham differential. We fix the notation that for a group element g in G and a smooth
function a on M , g�.a/.x/ ´ a.gx/.

We define the source and target maps ˛; ˇ W B ! A as follows:

˛.b/.g/ D b and ˇ.b/.g/ D g�.b/:
It is easy to check that ˛ (resp. ˇ) is an algebra (resp. anti-) homomorphism.

When we consider the projective tensor product, the space A˝B A is isomorphic
to the space of B-valued functions on G �G, i.e.,

.� ˝B  /.g1; g2/ D �.g1/g
�
1 . .g2//

for �; 2 A. We define the bimodule map � W A ! A˝B A by

�.�/.g1; g2/ D �.g1g2/

and define the counit map � W A ! B by �.�/ D �.1/ for � 2 A.
It is straightforward to check that .A;B; ˛; ˇ;�; �/ is a differential graded topo-

logical bialgebroid.
To make .A;B; ˛; ˇ;�; �/ into a Hopf algebroid, we define the antipode on A by

S.�/.g/ D g�.�.g�1//:

It is easy to check that S satisfies properties for an antipode of a para-Hopf
algebroid:

� S.ˇ.b//.g/ D g�.ˇ.b/.g�1// D g�.g�1/�.b/ D b.

� .mA.S ˝ Id/�/.�/.g/ D g��.1/, .ˇ�S/.�/.g/ D g�.S.�/.1// D g��.1/.
� One computes that .S ˝ Id/�.a/.g1; g2/ D g1

�.a..g1/
�1g2//. Therefore, one

has

.�S ˝ Id/�.a/.g1; g2; g3/ D .g1g2/
�.a.g�1

2 g�1
1 g3//;

S.a.1//.1/a.2/ ˝B S.a
.1//.2/.g1; g2/ D .g1g2/

�.a.g�1
2 g�1

1 g1//

D g�
1 .g

�
2 .a.g

�1
2 /// D 1˝B S.a/.g1; g2/:
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We denote this Hopf algebroid by H .G;M/.

2.3. Cyclic cohomology. In this part, we briefly recall the definition of the cyclic
cohomology of a Hopf algebroid.

We denote by ƒ the cyclic category and recall the cyclic module A\ for
.A;B; ˛; ˇ;�; �; S/ introduced by Connes–Moscovici [3].

Define
C 0 D B; C n D A˝B A˝B � � � ˝B A„ ƒ‚ …

n

; n � 1:

Faces and degeneracy operators are defined as follows:

ı0.a
1 ˝B � � � ˝B a

n�1/D 1˝B a
1 ˝B � � � ˝B a

n�1I
ıi .a

1 ˝B � � � ˝B a
n�1/D a1 ˝B � � � ˝B �a

i ˝B � � � ˝B a
n�1; 1 � i � n � 1I

ın.a
1 ˝B � � � ˝B a

n�1/D a1 ˝B � � � ˝B a
n�1 ˝B 1I

�i .a
1 ˝B � � � ˝B a

nC1/D a1 ˝B � � � ˝B a
i ˝B �.a

iC1/˝B a
iC2 ˝B � � � ˝B a

nC1:

The cyclic operators are given by

�n.a
1 ˝B � � � ˝B a

n/ D .�n�1S.a1//.a2 ˝ : : : an ˝ 1/:

The cyclic cohomology of .A;B; ˛; ˇ;�; �; S/ is defined to be the cyclic cohomology
of A\.

2.4. Hopf cyclic cohomology of the Hopf algebroid H .G; M/. In this section we
explain the computation the Hopf cyclic cohomology of the Hopf algebroid H .G;M/.

We review briefly the definition of differentiable cohomology of a Lie group. Let
G be a Lie group acting on a manifoldM . ConsiderE aG-equivariant bundle onM .
An E-valued differentiable p-cochain is a smooth map c mapping G�p to a smooth
section of E, i.e., Cp

d
.GIE/ D C1.G�pI�.E//. The differential d on C �

d
.GIE/

is defined by

.dc/.g1; : : : ; gpC1/ D g�
1 .c.g2; : : : ; gpC1//

C
pP

iD1

.�1/ic.g1; : : : ; gigiC1; : : : ; gpC1/

C .�1/pC1c.g1; : : : ; gp/:

The differentiable cohomologyH �

d
.GIE/ ofG with coefficientE is defined to be the

cohomology of .C �

d
.GIE/; d/. We remark that the spaceC �

d
.GIE/ has the structure

of a cyclic simplicial space. We recall its definition below,

ıi .a/.g1; : : : ; gn; gnC1/ D

8̂<
:̂
g�

1 .a.g2; : : : ; gnC1//; i D 0;

a.g1; : : : ; gigiC1; : : : ; gnC1/; 1 � i � n;

a.g1; : : : ; gn/; i D nC 1;
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and

�i .a/.g1; : : : ; gn/ D a.: : : ; gi�1; 1; gi ; : : : ; gn/;

as well as

t .a/.g1; : : : ; gn/ D .g1 : : : gn/
�a..g1g2 : : : gn/

�1; g1; : : : ; gn�1/:

The cohomology of this simplicial complex C �

d
.G;E/ is isomorphic to the differ-

entiable cohomology of G with coefficient in E. We are now ready to present the
computation of Hopf cyclic cohomology of the Hopf algebroid H .G;M/.

Theorem 2.1. Let G be a Lie group acting on a smooth manifold. We have

HC�

.H .G;M// D L
k�0

H ��2k.GI .��.M/; d//:

Proof. We observe that a p-cochain on H .G;M/ can be identified with ��.M/-
valued functions on G�p , p � 0. This identification respects the cyclic simpli-
cial structures on C1.G��; ��.M// and H .G /\. Therefore, we conclude that the
Hochschild cohomology of H .G;M/ is isomorphic to the differentiable cohomology
H

�

.GI .��.M/; d//. By the SBI-sequence of cyclic cohomology, we have

HC�

.H .G;M// D L
k�0

H ��2k.GI .��.M/; d//:

Let��.M/G be the space ofG-invariant differential forms onM , which inherits
a natural de Rham differential d . By [5], Section 2.1, Prop. 1, ifG acts onM properly,
then the differentiable cohomology H �

.GI .��.M/; d// is computed as follows:

H
�

.GI .��.M/; d// D H
�

.��.M/G ; d /:

Proposition 2.2. If G acts onM properly, then we have

HC�

.H .G;M// D L
k�0

H ��2k.��.M/G ; d /

and

HP�

.H .G;M// D L
k2Z

H �C2k.��.M/G ; d /:

3. Generalized Hodge theory and a proof of Theorem 1.1

Now we prove Theorem 1.1. According to Proposition 2.2, all we need to prove is:

The cohomology groupsH �

.��.M/G ; d / are of finite dimension.
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We adapt the proof of the finite dimensionality of the de Rham cohomology of
compact manifolds (cf. [15], Ch. 6).

Without loss of generality, as G acts on M properly, we may assume that M
is endowed with a G-invariant metric. And since M=G is compact, there exists a
compact subset Y of M such that G.Y / D

[
g2G

gY D M (cf. [14], Lemma 2.3).

With the usual de Rham Hodge � operator, on ��.M/ we consider the following
inner product

h˛; ˇi0 D
Z

M

˛ ^ �ˇ: (1)

As Y is a closed subset ofM , there exist U , U 0, two open subsets ofM , such that
Y � U and that the closures xU and U 0 are both compact in M , and that xU � U 0.
It is easy to construct a smooth function f W M ! Œ0; 1	 such that f jU D 1 and
supp.f / � U 0.

Let �.��.M//G be the subspace ofG-invariant sections of��.M/. For an open
set W of M , define

ksk2
W;0 D

Z
W

hs.x/; s.x/idx; ksk2
W;1 D kskW;0 C h�.s/; siW;0:

For any s 2 �.��.M//G , we have

kskU;0 � kf sk0 � kskU 0;0:

AsG �Y ´ fgy; g 2 G; y 2 Y g D M ,G �U D M . Since U 0 is compact, there are
finitely many elements g1; : : : ; gk ofG such that g1U [ � � � [gkU covers U 0. If s is
a G-invariant section of ��.M/, it is easy to see that there exists a positive constant
C > 0,

kskU 0;0 � CkskU;0:

Let dg ´ dm.g/ be the right invariant Haar measure onG. Define 
 W G ! RC
by dm.g�1/ D 
.g/dm.g/. We define H 0

f
.M;��.M//G to be the completion of

the space ff s W s 2 �.��.M//Gg under the norm k � k0 associated to the inner
product (1). As indicated in the Appendix of [12] written by Bunke, we will first
prove the following proposition.

Proposition 3.1. For any � 2 L2.M;��.M//, define

�
Pf �

�
.x/ D f .x/

.A.x//2

Z
G


.g/f .gx/�.gx/ dg; (2)

where

A.x/ D
� Z

G


.g/.f .gx//2 dg

�1=2
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is a G-equivariant function on M , i.e., A.gx/2 D 
.g/�1A.x/2, and is strictly
positive. The operator Pf defines an orthogonal projection from L2.M;��.M//

onto H 0
f
.M;��.M//G .

Proof. It is straightforward to check that A.x/ is strictly positive and equivariant. In
order to show that (2) defines actually an orthogonal projection, we need to prove the
following properties.

� P 2
f

D Pf . For any � 2 L2.M;��.M//,

.P 2
f �/.x/ D f .x/

.A.x//2

Z
G


.g/f .gx/
�
Pf �

�
.gx/ dg

D f .x/

.A.x//2

Z
G


.g/f .gx/
� f .gx/

.A.gx//2

Z
G


.h/f .hgx/�.hgx/ dh
�
dg

D f .x/

.A.x//2

Z
G


.g/.f .gx//2

.A.x//2
dg

� Z
G


.hg/f .hgx/�.hgx/ d.hg/
�

D f .x/

.A.x//2

� Z
G


.hg/f .hgx/�.hgx/ d.hg/
�

D .Pf �/.x/:

� Pf is self-adjoint. For any �; � 2 L2.M;��.M//,

hPf �; �i0 D
Z

M

f .x/

.A.x//2

Z
G


.g/f .gx/h�.gx/; �.x/i dg dx

D
Z

M

Z
G

f .g�1x0/
.A.g�1x0//2


.g/f .x0/h�.x0/; �.g�1x0/i dg dx0 .x0 D gx/

D
Z

M

Z
G

f .x0/
.A.x0//2

f .g�1x0/h�.x0/; �.g�1x0/i dg dx0

D
Z

M

Z
G

f .x0/
.A.x0//2

f .g�1x0/h�.x0/; �.g�1x0/i
.g�1/d.g�1/ dx0

D h�;Pf �i0:

� It is also straightforward to check that for � D f ˛ 2 H 0
f
.M;��.M//G where

˛ 2 ��.M/G , Pf � D �.

The proposition is thus proved.

Define H 1
f
.M;��.M//G to be the completion of ff s j s 2 �.��.M//Gg under

a (fixed) first Sobolev norm associated to the inner product (1). And in general
define H k

f
.M;��.M//G (and H �1

f
.M;��.M//G) to be the completion of the space

ff s j s 2 �.��.M//Gg under the corresponding H k (and H �1 norm) for k � 2.
(For any open subsetW ofM and any compactly supported smooth differential form
s on W , ksk2

W;k
D k.1C�/k=2.s/k2

W;0, for k � 2.)
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This time we investigate the operator

df W H 1
f ! H 0

f ; f ˛ 7! f d˛: (3)

We also consider its adjoint d�
f

W H 1
f

! H 0
f

:

for ˛ 2 �.�p.M//G , ˇ 2 �.�pC1.M//G ,

hdf .f ˛/; fˇi0 D hf ˛; d�
f .fˇ/i0:

For f 2 C1.M/ denote by r.f / the gradient vector field associated to f with
respect to the Riemannian metric on M . We can show easily that

d�
f .fˇ/ D Pf .�2irf ˇ/C f ıˇ;

where ı D .�1/n.pC1/CnC1 �d� W �pC1.M/ ! �p.M/ and iV ˛ is the contraction
of the form ˛ with the vector field V .

Now we define a self-adjoint operator

z� D df d
�

f C d�
f df :

Proposition 3.2. z� W H 2
f

! H 0
f

is Fredholm.

Proof. We will prove this fact by establishing a Gårding type inequality. Letf ˛ 2 H 0
f

.
Then

z�.f ˛/ D df .d
�

f .f ˛//C d�
f .df .f ˛//

D df .�Pf .2irf ˛/C f ı˛/C d�
f .fd˛/

D �df .Pf .2irf ˛//C fdı˛ � Pf .2irf d˛/C f ıd˛

D f�˛ � df .Pf .2irf ˛// � Pf .2irf d˛/:

(4)

Now using (2), we have the following estimates:

kdf .Pf .2irf ˛//k0

D
����2f .x/d

�R
G

.g/f .gx/.irf ˛/.gx/ dg

.A.x//2

�����
0

D 2

����f
Z

G


.g/d

�
g�f
A2

�
.g�irf ˛/ dg C f

Z
G


.g/
g�f
A2

d.g�irf ˛/dg

����
0

6 2

����f
Z

G


.g/d

�
g�f
A2

�
.g�irf ˛/dg

����
0

C 2

����f
Z

G


.g/
g�f
A2

d.g�irf ˛/dg

����
0

;

where����f
Z

G


.g/d

�
g�f
A2

�
.g�irf ˛/dg

����
0

6
����f

Z
G


.g/

ˇ̌̌
ˇd

�
g�f
A2

�ˇ̌̌
ˇj.g�irf ˛/jdg

����
0

6
����f

Z
G


.g/

ˇ̌̌
ˇd

�
g�f
A2

�ˇ̌̌
ˇjg�.rf /jjg�˛jdg

����
0

6
����f

Z
G


.g/

ˇ̌̌
ˇd

�
g�f
A2

�ˇ̌̌
ˇjg�.rf /jdgj˛.x/j

����
0

:
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As f has a compact support,

f

Z
G


.g/

ˇ̌̌
ˇd

�
g�f
A2

�ˇ̌̌
ˇjg�.rf /j dg

is finite and continuous everywhere, and therefore is bounded from above by a constant
on xU . Hence we have

2

����f
Z

G


.g/d

�
g�f
A2

�
.g�irf ˛/ dg

����
0

6 zC1k˛kU 0;0 6 zC2kf ˛k0:

Consider

2

����f
Z

G


.g/
g�f
A2

d.g�irf ˛/ dg

����
0

D 2kPf .d B irf ˛/k0 � 2kd B irf ˛k0: (5)

Notice that f is supported inside U 0. We choose a cut-off function c which is 1
on the support of f and 0 outside U 00 � U 00 � U 0. We have

kd B irf ˛k0 D kd B ir.f /.c˛/kU 0;0: (6)

We observe that d B irf is a differential operator on��.M/ of order 1. As c˛ is
a compactly supported smooth function in U 0, we have

kd B ir.f /.c˛/kU 0;0 � Ckc˛kU 0;1: (7)

We compute kc˛kU 0;1 to be

kc˛k2
U 0;1 D kc˛k2

U 0;0 C h�.c˛/; c˛iU 0

D kc˛k2
U 0;0 C hd.c˛/; d.c˛/iU 0 C hı.c˛/; ı.c˛/iU 0

D kc˛k2
U 0;0 C kd.c˛/kU 0;0 C kı.c˛/kU 0;0:

(8)

We discuss one by one the terms in the above line.
As c is bounded from above by 1, we have

kc˛kU 0;0 � k˛kU 0;0:

As c and dc are both bounded,

kd.c˛/kU 0;0 D kdc ^ ˛ C cd˛kU 0;0

� kdc ^ ˛kU 0;0 C kcd˛kU 0;0

� C1k˛kU 0;0 C C2kd˛kU 0;0:

(9)

Similarly, as c and rc are compactly supported, they are both bounded. We have

kı.c˛/kU 0;0 D kirc˛ C cı˛kU 0;0 � C3k˛kU 0;0 C kı˛kU 0;0: (10)
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As G � U D M and U 0 is compact, there are finitely many g1; : : : ; gk such that
U 0 � g1U [ � � � [ gkU . While ˛, d˛, and ı˛ are all G-invariant, we have

k˛kU 0;0 � C4k˛kU � C4kf ˛k0;

kd˛kU 0;0 � C5kd˛kU � C5kd.f ˛/k0;

kı˛kU 0;0 � C6kı˛kU � C6kı.f ˛/k0:

(11)

Summarizing inequalities (5)–(11), we have

2

����f
Z

G


.g/
g�f
A2

d.g�irf ˛/ dg

����
0

� Akf ˛k1:

Similarly,

kPf .2irf d˛/k0 6 2kirf d˛k0 6 zC7kd˛kU 0;0 6 zC8kd.f ˛/k0 � Bkf ˛k1:

By combining these inequalities, we have

k z�.f ˛/k0 > kf�˛k0 � kdf .Pf .2irf ˛//k0 � kPf .2irf d˛/k0

> kf�˛k0 � .AC B/kf ˛k1

> k�˛kU;0 � zBkf ˛k1:

(12)

The standard elliptic inequality implies that

k�˛kU;0 � zAk˛kU;2 �Dk˛kU;0: (13)

By definition, we have

kf ˛k2
2 D kf ˛k2

0 C 2k.d C ı/.f ˛/k2
0 C k.d C ı/2.f ˛/k2

0: (14)

We can now compute

.d C ı/2.f ˛/ D .d C ı/.df ^ ˛ C fd˛ � irf ˛ C f ı.˛//

D ı.df ^ ˛/ � irf d˛ C f ıd˛ � d.irf ˛/C df ^ ı.˛/C fdı˛

D f�.˛/C ı.df ^ ˛/ � irf d˛ � d.irf ˛/C df ^ ı.˛/: (15)

We notice that ı.df ^ ˛/, irf d˛, d.irf ˛/ and df ^ ı.˛/ are all differential
operators of order less than or equal to 1 for ˛. So similar estimates as (6)–(11) show
that every piece of them is bounded by a multiple of kf ˛k1.

Similar arguments as (11) that

kf�˛k0 � k�˛kU 0;0 � D1k�˛kU;0 � D1k˛kU;2: (16)

By (14)–(16), we have

k˛kU;2 � D2kf ˛k2 �D3kf ˛k1:
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With this estimate, from (12) and (13), we have

k z�.f ˛/k0 � D3kf ˛k2 �D4kf ˛k1:

The so-called Peter–Paul inequality gives us

kf ˛k1 6 1

2
D3=D4kf ˛k2 CD5kf ˛k0:

In summary, we have

k z�.f ˛/k0 > 1

2
D3kf ˛k2 �D6kf ˛k0: (17)

Due to the fact that the embedding of H 2
f
.M;��.M//G in H 0

f
.M;��.M//G is

compact, the above Gårding type inequality implies that z� is Fredholm.

Corollary 3.3. dim.ker z�/ D dim.coker z�/ < C1.

Lemma 3.4. ker z� D .Im z�/? \ H 2
f

.

Proof. We have

f ˛ 2 .Im z�/? \ H 2
f () h z�.fˇ/; f ˛i0 D 0 for all fˇ 2 H 2

f ;

() hfˇ; z�.f ˛/i0 D 0 for all fˇ 2 H 2
f :

As H 2
f

is dense in H 0
f

, so z�.f ˛/ D 0, which is equivalent to f ˛ 2 ker z�.

This lemma together with the previous Corollary 3.3 implies that

ker z� D .Im z�/?;
i.e., , we have the decomposition

H 0
f D ker z�˚ Im z�: (18)

Therefore, we can define the projection H W H 0
f

! ker z�. Let f ˛ 2 H 0
f

, then

f ˛ �H.f ˛/ 2 Im z�. So there is a unique fˇ 2 Im z� such that

z�.fˇ/ D f ˛ �H.f ˛/:
We define in this way the Green operator G W f ˛ 7! fˇ.

We will need the following propositions to explore the properties of the Green
operator.

Proposition 3.5. Let ff ˛ng be a sequence of smooth p-forms in H 2
f
.M;��.M//G

such that kf ˛nk0 6 c and k z�.f ˛n/k0 6 c for all n and for some constant c > 0.
Then it has a Cauchy subsequence.
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Proof. We prove that f ˛n is a bounded sequence in H 1
f
.M;��.M//G . Then we

conclude the proposition by the fact that H 1
f
.M;��.M//G is compactly embedded

in H 0
f
.M;��.M//G .

We have the following equation:

kf ˛nk2
1 D kf ˛nk2

0 C h�.f ˛n/; f ˛ni0:

By the Cauchy–Schwarz inequality, we have

h�.f ˛n/; f ˛ni0 � k�.f ˛n/k0kf ˛nk0:

By inequality (17), we have

k�.f ˛n/k0 � kf ˛nk2 � Ak z�.f ˛n/k0 C Bkf ˛nk0 � .AC B/c:

Therefore, kf ˛nk1 is bounded by c
p
AC B C 1.

Now we prove the regularity for z�:

Proposition 3.6. If fˇ 2 H k
f
.M;��.M//G and

z�.f ˛/ D fˇ

on M , then f ˛ 2 H kC2
f

.M;��.M//G for any k � 0. In particular, if fˇ is a
smooth differential form, so is f ˛.

Proof. As f is smooth and compactly supported, it is sufficient to prove the dif-
ferentiability of ˛. This is a local statement. As ˛ and ˇ are both G-invariant and
G � U D M , we can restrict our analysis to U .

By (4) and (2),

z�.f ˛/ D f�˛ � df .Pf .2irf ˛// � Pf .2irf d˛/

D f�˛ � df

�
2f

Z
G


.g/
g�f
A2

g�.irf ˛/dg

�

� 2f
Z

G


.g/
g�f
A2

g�.irf d˛/dg:

Due to theG-invariance of ˛ (thus of d˛), we can find twoG-invariant smooth vector
fields V1, V2 (which depend only on f ) such that

z�.f ˛/ D f�˛ C fd.iV1
˛/C f iV2

d˛: (19)

Notice that on U , f D 1. Hence equation (19) implies that

ˇ D �˛ C d.iV1
˛/C iV2

d˛:

on U . The last two terms are of lower order, so the regularity of z� is a consequence
of that of �, the usual Laplace–Beltrami operator on M .
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The Green operator G has the following properties:

1ı G is bounded. To this end we need to prove the existence of a constant c > 0

such that for any fˇ 2 Im z�,

kfˇk0 6 ck z�.fˇ/k0:

Suppose the contrary, then there exists a sequence f ǰ 2 Im z� with

kf ǰ k0 D 1 and k z�.f ǰ /k0 ! 0:

By Proposition 3.5, ff ǰ g has a Cauchy subsequence, which one can assume to
be ff ǰ g itself without loss of generality. Hence limj !1hf ǰ ; f  i0 exists for
each f  2 H 0

f
.M;��.M//G . It defines a linear functional l which is clearly

bounded, and

l.z�.f '// D lim
j !1hf ǰ ; z�.f '/i0 D lim

j !1h z�.f ǰ /; f 'i0 D 0: (20)

We obtain the existence of fˇ 2 .Im z�/? D ker z� such that

l.f  / D hfˇ; f  i0 with f ǰ ! fˇ in H 0
f .M;�

�.M//G :

From equation (20), we know that fˇ is a weak solution of z�.
/ D 0. It
follows from Proposition 3.6 that fˇ is actually smooth and a strong solution of
z�.
/ D 0. Now as kf ǰ k0 D 1 andf ǰ 2 Im z�, it follows that kfˇk0 D 1 and
fˇ 2 Im z�. Hence, fˇ 2 Im z�\ Im z�? D f0g, which yields a contradiction.

2ı G is self-adjoint. In fact,

hG.f ˛/; fˇi0 D hG.f ˛/; fˇ �H.fˇ/i0

D hG.f ˛/; z�.G.fˇ//i0

D h z�.G.f ˛//; G.fˇ/i0

D hf ˛ �H.f ˛/; G.fˇ/i0

D hf ˛; G.fˇ/i0:

3ı G maps a bounded sequence into one with Cauchy subsequences, due to the fact
that the embedding of H 2

f
into H 0

f
is compact.

Moreover, we have

Proposition 3.7. The Green operator G commutes with any linear operator that
commutes with z�.

Proof. Suppose that T W f �.M;�p.M//G ! f �.M;�q.M//G commutes with
z�. Let �p denote the projection of H 0

f
.M;�p.M//G onto ker z�. By definition, on

H 0
f
.M;�p.M//G ,

G D .z�jIm z�/
�1 B �p:
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Now T z� D z�T implies that T .ker z�/ � ker z� and T .Im z�/ � Im z�. Hence

T B �p D �p B T:
On the other hand,

T B .z�jIm z�/ D T B z� B .1 � �p/

D z� B T B .1 � �p/

D z� B .1 � �p/ B T
D .z�jIm z�/ B T:

So on Im z�,
T B .z�jIm z�/

�1 D .z�jIm z�/
�1 B T:

Therefore G commutes with T .

Finally we have

Proposition 3.8. Let H�.M/G denote the kernel of the operator z�. The map H
induces an isomorphismH W Hp.��.M/G ; d / ! H�.M/G .

Remark 3.9. We remark that every element in H�.M/G is of the form f ˛, where ˛
is a G-invariant closed form. For f ˛ 2 H�.M/G , as z�.f ˛/ D 0,

0 D h z�.f ˛/; f ˛i0 D hdf .f ˛/; df .f ˛/i0 C hd�
f .f ˛/; d

�
f .f ˛/i0:

We conclude that df .f ˛/ D fd˛ D 0 and d�
f
.f ˛/ D 0. As ˛ is G-invariant, we

conclude that d˛ D 0.

Proof. Suppose that ˛ is a G-invariant smooth closed p-form on M . Consider
f ˛ 2 H 0

f
.M;�p.M//G . Since d˛ D 0, it follows that df .f ˛/ D 0. We have the

following decomposition (18):

f ˛ D df d
�

f G.f ˛/C d�
f df G.f ˛/CH.f ˛/:

Since df commutes with z�, it commutes also with G , so

f ˛ D df d
�

f G.f ˛/C d�
f G.df .f ˛//CH.f ˛/:

Thus if f ˛ is closed for df (i.e., d˛ D 0), then

f ˛ D df d
�

f G.f ˛/CH.f ˛/: (21)

We define H.˛/ to be H.f ˛/.
If ˛ D dˇ, then we have

df .fˇ/ D f ˛:
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As the Green operator G commutes with df , it follows that df d
�

f
G.df .fˇ// D

df d
�

f
df .G.fˇ// D df .d

�
f
df C df d

�
f
/G.fˇ/ D df .z�G.fˇ// D df .fˇ �

H.fˇ//. Notice that elements in ker z� are df -closed. So we have df d
�

f
G.f ˛/ D

df .fˇ/ D f ˛, which shows that H.f ˛/ D 0. This means that H is a well-defined
map from Hp.��.M/G ; d / to H�.M/G .

If H.f ˛/ D 0, then by equation (21), we have f ˛ D df d
�

f
G.f ˛/. By Propo-

sition 3.6, we can write d�
f

G.f ˛/ D fˇ for a G-invariant smooth form ˇ. Then
f ˛ D fdˇ and ˛ D dˇ. This implies that H is injective.

By the regularity property for z� (Proposition 3.6), the elements in H�.M/G are
all smooth. Furthermore, all elements in ker z� vanish under df . So every element in
H�.M/G can be written as f ˛, where ˛ is a G-invariant smooth closed form. Since
the image under H of f ˛ 2 ker z� is f ˛, we conclude that H is onto.

Theorem 1.1 is a corollary of Proposition 2.2, 3.2, and 3.8.

4. Euler characteristic of a proper cocompact action

The finite dimensionality of the de Rham cohomology groups of G-invariant differ-
ential forms allows us to define the Euler characteristic of such a proper cocompact
G-action:


.M IG/ ´
nP

iD0

.�1/i dimH i .��.M/G ; d /:

Our main result in this section is the following

Theorem 4.1. Let M be a n-dimensional manifold on which a Lie group G acts
properly and cocompactly.

(i) We consider a family of twisted G-invariant de Rham differential operators
defined on ��.M/G :

dA;k.˛/ D A�kd.Ak˛/ D .d C kA�1dA ^ /˛ such that d2
A;k D 0:

Define the twisted cohomlogies of G-invariant differential forms on M to be the
cohomology of the differential dA;k , which is denoted by Hp;k.��.M/G I d/. The
cohomology groupHp;k.��.M/G I d/ is finite dimensional.

(ii) The Poincaré duality theorem holds for k D 1, there is a non-degenerate
pairing betweenHp;1.��.M/G I d/ andHn�p;1.��.M/G I d/. As a corollary, when
n is odd, the Euler characteristic 
.M IG/ of the proper cocompact G-action onM
is 0.

(iii) When there is a nowhere vanishing G-invariant vector field onM , the Euler
characteristic of the G-action onM is 0.
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We remark that, by Proposition 3.1,A�1dA D d log.A/ isG-invariant. Therefore
dA;k is well defined on ��.M/G .

Proof. Our proof of statement (i) is a copy of the proof of Theorem 1.1. We define
an operator df;A;k on H 1

f
generalizing (3) by

df;A;k.f ˛/ D fA�kd.Ak˛/ D f .d C kA�1dA^/˛:
We compute the adjoint of df;A;k . For two G-invariant differential forms ˛ and

ˇ:

hd�
f;A;k.f ˛/; fˇi0 D hf ˛; df;A;k.fˇ/i0 D hf ˛; fA�kd.Akˇ/i0

D hf 2A�k˛; d.Akˇ/i0 D hı.f 2A�k˛/; Akˇi0

D hf 2A�kı˛ � A�k2f irf ˛ � f 2.�k/A�k�1irA˛; A
kˇi0

D hf ı˛ � 2irf ˛ C kfA�1irA˛; fˇi0

D hf ı˛ � Pf .2irf ˛/C kfA�1irA˛; fˇi0;

and the G-invariance of ˛ implies that

Pf .2irf ˛/.x/ D f .x/

.A.x//2

Z
G


.g/f .gx/2irf g
�.˛/.x/dg

D f .x/

.A.x//2
.iR

G �.g/2f .gx/rf .gx/dg˛/.x/

D f .x/

.A.x//2
.ir.

R
G �.g/.f .gx//2dg/˛/.x/

D f .x/

.A.x//2
.irA2˛/.x/

D .fA�2irA2˛/.x/

D 2.fA�1irA˛/.x/:

Hence
d�

f;A;k.f ˛/ D f .ı C .k � 2/A�1irA/˛:

Now we define an operator from H 2
f

to H 0
f

:

z�k D df;A;kd
�

f;A;k C d�
f;A;kdf;A;k :

The analogues of Propositions 3.2–3.8 for cohomology Hp;k.��.M/G I d/ and z�k

in the Section 3 easily generalize. Therefore any class in Hp;k.��.M/G I d/ has a
unique generalized harmonic form representative f ˛, i.e.,

df;A;k.f ˛/ D d�
f;A;k.f ˛/ D 0:
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This proves that the dimension of Hp;k.��.M/G I d/ is finite dimensional for any
p, k.

For statement (ii), we prove that the pairing between H 2
f
.M;�p.M//G and

H 2
f
.M;�n�p.M//G induces a non-degenerate pairing on the space of generalized

harmonic forms of z�1, i.e.,

.f ˛; fˇ/ ´
Z

M

f ˛ ^ fˇ: (22)

We prove that the Hodge star operator � defines an isomorphism between the space
of generalized harmonic p-forms to the space of generalized harmonic .n�p/-forms
for the operator z�1, which implies that the non-degeneracy of the pairing (22).

We prove that z�1� D � z�1, which implies that the Hodge star operator � defines
an isomorphism between the generalized harmonic forms.

Using the following equations, where ˛ is a G-invariant p-form,

ı˛ D .�1/npCnC1 � d � ˛;
� � ˛ D .�1/p.n�p/˛;

irA � .�˛/ D .�1/n�p � .dA ^ �˛/;
we can check that

df � .f ˛/ D .�1/p � f ı˛;
f .ı � ˛/ D .�1/pC1 � fd˛;
f irA � ˛ D .�1/p � .dA ^ ˛/;

fdA ^ .�˛/ D .�1/pC1 � .irA˛/:

Combining the above equations, we have

df;A;1.�f ˛/ D .�1/p � d�
f;A;1.f ˛/; d�

f;A;1.�f ˛/ D .�1/pC1 � df;A;1.f ˛/:

In particular, we have
� z�1 D z�1 � : (23)

Equation (23) shows that the Hodge star operator commutes with the generalized
Laplace operator z�1. Therefore, the Hodge star operator � defines an isomorphism
between the kernels of z�1 on H 2

f
.M;�p.M//G and H 2

f
.M;�n�p.M//G . Hence

we have the Poincaré duality for the cohomology groups Hp;1.��.M/G I d/:
Hp;1.��.M/G I d/ Š Hn�p;1.��.M/G I d/�:

For the statement about the Euler characteristic, we first notice that 
.M IG/ is
the index of the Fredholm operator

df C d�
f W H 0

f .M;�
even.M//G ! H 0

f .M;�
odd.M//G :
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Since fdf;A;k Cd�
f;A;k

g is a continuous family of Fredholm operators with respect
to k 2 R, their indices are all the same. This implies that


.M IG/ D index.df;A;k C d�
f;A;k W H 0

f .M;�
even.M//G ! H 0

f .M;�
odd.M//G/

D
nP

iD0

.�1/i dimHp;k.��.M/G ; d /:

When the dimension n of the manifold M is odd, the Poincaré duality for
Hp;1.��.M/G I d/ implies 
.M IG/ D 0. Statement (ii) is thus proved.

Remark 4.2. When the Lie groupG is unimodular, then by replacingf by f
A

, one can
make all the differential operators df;A;k as well as the cohomology groupsHp;k in-
dependent of k, therefore we have actually the Poincaré duality forHp.��.M/G I d/.

Now statement (iii), we suppose that there is a nowhere vanishing G-invariant
vector field V on M . Without loss of generality, we may assume that jV j 	 1

everywhere on M . We assume that feig is an orthonormal basis of TM , and rTM

the Levi-Civita connection of the G-invariant Riemannian metric.
Following [1], we calculate (cf. [16], p. 73):

Oc.V /.df C d�
f / Oc.V /.f ˛/ D f . Oc.V /.d C ı/ Oc.V /˛ � 2A�1 Oc.V /irA. Oc.V /˛//

D f .�.d C ı/˛ C Oc.V /
nP

iD1

c.ei / Oc.rTM
ei

V /˛

� 2A�1.V � ^ CiV /.V .A/˛ � V � ^ irA˛ C irAiV ˛//

D f .�.d C ı/˛ C Oc.V /
nP

iD1

c.ei / Oc.rTM
ei

V /˛

C 2A�1irA˛ � 2A�1.V .A/ Oc.V /˛ C Oc.V /irAiV ˛//

D �.df C d�
f /.f ˛/C f . Oc.V /

nP
iD1

c.ei / Oc.rTM
ei

V /˛

� 2A�1.V .A/ Oc.V /˛ C Oc.V /irAiV ˛//:

(24)

In the above formula, c.v/ and Oc.V / are the Clifford operators of the vector field V
on the spaces �odd and �even. More explicitly, if V � is the 1-form dual to the vector
field V with respect to the Riemannian metric, then

c.V /.˛/ D V � ^ ˛ � iV ˛; Oc.V /.˛/ D V � ^ ˛ C iV ˛; ˛ 2 ��.M/:

The above computation (24) shows that the difference between Oc.V /.df Cd�
f
/ Oc.V /

and �.df C d�
f
/ is an operator of order 0. Proposition 3.2 generalizes directly

to this operator and states that Oc.V /.df C d�
f
/ Oc.V / is a Fredholm operator from
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H 0
f
.M;�odd.M//G to H 0

f
.M;�even.M//G . Furthermore, as the difference between

Oc.V /.df Cd�
f
/ Oc.V / and �.df Cd�

f
/ has an order less than the order of �.df Cd�

f
/,

one can also prove that the operator

�.df C d�
f /C �. Oc.V /.df C d�

f / Oc.V /C .df C d�
f // W

H 0
f .M;�

odd.M//G ! H 0
f .M;�

even.M//G

is a Fredholm operator for any � 2 R.
By the stability of index of Fredholm operators, we have


.M IG/ D index.df C d�
f W H 0

f .M;�
even.M//G ! H 0

f .M;�
odd.M//G/

D index. Oc.V /.df C d�
f / Oc.V / W

H 0
f .M;�

odd.M//G ! H 0
f .M;�

even.M//G/

D index.�.df C d�
f /C lower order terms W

H 0
f .M;�

odd.M//G ! H 0
f .M;�

even.M//G/

D index.�.df C d�
f / W H 0

f .M;�
odd.M//G ! H 0

f .M;�
even.M//G/

D �
.M IG/:
We conclude that 
.M IG/ D 0.

References

[1] M. F. Atiyah, Vector fields on manifolds. Arbeitsgemeinschaft für Forschung des Lan-
des Nordrhein-Westfalen, Heft 200, Westdeutscher Verlag, Köln 1970. Zbl 0193.52303
MR 0263102

[2] A. Connes and H. Moscovici, Hopf algebras, cyclic cohomology and the transverse index
theorem. Comm. Math. Phys. 198 (1998), 199–246. Zbl 0940.58005 MR 1657389

[3] A. Connes and H. Moscovici, Cyclic cohomology and Hopf algebra symmetry. Lett.
Math. Phys. 52 (2000), 1–28. Zbl 0974.58006 MR 1800488

[4] A. Connes and H. Moscovici, Differentiable cyclic cohomology and Hopf algebraic struc-
tures in transverse geometry. In Essays on geometry and related topics, Vol. 1 , Monogr.
Enseign. Math. 38, Enseignement Math., Geneva 2001, 217–255. Zbl 1018.57013
MR 1929328

[5] M. Crainic, Differentiable and algebroid cohomology,Van Est isomorphisms, and charac-
teristic classes. Comment.Math.Helv. 78 (2003), 681–721. Zbl 1041.58007 MR 2016690

[6] A. Gorokhovsky, Secondary characteristic classes and cyclic cohomology of Hopf alge-
bras. Topology 41 (2002), 993–1016. Zbl 1008.58008 MR 1923996

[7] J. Kaminker and X. Tang, Hopf algebroids and secondary characteristic classes. J. Non-
commut. Geom. 3 (2009), 1–25. Zbl 1173.46054 MR 2457034

http://www.emis.de/MATH-item?0193.52303
http://www.ams.org/mathscinet-getitem?mr=0263102
http://www.emis.de/MATH-item?0940.58005
http://www.ams.org/mathscinet-getitem?mr=1657389
http://www.emis.de/MATH-item?0974.58006
http://www.ams.org/mathscinet-getitem?mr=1800488
http://www.emis.de/MATH-item?1018.57013
http://www.ams.org/mathscinet-getitem?mr=1929328
http://www.emis.de/MATH-item?1041.58007
http://www.ams.org/mathscinet-getitem?mr=2016690
http://www.emis.de/MATH-item?1008.58008
http://www.ams.org/mathscinet-getitem?mr=1923996
http://www.emis.de/MATH-item?1173.46054
http://www.ams.org/mathscinet-getitem?mr=2457034


Hopf cyclic cohomology and Hodge theory for proper actions 905

[8] M. Khalkhali and B. Rangipour, Para-Hopf algebroids and their cyclic cohomology. Lett.
Math. Phys. 70 (2004), 259–272. Zbl 1067.58007 MR 2128954

[9] N. Kowalzig, Hopf algebroids and their cyclic theory. Ph.D. thesis, Utrecht University,
2009. www.math.ru.nl/~landsman/Niels.pdf

[10] N. Kowalzig and H. Posthuma, The cyclic theory of Hopf algebroids. J. Noncommut.
Geom. 5 (2011), 423–476. Zbl 1262.16030 MR 2817646

[11] J.-H. Lu, Hopf algebroids and quantum groupoids. Internat. J. Math. 7 (1996), 47–70.
Zbl 0884.17010 MR 1369905

[12] V. Mathai and W. Zhang, Geometric quantization for proper actions. Adv. Math. 225
(2010), 1224–1247. Zbl 1211.53101 MR 2673729

[13] R. S. Palais, On the existence of slices for actions of non-compact Lie groups. Ann. of
Math. (2) 73 (1961), 295–323. Zbl 0103.01802 MR 0126506

[14] N. C. Phillips, Equivariant K-theory for proper actions. Pitman Res. Notes Math. Ser.
178, Longman Scientific & Technical, Harlow 1989. Zbl 0684.55018 MR 991566

[15] F. W. Warner, Foundations of differentiable manifolds and Lie groups. Graduate Texts in
Math. 94, Springer-Verlag, New York 1983. Zbl 0516.58001 MR 722297

[16] W. Zhang, Lectures on Chern-Weil theory and Witten deformations. Nankai Tracts Math.
4, World Scientific Publishing, Singapore 2001. Zbl 0993.58014 MR 1864735

Received September 13, 2011

X. Tang, Department of Mathematics, Washington University, St. Louis, MO 63130-4899,
U.S.A.

E-mail: xtang@math.wustl.edu

Y.-J. Yao, School of Mathematical Sciences, Fudan University, Shanghai 200433,
P. R. China

E-mail: yaoyijun@fudan.edu.cn

W. Zhang, Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071,
P. R. China

E-mail: weiping@nankai.edu.cn

http://www.emis.de/MATH-item?1067.58007
http://www.ams.org/mathscinet-getitem?mr=2128954
http://www.math.ru.nl/~landsman/Niels.pdf
http://www.emis.de/MATH-item?1262.16030
http://www.ams.org/mathscinet-getitem?mr=2817646
http://www.emis.de/MATH-item?0884.17010
http://www.ams.org/mathscinet-getitem?mr=1369905
http://www.emis.de/MATH-item?1211.53101
http://www.ams.org/mathscinet-getitem?mr=2673729
http://www.emis.de/MATH-item?0103.01802
http://www.ams.org/mathscinet-getitem?mr=0126506
http://www.emis.de/MATH-item?0684.55018
http://www.ams.org/mathscinet-getitem?mr=991566
http://www.emis.de/MATH-item?0516.58001
http://www.ams.org/mathscinet-getitem?mr=722297
http://www.emis.de/MATH-item?0993.58014
http://www.ams.org/mathscinet-getitem?mr=1864735

	Introduction
	Cyclic cohomology of Hopf algebroids
	Hopf algebroids
	Hopf algebroid ==========H(G,M)
	Cyclic cohomology
	Hopf cyclic cohomology of the Hopf algebroid ==========H(G,M)

	Generalized Hodge theory and a proof of Theorem 1.1
	Euler characteristic of a proper cocompact action
	References

