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1. Introduction

In this paper, we focus on the L2–Alexander invariant defined in [13.14]
from the twisted Alexander invariant point of view. The Alexander poly-
nomial is a knot invariant discovered by J. W. Alexander [1] in 1928. The
Alexander polynomial remained the only known knot polynomial until the
Jones polynomial was discovered by V. Jones [8] in 1984. It is well–known
that the Alexander polynomial plays an important role in the theory of
knots.

The paper is organized as follows. In §1, we review the twisted Alexan-
der polynomials. The necessary background on the L2–invariant is given
in §2. An L2–analogous of the Alexander–Conway invariant for knots is
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presented in §3. A possible relation between our L2–Alexander invariant
and the volume conjecture is discussed in the last section.

Let L be a link in S3 with µ(L)–components and exterior X = S3 \ L.
Let P be a base point of X and p : X̃ → X be the maximal Abelian covering
space with π1(X) α→ H1(X) ∼= Zµ(L). The module H1(X̃,Z) depends only
on the fundamental group of X. Any generator of the ideal order H1(X̃,Z)
is called the Alexander polynomial ∆L(t) of π1(X) (see [1]).

A twisted version of the Alexander polynomial has been introduced and
studied first by Lin [15] from the Seifert surface point of view. Wada defined
twisted Alexander polynomial via the free calculus method for Wirtinger
presentations of knots in [22]. Using the twisted homology of the maximal
Abelian covering space, Kirk and Livingston [11] defined a version of twisted
Alexander polynomial via the ideal order in certain module.

Let ρ be a representation of π1(X) on a finitely generated free module
V over some unique factorization domain R. Choosing a basis for V with
dimR V = N , ρ can be realized as a homomorphism ρ : π1(X) → Aut(V ) =
GLN (R). The associated ring homomorphism is

ρ : Zπ1(X) → ZGLN (R) = MN (R),

where MN (R) is the matrix algebra.
The twisted version of Alexander polynomials defined in [22] is by work-

ing on the following group ring homomorphism

ZFn
ψ→ Zπ1(X)

ρ⊗α→ MN (R)⊗ ZG ∼= MN (R[t±1
1 , · · · , t±1

µ(L)]). (1)

Denote Φ = (ρ ⊗ α) ◦ ψ and R[G] = R[t±1
1 , · · · , t±1

µ(L)]. The matrix

Φ( ∂rj

∂xi
)(1 ≤ i ≤ n, 1 ≤ j ≤ m) is called the Alexander matrix of π1(X)

associated to the representation ρ. The matrix Φ( ∂rj

∂xi
) is a presentation

matrix of H1(X̃, P̃ ) as MN (R[G])–module. The twisted Alexander module
of L associated to ρ is the R[G]–module A(L, ρ) = H1(X̃, P̃ ;R[G]N ).

For a Wirtinger presentation of π1(X) of the link complement in S3,
one has π1(X) = {x1, · · · , xn|r1, · · · , rn−1} and hence each matrix Mj is a
square matrix. So

∆L,ρ(t1, · · · , tµ(L)) =
detMj

det(Φ(xj)− Id)
, (2)

where the matrix Mj is a (n−1)×(n−1) minor of the Jacobian Φ( ∂rj

∂xi
)n×n

for the Wirtinger presentation of a knot group.
The twisted Alexander polynomial ∆L,ρ is independent of the choice

of the presentation of π1(X) by Theorem 1 and Theorem 2 of [22]. The
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definition works for any finitely presentable group (see [22]). In general,
the twisted Alexander polynomial is a rational function.

Note that both the Kinoshita–Terasaka knot and the Conway’s 11 cross-
ing knot have the same trivial Alexander polynomial and different twisted
Alexander polynomial by [22]. Kitano [12] interprets these twisted invari-
ants in terms of Reidemeister torsions along the lines in [18].

2. L2–invariants

Let Γ be a finitely generated discrete (infinite) group. Let l2(Γ) be the
standard Hilbert space of squared summable formal sums over Γ with com-
plex coefficients. An element in l2(Γ) can be written as a =

∑
γ∈Γ aγγ with

aγ ∈ C and
∑

γ∈Γ |aγ |2 < +∞. If a =
∑

γ∈Γ aγγ and b =
∑

γ∈Γ bγγ are two
elements in l2(Γ), then their inner product is given by 〈a, b〉 =

∑
γ∈Γ aγbγ .

The left multiplication with elements in Γ defines a natural unitary
action of Γ on l2(Γ). The group von Neumann algebra N (Γ) is the algebra
of Γ–equivariant bounded linear operators from l2(Γ) to l2(Γ). The von
Neumann trace on N (Γ) is defined by

Trτ : N (Γ) → C, f 7→ 〈f(e), e〉, (3)

where e ∈ Γ ⊂ l2(Γ) is the unit element. The right multiplication induces
a natural action of Γ on l2(Γ) commuting with the left multiplication of
Γ. Thus Γ ⊂ N (Γ). Moreover, for any γ ∈ Γ ⊂ N (Γ), Trτ [γ] = 1 if
γ = e and Trτ [γ] = 0 if γ 6= e. For any positive integer n, set l2(Γ)[n] =
l2(Γ)⊕ · · · ⊕ l2(Γ)︸ ︷︷ ︸

n

.

We call l2(Γ)[n] a free N (Γ)–Hilbert module of rank n. A morphism
between two free N (Γ)–Hilbert modules is a Γ–equivariant bounded linear
map between them. Let f : l2(Γ)[n] → l2(Γ)[n] be such a morphism. Let
ei (i = 1, · · · , n) be the unit element in the i–th copy of l2(Γ) in l2(Γ)[n].
Then we can extend the von Neumann trace in (3) to define

Trτ [f ] =
n∑

i=1

〈f(ei), ei〉. (4)

The Fuglede–Kadison determinant Detτ (f) of f can be defined as fol-
lows:

(i) If f is invertible and f∗ is the adjoint of f , then define (cf. [4,
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Definition] and [16, Lemma 3.15 (2)])

Detτ (f) = exp
(

1
2
Trτ [log (f∗f)]

)
; (5)

(ii) If f is injective, then define (cf. [4, Lemma 5] and [16, Lemma 3.15
(4), (5)])

Detτ (f) = lim
ε→0+

√
Detτ (f∗f + ε) =

√
Detτ (f∗f). (6)

(iii) If f : l2(Γ)[n] → l2(Γ)[n] is an invertible morphism, then there exists
a C1 path fu, u ∈ [0, 1], of invertible morphisms such that f0 = f , f1 = Id,
and (cf. [4, Theorem 1 and Lemma 2]),

log (Detτ (f)) = −Re
(∫ 1

0

Trτ

[
f−1

u

dfu

du

]
du

)
. (7)

Example: Let γ ∈ Γ be of infinite order, and |t| < 1. It is clear that
Id− tγ ∈ N (Γ) is invertible and Detτ (Id− tγ) = 1 by (7) (cf. [13]).

Let (C∗, ∂) be a finite length N (Γ)–chain complex

(C∗, ∂) : 0 → Cn
∂n→ Cn−1

∂n−1→ · · · ∂1→ C0 → 0, (8)

where each Ci (0 ≤ i ≤ n) is a (finite rank) N (Γ) free Hilbert module.
Assume that (C∗, ∂) is weakly acyclic: ker(∂i) = Im(∂i−1), 0 ≤ i ≤ n. Let
∂∗i : Ci−1 → Ci be the adjoint of ∂i : Ci → Ci−1. Then ∂i∂

∗
i : Im(∂i) →

Im(∂i) is injective (0 ≤ i ≤ n).
We call (C∗, ∂) is of determinant class if ∂i∂

∗
i : Im(∂i) → Im(∂i) (0 ≤

i ≤ n) is of determinant class (i.e. Detτ (∂i∂
∗
i |Im(∂i)

) > 0). In this case,
the L2–Reidemeister torsion of (C∗, ∂) is defined to be a real number
T (2)(C∗, ∂) given by (cf. [16, Definition 3.29])

log T (2)(C∗, ∂) = −1
2

n∑

i=0

(−1)i log Detτ

(
∂i∂

∗
i |Im(∂i)

)
. (9)

Let ρ : π1(X) → GL(H) be an N (Γ)–linear representation of Γ =
π1(X) on a (finite rank) free N (Γ) Hilbert module, where X is a finite cell
complex. Let X̃ be the universal covering of X. Thus the chain complex
(C∗(X̃)⊗H, ∂̃) induces canonically a chain complex (C∗(X, Hρ), ∂ρ) in the
sense of (8) with C∗(X, Hρ) = (C∗(X̃)⊗π1(X),ρ H).

If (C∗(X, Hρ), ∂ρ) is weakly acyclic and of determinant class, then its
L2–Reidemeister torsion T (2)(C∗(X, Hρ), ∂ρ) as in (9) is defined. If ρ :
π1(X) → GL(H) is unitary, then T (2)(C∗(X, Hρ), ∂ρ) is a well–defined
piecewise linear invariant.
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Note that the L2–Reidemeister torsion detects the unknot by [16, The-
orem 4.7 (2)].

3. An L2–Alexander–Conway invariant for knots

Combining the methods in §1 and §2, we provide the construction of an
L2–Alexander–Conway invariant for knots in this section. See [13,14] for
more details.

Let K ⊂ S3 be a knot. Let {x1, · · · , xk|r1, · · · , rk−1} be a Wirtinger
presentation of Γ = π1(S3 \K).

Define α to be the canonical abelianization α : Γ → U(1) with α(xi) = t

for 1 ≤ i ≤ k. Let GL(l2(Γ)) denote the set of invertible elements in N (Γ).
Let ρΓ : Γ → GL(l2(Γ)) denote the fundamental representation of Γ, which
is given by the right multiplication of the elements in Γ. The tensor product
representation ρ ⊗ α induces a ring homomorphism of the integral group
rings

ρ̃Γ ⊗ α : Z[Γ] → N (Γ)⊗ Z[t±1] ⊂ N (Γ). (10)

Let Ψ = (ρ̃Γ ⊗ α) ◦ φ̃ : Z[Fk] → N (Γ) be the composition of the ring
homomorphisms. Consider the morphism

AρΓ⊗α : l2(Γ)[k−1] → l2(Γ)[k] (11)

which when written in the (k− 1)× k matrix form, the (i, j)–component is
given by

AρΓ⊗α,(i,j) = Ψ
(

∂ri

∂xj

)
∈ N (Γ)⊗ Z[t±1] ⊂ N (Γ), (12)

where ∂ri

∂xj
is the standard Fox derivative.

We call AρΓ⊗α the L2–Alexander matrix of the presentation P (Γ) asso-
ciated to the fundamental representation ρΓ and the representation α. In
[13], we proved the following proposition.

Proposition 3.1. (1) Ψ(xj − 1) ∈ N (Γ) is injective and has dense image
for any 1 ≤ j ≤ k.

(2) If one of the Aj
ρΓ⊗α’s, 1 ≤ j ≤ k, is injective, then every Aj

ρΓ⊗α,
1 ≤ j ≤ k, is injective.

(3) For any 1 ≤ j < j′ ≤ k, one has

Detτ

(
Aj

ρΓ⊗α

)
Detτ (Ψ(xj′ − 1)) = Detτ

(
Aj′

ρΓ⊗α

)
Detτ (Ψ(xj − 1)) . (13)

(4) Detτ (Ψ(xj − 1)) = 1 for 1 ≤ j ≤ k
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(5) ∆(2)
K (t) = Detτ

(
A1

ρΓ⊗α

)
is independent of the choice of the

Wirtinger presentation of the knot K.

Thus we define ∆(2)
K (t) to be the L2–Alexander invariant of the knot K

in S3.
When t = 1, ∆(2)

K (t) has been studied by Lück (see [16, Theorem 4.9]),
who shows that ∆(2)

K (1) is equivalent to the L2–Reidemeister torsion of
S3 \ K. In [13], we identify ∆(2)

K (t) with t ∈ U(1) as certain twisted L2–
Reidemeister torsion of S3 \K (see [13, Proposition 5.1]). In view of [22,
Section 5], the above construction can also be applied to links. We prove
a rigidity result for the U(1) twisted L2–torsion on a knot complement in
[13, Theorem 6.1].

By considering α : H1

(
S3 \K

) −→ C∗ with α(h) = t, we can prove that
Detτ

(
A1

ρΓ⊗α

)
is well–defined up to the multiplicative group {|t|p}p∈Z (see

[13]). However, one can resolve this {|t|p} ambiguity through the following
theorem.

Theorem 3.2 (Li–Zhang 2005 [14]). The quantity

∆(2)
K (t) =

√√√√Detτ

(
A1

ρΓ⊗α

)

max{1, |t|} ·
Detτ

(
A1

ρΓ⊗α−1

)

max {1, |t|−1}

does not depend on the choice of the Wirtinger presentation of Γ. Moreover,
it depends only on |t|.

Definition 3.3. The term ∆(2)
K (t) in the above theorem is called an

L2–Alexander–Conway invariant of the knot K.

By the rigidity result in [14], this definition coincides with [13, Definition
3.5] for t ∈ U(1).
Example. Let K = 41 be the figure eight knot with its Wirtinger pre-
sentation P (Γ) =

〈
x, y|zxz−1y−1

〉
, where z = x−1yxy−1x−1. Then one

has
(i) If |t| > 4, then ∆(2)

41
(t) =

√
t;

(ii) If |t| = 1, then ∆(2)
41

(t) = exp
(

vol(S3\41)
6π

)
∼ exp

(
1
6π · 2.029

) 6= 1.

Thus ∆(2)
41

(t) is a non–trivial deformation of the hyperbolic volume of
41. It would be interesting to study the behavior of ∆(2)

K (t) on R∗.
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Let β ∈ Bk be a braid representative of the knot K. By Artin’s theorem
[3], the knot group Γ admits a presentation

〈
x1, . . . , xk|β(x1)x−1

1 = · · · = β(xk−1)x−1
k−1 = 1

〉
.

By proceeding similarly as in the Wirtinger presentation case, one can
define the L2–Alexander matrix denoted now by ÃρΓ⊗α, and define an L2–
Alexander–Conway invariant by, for t ∈ C∗,

∆̃(2)
K (t) =

√√√√Detτ

(
Ã1

ρΓ⊗α

)

max{1, |t|} ·
Detτ

(
Ã1

ρΓ⊗α−1

)

max {1, |t|−1} .

Theorem 3.4 (Li–Zhang 2005 [14]). (i) The L2–Alexander–Conway in-
variant ∆̃(2)

K (t) does not depend on the braid representative β for the knot
K. So it defines an invariant for K.

(ii) For t ∈ U(1), ∆̃(2)
K (t) = ∆(2)

K (t)
(
= ∆(2)

K (1)
)

.

Theorem 3.4 indicates the interactive relation of our L2–invariant on the
braid representatives of the knot K. It can be viewed as an L2–analogous of
the Burau theorem [3, Theorem 3.11]. It is an interesting problem to answer
our expectation ∆̃(2)

K (t) ≡ ∆(2)
K (t). Note that ∆̃(2)

41
(t) = ∆(2)

41
(t) = t1/2,

∆̃(2)
51

(t) = ∆(2)
51

(t) = t3/2 for |t| > 4 and ∆̃(2)
51

(1) = ∆(2)
51

(1) = 1.

4. The volume conjecture

The volume conjecture given by Kashaev [9] is derived from the theory of
quantum dilogarithm to build a possible relation between the combinatorial
TQFT to quantum 2 + 1 dimensional gravity. H. and J. Murakami in [19]
reinterpreted the Kashaev invariant in [9] as a special case of the colored
Jones polynomial associated with the quantum group SUq(2) evaluated at
q = e2πi/N . The volume conjecture for any knot K in S3 can be stated as
the following.

lim
N→∞

log |JN (K, q)|
N

=
1
2π

Vol(S3 \K),

where the volume is the simplicial volume. The volume conjecture is true
for torus knots [10] and the figure eight knot [20]. See also [5,7] for related
topics.
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By [13, Proposition 5.1 and Theorem 6.1], the volume conjecture can
be restated as follows (cf. [16, Conjecture 4.8]),

lim
N→+∞

∣∣∣∣JN

(
K, exp

(
2π
√−1
N

))∣∣∣∣
1

3N

= ∆(2)
K (1). (14)

Using the 3–dimensional Chern–Simons theory with complex gauge
groups SL2(C), Gukov [6] derived a generalized volume conjecture

lim
N→∞

log JN (K, q)
N

=
1
2π

(Vol(M) + i2π2CS(M)).

By comparing (14) with the Melvin–Morton conjecture (the Melvin–
Morton conjecture was proved formally in [21] and rigorously in [2]), it
seems plausible to view the volume conjecture as a kind of L2–analogue
of the Melvin–Morton conjecture. This fits with the picture outlined by
Gukov in [6]. In particular, the rigidity property in [13, Theorem 6.1] fits
with the form of the generalized Melvin–Morton conjecture stated in [6],
where the hyperbolic torsion in the right hand side of [6, (6.30)] (which
should play a role of the L2–torsion (or the L2–Alexander invariant here)
does not contain a (unitary) deformed parameter.

We would like to end our article by listing some natural questions.
(Q1) Note that the generalized volume conjecture in (5.12) of [6] can

be thought as a parametrized volume conjecture via the zero locus of the
A-polynomial. Is our invariant ∆(2)

K (t) related to the volume Vol(ρ) for
ρ : Γ → SL2(C) in the zero locus ?

(Q2) ∆(2)
K (t) is upper semi–continuous with respect to t ∈ C∗. Whether

it is a continuous function or with only first kind of discontinuity ? Whether
∆(2)

K (t) 6= 0 for all knots ?
(Q3) It would be interesting to give a topological proof of Lück–Schick’s

result in [17], identifying ∆(2)
K (1) with the simplicial volume of S3 \K, up

to a constant scalar. Is there a direct proof by passing Lück–Schick’s result
?

(Q4) Whether there is a knot polynomial whose Mähler measure equals
to the L2–Alexander invariant ∆(2)

K (1) (or equivalently, the L2–torsion of
the knot complement) ? This is Question 8.1 of [13].

References

1. J. W. Alexander, Topological Invariants of Knots and Links, Trans. Amer.
Math. Soc. 30, 275-306, 1928.

2. D. Bar-Natan and S. Garoufalidis, On the Melvin-Morton-Rozansky con-
jecture, Invent. Math. 1 (1996), 103-133.



January 16, 2007 21:40 Proceedings Trim Size: 9in x 6in lz2f

9

3. J. S. Birman, Braids, links and mapping class groups, Ann. Math. Studies,
No. 82, Princeton University Press (1974).

4. B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann.
of Math. 55 (1952), 520-530.

5. S. Garoufalidis and T.Q. Le, Asymptotics of the colored Jones function
of a knot, Preprint, arXiv: math.GT/0508100.

6. S. Gukov, Three-dimensional quantum gravity, Chern-Simons theory, and
the A-polynomial, Commun. Math. Phys. 255 (2005), 577-627.

7. V. Huynh and T.Q. Le, On the colored Jones polynomial and the Kashaev
invariant, Preprint, arXiv: math.GT/0503296.

8. V. F. R. Jones, Hecke algebra representations of braid groups and link
polynomials, Annals of Math, 126 (1987), 335-388.

9. R. M. Kashaev, The hyperbolic volume of knots from the quantum dilog-
arithm, Lett. Math. Phys. 39 (1997), 269-275.

10. R. M. Kashaev and O. Tirkkonen, A proof of the volume conjecture for
torus knots, translation in J. Math. Sci. (N. Y.) 115 (2003), No. 1, 2033–
2036.

11. P. Kirk and C. Livingston, Twisted Alexander invariants, Reidemeister
torsion, and Casson-Gordon invariants, Topology 38 (1999), 635-661.

12. T. Kitano, Twisted Alexander polynomial and Reidemeister torsion, Pa-
cific J. Math., 174 (1996), 431-442.

13. W. Li and W. Zhang, An L2–Alexander invariants for knots, to appear
in Commun. Contemp. Math.

14. W. Li and W. Zhang, An L2–Alexander–Conway invariants for knots, in
preparation.

15. X.-S. Lin, Representations of knot groups and twisted Alexander polyno-
mials, Acta Math. Sinica (English Series) 17 (2001), 361-380.

16. W. Lück, L2-Invariants: Theory and Applications to Geometry and K-
Theory. Springer-Verlag, 2002.

17. W. Lück and T. Schick, L2-torsion of hyperbolic manifolds of finite vol-
ume, Geom. Funct. Anal. 9 (1999), 518-567.

18. J. Milnor, A duality theorem for Reidemeister torsion, Ann. of Math., 76
(1962), 137-147.

19. H. Murakami and J. Murakami, The colored Jones polynomials and the
simplicial volume of a knot, Acta. Math., 186 (2001), 85-104.

20. H. Murakami, The colored Jones polynomials of the figure-eight knot and
the volumes of three-manifolds obtained by Dehn surgeries, Fund. Math.
184 (2004), 269–289.

21. L. Rozansky, A contribution of the trivial connection to the Jones polyno-
mial and Witten’s invariant of 3-manifolds, Commun. Math. Phys., 175
(1996), 275-318.

22. M. Wada, Twisted Alexander polynomial for finitely presented groups,
Topology 33 (1994), 241-256.


