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§0. Introduction 
The first success of proving the Atiyah-Singer index theorem directly by heat kernel method 

was achieved by Patodi [10], who carried out the "fantastic cancellation" (ef. [91) for the Laplace 
operators and for the first time proved a local version of the Gauss-Bonnet-Ohern theorem. In 
recent years, several different direct heat kernel proofs of the Atiyah-Singer index theorem for 
Dirac operators have appeared independently: Bismut [3], Qetzler [6], [7] and Yu [13] or [14], 
see also Berline- Vergne [2]. All the proofs have their own advantages. 

Motivated by the problem of generalizing the heat kernel proofs of the index theorem to 
prove a local index theorem for families of elliptic operators, Quillen [121 introduced the concept 
of supereonnections, and this was developed by Bismut to give a heat kernel representation for 
the Chern character of families of first order elliptic operators. Then using his probabilitistic 
method, Bismut [4] obtained a proof of the local index theorem for families of Dirac operators. 

In this paper, we will use the method of Yu [141 to give another proof of the local index 
theorem for families of Dirac operators. The key point is Yu's idea of comparing the corre- 
sponding terms in the Taylor expansion series of functions, thus avoiding probability and some 
complicated estimates. 

I t  seems that  the method in [7} can be also generalized to give a proof of the local index 
theorem for families of Dirac operators. 

Note also that  Yu [15] has presented a direct proof of the local index theorem for signa- 
ture operators explicitly in the same spirit as [13[. We found that  our proof can be modified 
immediatly to give a proof of the local index theorem for families of s ignatu~ operators. 

For simplicity, we write out our proof only for classical Dirac operators, but our proof works 
also for twisted Dirac operators, as pointed out in [13]. For a brief account ef. the Appendix. 

We take Yu [13] and Chap. I-III of Bismut [41 as our basic references. 
We are deeply grateful to Professor Yu Yanlin who introduced this subject to us and kindly 

explained to us the key points of his work [13], without his encouragement, the present paper 
could never have been finished. We would also like to thank Nankal Institute of Mathematics 
for hospitality and some other services. 

§1. Clifford module and supertrace 
Let V = V ° G V ~ be a super (or Z2-graded) complex vector space. As in [12], we u se  

to denote the involution giving the grading: e(v) = (--1)deg(V)v. Then the space End (V) of 
endomorphisms of V is a super algebra. The even (resp.odd) elements of End (V) commute 
{resp. anticommute) with e. 

Definition 1.1 The supertrace tre of k E End(V) is defined by 

trek = trek. 

I t  is easy to verify that  

(1.2) 
trek = tr(klvo ) - t r (k lv , ) ,  k even 

trek = O, k odd 

Now let H be a Grassmann algebra, then H is naturally Zu- graded. Let K be the graded 
tensor product 

K = E n d ( V ) ~ U  
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t h e n / f  possesses a nature Z2-grading. The supertrace concept can be naturally extended to K 
and takes its value in g (of. [8], I41). 

Definition 1.3 If h E H, k ~ K, define 

t r , ( h k )  = h(trsk).  

Now let N = 2n be an even integer, e(R 2") denotes the Clifford algebra of R 2n generated 
by I, q , - . . ,  e~n with the following commutative relations: 

e ~ = - l ,  e~ej+eje~=O, i # j .  

As well known, Spin (2n) acts unitarily on the 2n-dimensional complex vector space of 
spinors S and that e(R zn) ®R (7 can be identified with End(S), so that Spin. (2n) c End(S). 
Set 

0 . 4 )  ~ = ( ~ - - / ) " e ,  - - .  e=,  

Then * acts unitarfly on S and moreover 

(1.s) ~2 = 1 

Set 

(1.6) s +  = {~ c s :  , ,  = , } , s _  = { ,  e s :  ,~  = -~}. 

Then S+,S_ are 2n-l-dimensional vector subspaces of S such that  

0.7) S = S+ * S_ 

Spin(2n) acts unitarily and irreducibly on S+ and S_. 
S can be naturally regarded as a super vector space with obvious grading and involution r. 

Let W be a usual vector space, then S ® W also carries a naural grading. 

trsei~...ei v =0, p < 2 n  
2 n 

t r se l - . . e2n  : ( - ~ )  . 

Let m be another integer, fl ," " ,  f~," • -, frr, denote the canonical oriented ]~uclidean basis, 
and dyi , . . . ,  d y e , . . . ,  dy m the basis of the corresponding dual space. 

Definl.ti~n .1~9 e denote the graded tensor product of the Z2-graded algbra e(R 2n) and 
A(R~) ,  i . e .  

For simplicity, we will use no "~" sign to indicate the product in e. e .g. we have 

0 .10)  ~,d~ ~ + d ~ %  = 0. 

§2. Fibration of manifolds 
A large portion of this section, which is adapted from [4i, is included here only for com- 

pleteness. 
Let B be an m-dlmensional connected compact R~emannian manifold. Denote its Rieman- 

nian metric by 9B. 
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X is a connected compact  orientable manifold of even dimension 2n. We assume tha t  X is 
a spin manifold, so tha t  to:j(X) = 0. 

M is a 2n + m dimensional compact  connected manifold. We assume tha t  7r : M --, B is a 
submersion of M onto B,  which defines a fibration of M with fiber X.  Namely, we assume tha t  
there is an open covering _U of B such tha t  for every UE_U, there exists a Goo-diffeomorphism 
t o v : ~ - J ( U ) - * U x X ,  a n d i f U f ~ V # ~ b , ~ u o ~ l  : ( U ~ V )  x X _ _ ,  ( U ~ V )  x X i s g i v e n  
by (y,x)  ~ (~,fu, v(y,x))  where fu .v  (y , ' )  is a Goo-diffeomorphism of X which is COO in both 
variables y and x. 

For y E B, ~r -1 (y) is then a sebmanifold Gy of M,  and 7r defines a fibration G of M. TG 
denote the 2n- dimensional vector  bundle on M whose fiber T~G is the tangent  space at z to 
the fiber G~(,) .  And we assume tha t  M is oriented. 

By using any Riemannian structure on M ,  we can obtain an m-dimensional smooth sub- 
vector bundle T n M  of T M  such tha t  

(2.1) T M  = THM @ TG 

In particular,  Vx E M,  T H M  and T.{.)B are isomorphic under r .  
Recall  t ha t  B is Riemannian,  so we can lift the Euclidean scalar product  gB of T B  to 

THM. And we assume tha t  TG is endowed with a scalar product go- Thus we can introduce in 
T M  a new scalar product  go • 9G, and denote by V L the Levi-Civi ta  connection on T M  with 
respect to this metric. 

Let O be the SO(2n) bundle of oriented orthonormal  frames in TG.  
We now do the assumption tha t  the bundle T G  is spin. Namely we assume tha t  the SO(2n) 

bundle O --, M can be lifted to  a Spin(2n) bundle O '  so tha t  the  projection O e --* O induces 
the covering projection Spin(2n)-+SO(2n) on each fiber. 

Let F,F+~F_ be the bundle of spinors: 

(2.2) F = O '  XSpin(2n) S 
F+ = O' Xspi,(z,) S± 

Recall tha t  if  e 6 TG, HeJJ = 1, e acts unitari ly by Clifford multiplication on F ,  and 
interchanges F+ and F_. 

Definition 2.3 ~ is the bundle defined by 

~, = c(T,C)+A,(,)(B). 

The supertrace construction of §1 can be extended obviously to give a supertrace on the 
superalgebra bundle e. 

Next  we construct  a connection on TG. 
Definition 2.4 V denotes the connection on TG defined by the following relation: 

V y Z = P G ( V ~ Z ) ,  Y E T M ,  Z E T G  

where PG denote the orthogonal  projection of T M  on TG.  V obviously preserves the scalar 
product  in TG. 

O 0  CO 
V can be lifted to give a connection on F,F+ and F- rcspec~veb: Let H a , H+ , H_ 

denote the set of G °o sections of F, F+, F_ over M. 
Clearly, we may regard Hoo, H~, as the set of Goo sections over B of infinite dimensional 

CO CO vector bundles, which we still denote by H°°,H~. The fibers Hy ,H±,y are the sets of G °O 
sections over Gv of F, F±. 
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Also note that since F is an Hermitian bundle, and since the fibers Gv carry a natural 
volume element dx, if h, h' E H~, we can define the scalax product 

< h ,h '  >= [_ < > d . .  

We now define a connection on H+. 
Definition 2.6 V denotes the connection on H+ such that  if Y C: TB,  h E H+, then 

~ r h  -~-- VrHh 

where yH is the (unique) lifting of Y E TB  in THM. 

§3. Dirac operators and a heat kernel formula for the index 
Definition 3.1 D denotes the operator acting on H 

2n 

D = E eiVei 
1 

Of course the operator D acts fiberwise in the fibers Gy. 
For y E B, Dy denotes the restriction of D to the fiber H ~ .  D interchanges H~ ° and H_ ~ .  

D+,D-  are the restrictions of D to H ~ ,  H_ ~ .  
By Atiyah and Singer [1], the difference bundle over B 

(3.2) kerD+,y - kerD_,~ 

is well defined in the sense of K-theory. 
The aim of this paper is to present a calculation of the Chern character of (3.2) as a 

differential form over B explicitly. 
First, we will give a brief review of the heat kernel representation of this Chern character 

given by Bismut [4]. 
In what follows, to simplify the notations, we will use the following conventions: 
(1) All the summation signs will be omitted; 
(2) The subscripts a , ~  will be used for horizontal variables and the subscripts i , j  for 

vertical ones (i .e. the variables in TG); 
(3) We omit H in (f~)H, i .e. ,  we identify the orthonormal basis f l , ' "  ,fro of TyB with 

their lift in THM (for x E Gy). Also, dyl, .. .  ,dy m are now considered as differential forms on 
M; 

(4) We omit the exterior product sign A; 
(5) We omit the "~" in V. 
We extend e l , - - ' ,  e2n; f l , ' " ,  fm to give an orthonormal frame E1 , - " ,  E2n; F I , ' " ,  Fm in 

the way of [13] and pick a fixed spin frame as in [18]. 
Denote 

=< > 

where 7-'1 is the total notation for Ei,F~, etc. 
Definition 3.3 Define 

lz =e,(E, + +  r,j jd  + 

I = H  2. 
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Let i ry be the restriction of I to Gu. For a given ~ ~ B, the operator I v acts on Hu~Au(B) in 
the following sense: if h EEnd(F), 17, qt E A(B), e E F,  then the action of h~/EEnd(F)~A(B) 
on et/' ~ F~A(B)  is given by 

(~.4) (h.)(¢. t) = (--l)deg~/'degeh(e). t/. t 

further more, if h E H~ °, . e Ay(8), 

(~.5) z~(h,,) = (i-h),. 

As indicated in [4], using standard results on elliptic equations, we can construct the Wheat 
kernel" aural-group e - t l '  whic~ also a.cts in the fiber. For any t > 0,e - t l '  is glven by a kernel 
P~(z ,z ' )  (for x ,x '  6 G~) whic~is G °° in ( t , x , z  t) E (0,+oo) X Gy x Gy. 

Since the fibration M --, B is locally trivial, there is an open neighborhood of y in B such 
that ~ - t  (U) is diffeomorphic to U x X. In what follows, we will not distinguish fc-*(U) and 
UxX. 

In particular, since I y is a smooth family of second order elliptic differentia] operators, 
it is not difficult to prove that P~(x,z ' )  is U °° in (t,z,x',~l) E (O, oo) x X x X x U, cL [4], 
Proposition 2.8. 

For z, z '  e Gy, P~(x, z ')  is a linear mapping from F~, into F ~ A y  (B). 
Let 7~ be the involution defining the grading in F~, then Hom(Fx,, F~) has a nature grading. 

The even (resp.odd) elements commute (resp. anticommute) with , . .  Thus, P~(x, x') is an even 
dement of the graded tensor product Horn(F=,, F~)~Ay (B). In particular, P~(x, z) is an even 
element in the graded algebra gnd(Fz)~A~ (B), and tr ,P~ (z, z) is an even element in Ay (B). 

As in [12], we change the normalization constant in the definition of the Chern character. 
Namely, for a vector bundle V with connection form # and curwture U, we set 

(3.6) Oh(V) = ~ p ( - o ) .  

In [4], Bismut proved the following fundamental result: 
Theorem 3.7 (Bismut [4]). Let H' be given by 

(a .s) 

1 k 1 ~ dy ~ lr~c~dyady~ ) H ~ =e,(E, + ~r,j~,~j + ~r,j~j-~ + 

d y ~  1 j 1_~ e dy~ 

I ~ = t ( H t )  z 

Then 

(~.9) /~ .  ft.(elL '~'"(,,.))a. 

is a C ~ form over B which is a representative of Ch(kerD+,u-kerD_,u), where PL't'Y(x,x') is 
I 

the U °° kernel over G u of e - l , .  
The goal of this paper is to calculate out 

(a.to) tr. (eL"," (~, ~)) d~. 

§4. A local parametrix and Minakshsundaram-Pleijel equations 
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In this section, we shall deduce (3.10) to a calculable form, and in the next section we will 
carry out the explicit calculation. 

In all what foUows, we may keep in mind that  we are fixing a typical Gu, so that  the 
subscript y will be omitted unless necessary. 

First,  as in [5], Vt > 0, let ~t be the homomorphism 

(4.0) 

then clearly, 

]~ellee 

~ot : Hom(F~, ,Fx)~A~(B)  --~ Hom(Fx , ,Fz )~Ay(B)  

~t : hd~ ~ ~ l ~ h d ~ , h  ~ ~ o m ( F z , , F , )  
Vt 

t,,e -~' = __f~, tr.f ,  '''~ (~, ~)d. 

=trse- t (~°*(H))  2 = trse-t~o* H2 

= t r # ~ t e  - tH2 

Thus we get a corollary of Theorem 3.7: 
_Proposition 4,1 Vt > 0, 

j ~ ,  t~.P, ~ (~, ~)a~ ~t 

is a representative of Ch(kerD+,y-kerD_,y). 
We wish to calculate out 

Now we note that  Pc (x, z ')  is uniquely characterized by the following properties: 

(4.3) 

and W(z') e H~, 

(4.4) 

Proof: Recalling that  

,~o(~ + x")P'(" ~') = 0 

l ~  [ P,( . , . ' )V(. ' )d. '= v(.) 
~--~0 J G 7 

e-tlv(z) = [ Pt(z,z')V(z')dx' 
,,tG~ 

~o (,.8) ~,d (4.4) a,e clea,ly hold. Now let G , ( . , . ' )  be anothe, O °° function satis~ing (4.S) 
and (4A), we have 

0 
(4.5a) ( ~  + t, ,)  (V,(z,z') - Gt(x, ~')) = 0 
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and VV ~ ~ ,  

[ (Pt (,~, x') - Gt (~¢, ~'))V (~')d~' = (4.sb) lira o 
t--,O J G 

From (4.Sa,b) it is obvious that  we should have 

P~ (z, z') = a,(=, =% 

Definition 4.6 Vt > 0, set 

e_p~/4t  N 
E f'Ui (z,z'), (4.7) H~ (x, x'; t) - -  (4~rt) n 

where N _> n + [ }m]  and p = d(=, z') ,  (z, =') e A(s )  = {(=, z ' )  e M x Mid(z, z')  < e / for some 
sufficiently small e > O, and each U(O is a .  

(4.8) U (i) (x, x ' ) :  F~, ~ F , ~ A ~ ( B )  

If HN (z, z ' ;  t) satisfies the following two conditions: 
(1) 

O +I=,)HN(x, t) = e-~/4t (-~ ='; ~ t ~ h ( z , z ' ; t )  (4.o) 

(~) 
u{ °) (z, z) = zd:  E~ -~ E~ 

where h is a continuous function, then we call HN a local parametrix for I .  
We now show that  this HN does exist. 
Lemma 4.10 (Compare Y. [131) 
If 4, 6 C ~ (M), S 6 H °° , then 

+ (a,~,r,~j~,e~ + ~ , r T ,  e, ay ~ + ~,~,,r~,~dy"a. ~) 

for some constants ai, bi,ci. 
Proof. First ,  as in [13], we easily deduced tha t  

(4n) H(~S) = ~s + df ~s + ~Hs 

(4,2) 

l:l(e~4~S) =e~ (e~4,)e,S + e,e,4,, (E~ S) + lr~ ie,eie~4,e,s 

I ~ ~ ~F~e~dy~d#~et4,tS + ~P~ieiejdy 4,tetS + 

+ d f ( F ~ 4 . ) e , S  + ~y~+,e,(e~s) + 1-r~.dfe, ei+,S 
4 
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and from (4.11) it follows that 

(4.14) ~(~,~s) = ,~ , (~s)  + a~,~(Hs) + ~(~S)  

Now from (4.11) to (4.14), we obtain the Lemma by s-ruination. 
e--#21~* 

Set ff = ~ as in (4.9). Recall from [13] that in the local normal coordinate system, if 

p~(~, ~') = ~ + . . .  + 4 , ,  we have 

Xi (4.1~) ~ = - ~  

p2 n l ~ x i B i )  

for some functions Bi. 
Set S = Ei/v=0 t iU(i)(x,  x'), then from (4.15), (4.16) and (4.10) we have 

bTHN0 (~,;~) : ~ (  - 7" + ~)t'V(')(~') 

r(BN (~'~ t)) = - 

+ (.,,.r,~i,y,~ + b,,,r,y"ey du '~ + ~,,£f,~dy'~dya)S 
r~ 

= -  : ''v(') + 
i=0 i=0 
N 

~'~I(U(, ) ) t  i 1 l: 
- -~(aixiPiiejek + bix iP~ejdy" + 

i=0 

+ ei ziI'g,~dyC'dya)t i-1 U(i). 

Hence we obtain from (4.9) the following analogue of the Minakshsundaram-Pleijel equa- 
tions given by Yu 1131: 

(4.17) = - l U  f~-l),  i < N 

U (°) (x, x} = Id  : Fx ~ F~. 

Prouosition 4.18 The local parametrix H~ exists iff ¥i < N, U (i) satisfies the equations in 
(4.17). 

In the next section, we will calculate out the local index throughout these equations. 

§5. The local index theorem 
First we make it explicit what to be calculate. Recall from [14] that if ~r N i~ ~h¢ |o¢.~ 

paramctrix~ we have 

(5.1) Pt (x ,  x t) - H N  (x,  xt; $) -~- O(t  l ' l 'N-n)  
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while from (4.0) it is clear that 

(5.2) 

so when N > [~m] + n, we have 

(~.~) 

From (S.~) and (5.~), it follow that 

tim t l ~ m l + ~ t  = 0 
t - . o  

lira ~t ( o ( t l + N - n ) )  = 0 
t-*0 

The supertrace of the right hand of (8.4) is precisely what we proeeeed to calculate out. 
Now we take a convension similar to that in [13]: 
Let ~o be a G °° function defined ]iocally in a neighborhood of x, denote the degree of zero 

of ~ at x by U(~), to every 

, 0 , , 0 , d O ,  ~ ~(~') =~,,(~ ) ~ ,  ',(~ ) . .  a-~, ~ , ~ ( ~  ) ~ ., d~ , .  
(5.~a) 

We define 

(5.5b) x ( , ~ )  = , .  + p + ~ - , . ( ~ , - - -  ~ . , + , )  

and we denote {X < m} the linear space generated by all the elements a for which X(O) < m, 
etc. and denote (X < m) an dement of {X < m}, e .g. ~ = ~/+ (X < m) means that there exists 
a fl E {a < m} such that ~ = ~ +/3, we can also write it as 

(5.6) ~ - ' 1  mod{x < m} 

Lemma 5.7 

r~,, = 
l 

rT, = ii 
I 

r(~ 1 = ! ~ R , , ~ ,  + (x < -1). 
l 

Proof. Oomparlng [13], we only need to note that we are working on a fixed Gy. 
Proposition 5.8 

0 2 1 0 1 ~ 1 0 
z -  o~, + ~e~.,~,-g~ e.,., + ~e , ,~x ,  ~.dy ~ + iR~j~,~x,-~ dy 0 ~ 

1 1 a 
+ -~x ,  xiR~,.~kRri,tqe~e~et + --~xixiRirke, Rrj,te~e~etdy + 

1 1 
+ "~xixyRirlkRrja~elekdyC~d~P + -~xixjRirk~Rrjl/~ekdy°~eldy/~+ 

1 
+ -i'~zixjRirlaRri~,eldy'~dy:~dy~'+ 

I 
+ "~xixjR4ro'~RrjxpdyadyPdy)~dY u + (X < 2). 
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Proof. It follows directly from Lemma 5.7 and the generalized Lichnerowicz formula given 
by Bismut [4], Theorem 3.5. 

As in [13}, we denote 

1 0 1 c ~  1 = - e ,dy  c~ - O--~---dyady~; ao 

02 
~,~ = 2., 

1 1 c, 
a-2  : -- ( - ~ x i x j R ,  + -~x ,  xyl~r~,~Rriste~e,e~dy + 

1 c, lxixjR~r~o~Rrit~e~dyO, etdy~ + + ~ x i x j R i r~ k R r j c ~ e l e k dy  dy ~ + 

-~xix iRir laRrj~pecdy dy dyt' + 

1 
+ ~xixiRiro,3Rrj ,x t ,  dyC'dy~dyXdy p ). 

And we set 
Ai = a~xr R,~jkejek + bixt R~qc, e jdy  c~ + cixtt~tc, zdyC' dy ~. 

Obviously, 

(5.9) rb je  + +  ,rfj °dd) = =,A, + (x < 0). 

Lemma 5.10 VI _~ ]" < 2n, 
0 

Ox1 (x ,A,)  = O. 

Proof. 
0 

the other two can be proved in the same way. 
Coronary 5.11 For S e ( H o ~ ( F , F ) 6  ^~ (B)), 

ao((~ ~,A,)s) = ( Z  ~,A,)a0S + (X < X(aoS)), 
i i 

L emma 5.12 
a - 2 A ~ = A , a _ 2 ,  mod{x <3}.  

Proof. Direct calculations. 
Now we recall the basic idea of Yu[13] of comparing the corresponding terms of the Taylor 

expansion series: let f be a function in a neighborhood of x, f : U --* R or F.  We expand f by 
its Taylor series: 

o o  

where f (m)  is the m-th degree homogeneous polynomial in x l , - . . , z 2n .  We know that, for 
V E Fx,,U(')(x,x r) : F~, -~ F~,U(1)V can be viewed as a spinor field, which under tile fixed 
spin frame, can be viewed as a function with values in F which we still denote by U(O. 
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Notice tha t  dO(m) = tact(m),  and denote ~-~i xiBi = h for some h, comparing the corre- 
sponding terms of Taylor series in (4.17), we get 

(m + i)0(')(m) + .~&0")(. - 2) 

+ ~ /,(~.,)0(')(.~.) 
~ 1 -[- f~tl 2 ~ J91 

m l > O  

+ ~ / ; 0 " - ' )  (mi) 

where x ( f j )  < 2. Rewrite it  as 

1 ~ 0 ( ' - ' ) ( .  + 4) + ~giO"-')(mi)+ 0(o (,~) _ (m + i) 
(s.14) J 

i j 

with x(~i) < 2, x(Sm,) < 2. ~om (,'L14), it can be easi~ d~aoced that 

f . . . . . . . . .  ~,, , ~ , r~ : ° "  ,~, ; . ) (0(°)( '+ ~' + + ~ ' ) ) +  
(s.15) 

j ~ j 

with x ( f j )  < 2i, X(,~j) < 2i. Note tha t  in the deducing, Lemma 5.12 and Oorollary 5.11 are 
freely used. 

Proposition 5.16 For i < n,  
t r ,U  (0 (~v) = 0. 

Proof. c .f. [13] or compare with the following proof of Lemma 5.20. 
Corollary 5.17 

n - - I  . t i  

lira ,D,{~ TM t r ,  U (') ~-)-)-)~) = 0 
~--*0 ~ "  ~ Z_.~ 

i----O 

So what  we really ought to calculate out  is 

[½ml 
lira 1 ,.o ~ ' ( ~  ~ tr,U ("+~)(~, ~)~"+~) 

(5.18) ~=o 

= lira 1 [~m] ,--.o ~'} '~ ~-" tk~o'(tr'U(n+k)(x'x))" 
k=O 

Let us take a look at the one 

(5.19) ~m t k ~  ( t r ,V ('+k~ (~, ~)), 
t - -~0  

o < k < [~m] 

Lemma 5.20 IfX(O ) < 2n + 2k, then 

~ o t k ~ , ( t r . ~ )  = o, o < k < [~m]. 
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l~roof. We can assume that  o can be writ ten as 

o = ~ ( ~ ' ) @ ° '  . . .  d , ~ ' e , ,  • • • e , .  

If  X (o) < 2n + 2k, then either ~v (x) = 0 or p + s < 2n + 2k. In the former case, t r ,  o = 0 is tr ivial  
and in the la t te r  case, if s < 2n, then t r , ( v ( z ) d ~  ~ ' . - . d ~ ' , e y '  ...e~o) = ~(z )dy  . . . . .  dy e`, .  
t r , (e  h . . . e j , )  = 0 and if s > 2n, then p < 2k so 

llm tk~ot ( t r . a )  = lira ~(x)~t  (dy . . . . .  dy~')t~tr.(ei~. . . .  ei°) 
t---,O ¢--+0 

= lira V(z)trs (ei,...ei°)dy ..... dye"t ~- }~ = 0 
t--+O 

Lemma 5.21 If ~(x,  x')  E H 0 m ( F x , , F z ) ~  A~ (B), and some ok = O, then 

( . .~  . - - ~ , ~ )  < 2t + x ( ~ )  

Proof.  cf. [13]. 
Now we can easily see from (4.17), (5.15), (5.19), (5.20} and the above Lemma 5.21 tha t  

~ i  z iAi ,  a0, h = ~ ziBi  and the term (X < 2) in Propot ion 5.18 are really irrelavent for the 
calculation of the supertrace (5.19). We write this result as follows: 

Proposit ion 5.22 If V (i) (x, x t) E Hom(F~,,  F ~ ) ~  A~ (B) satisfies the following equations: 

(5.23) • , a - - v ( ' )  + iv( ' )  : ( Z  + 
(9x~ i Ox~ 

then 

v (°) (x, ~) = Id  : r ,  ~ r', 

(s.24) am ~, (tr.VI"+*~ (., .))t * = U m  V, (tr.UI"+k~ ( . ,  . ) ) t  ~ 
t-*O 

where 0 < k < [ ½ m ] .  

Now the analogue of (5.15) is 

v¢0(,,,)= ~ ~o,:"% (v¢0)(,,,+o,+...+~,)) 
~,,..-,~, r ( m  , . . . ,  a , ;  0) 

with each c~, ~ 0. So 

(~.2o) x(V<.+k~) < 2,, + 2k. 

V (n+k) can be expressed as a sum of the following terms: 

o = ~ ( # ) d y  . . . . .  dy~ ' e~  - . - q .  

where in the process, we only take the interchanging between dyC/s and e~s, e .g . ,  eidy c" -- 
-dyC~ei, and has not  interchanged the order of e~s. It  alay be happened to a the  following cases: 

(1) ~(~) = o, then ~(~) = O; 
(2) v(~) # 0, but 3r ¢ q ~ o ,  = oq, then o(~) = 0; 
(3) V(ar) ~ 0, and Vr ~ q, Or ~ Oq, then p+s : 2k+2n, ifp < 2k, then llmt.-.0 ~t (~(z)d~/° . . . .  

0, and i f p  > 2k, then s < 2n, t r , ( e i ~ - . . e i . )  : 0. So in this case we must have p : 2k and 
s : 2n for a possible non-zero contribution to the supertrace, but  if we have some ir = iq, r ~ q, 
then x(e i~ . . ,  ei2.) < 2n which implies tha t  t r , (e i ,  . . .  e, .)  : 0. 
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Summarizing these, we get 
Proposition 5.28 The only terms having nontrivial contributions to (5.24) are thonse of a:s 

such tha t  
a = 7)(zt)dy . . . . .  dyr~,qt...e~" 

where ~o(z) i£ O, ar # aq (r # q), ei, # eQ (t # l) a~d p + s = 2n + 2k. In particular, if in the 
original expression of if, there have some e~s resppeared, then lira,-.0 ttW¢(tr,~) = O. 

Proof. All that  we need to notice is the following: 

eiej ~ -eie,  (mod{x < 2}). 

From this proposition and Lemma 1.8, we immediately have: 
!~roposition 5.29 If W(')(x, x') e ^~, (TG)~ ^v (B) satisfies the equations 

(5.80) 

z~ O W ( O  + iW (0 
Oxi 

= ( ~ .  Ox~O' ~4xix iRir l jRr isTdz ldzJdzSdzT)W(,_ l )  ' 

W {°) (x, z) = 1 

where we denote z = (x,y) and use I ,  J etc., to denote the total  subscripts i , j ,  ¢~, etc. Then 

t~rn] 

k=0 

where (')2. stands for the term which is a muRiple of dxl . . .  dz2.. 
Proof. This follows directly from (5.4), (5.18), (5.19), (5.22), (5.28) and (1.8). Notice that  

dz .  dx = O. 
Denote by f~ = - ~ R i i l s d z t d z  J the matrix of two forms over M.  Clearly, f~ is the cur- 

vature matrix for the connection V in (2.4) of the vector bundle TG over M.  As in *&e usual 
computations of characteristic classes, we take the identification of fI to its Chern root matrix: 

(5.32) 0 ., °° 1 
-'ul 0 

".° 

0 

--~d. n 

then 

n 
2 2 

~=1 

and  (5.30) b e c o m e s  

.,--% ~9 2 1 . 

~Xi t=l 

W f°) (x, x) = I 
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As in [13], set 

e_P2/4t  oo 
(5.35) 17 ( x i , " ' ,  :r2n; t) - (4.t)n E W(i) ( x l , ' " ,  xln)ff 

i----0 

By (s.34) ~na (5.35), we have: 

OH 02 n 2 
= ~ -¢;!-2s-s + F_,(~i,-, + :2,),,, H o-T (~.a0) 

tli~(4~rt)"H(0,..-, 0; t) = 1 

Solving this equation as in [13], we find 

~ ± ~ , , ~  dz-r.,,,/~ (:::,_,+::,)"~-,<o<~-.,.') 
/ t ( I1 , . . .  , i in l t )  = <4 . '  ~ ' s i n l ,  v f ~ u t t l 2  e (5.37) 

So 

(5.3S) 
1 " vrz-i,,d2 

H(0,... ,  0; t) = ~ , H  
sinh , /~, , , t /2 

Combining with (5.35), we get 

w(') (o)t' = ¢-~, , t l2 
~=0 l=l sinh ~'L-Tltlt/2 

(5.39) 

Thus 

(5.40) £ f i  v/zi-"U2 = .4(v'=i-ri) w(~!(0) = sinh ~ - t / 2  
i : O  l = I  

1 m Notice that when N > n + [~ ], W (N) (0) = 0 and when N < n, W(N)(0) is not a multipul of 
dx 1 . . .  dx =n. Hence from (5.31) and (5.40) we finally get 

(5.4i) ~_~ ~,(tr,P,(~, x))dx = ( 2 , ~ _  l) ' (A(d-~a))2,  

This is what we call the local Aiiyah-Singer index theorem for families of Dirac operators. As 
a direct corollary, we get 

Theorem (Atiyah-Singer [1]): 

1 ,~ 
(5.42) ( ~ )  iG', A(Vf'~-ifI) 
is a representative of Ch(kerD+,~ - kerD_,~). 

APPENDIX 
In this appendix, we will briefly outline how our method works for twisted Dirac operators. 

For simplicity (and without loss of generality), we only carry out the single operator case. Now, 
by Lichnerowicz formula, we can deduce that (Compare [13 D 

0 z 1 0 1 
n ~ = -  ~ + :~s.,x,~---~.~, + =x,~s~.,R.i~e.~,~.eq 

4 ox# ~ 4  (a.l) 
1 + i<,~s ® r(<~, <s) + (× < ~) 
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where F Ls the curvature matrix of the connection of the vector bundle ~ over G. Now doing 
similarly as in §5, we see that if V ii) is the solution of the following equations 

(a.Z) 
02 1 1 s t 

Ox~ 

V (-l)-=O, V ( ° ) ( O ) : I d : ( F ® ~ ) x - *  (F®¢)~ 

then the local index is 

i tr,V(') (o) (a.3) ~(D) - 2,~( , / -~" 

Aside (5.32), we pick another identification 

(a.4) ( ) --~d~ d~.' ® F(~,,~j) ~ 1® ".. 

VN 

e-'~/~' ~i  tiV(i) then by solving an equation similar to (5.36), we where N = dim~. Set H = 
find 

H(x , , - . . ,  zzn; t) = ~= (8~r sinh(v/-2-rl,~t/2) 
e~ ~ -  1 - -  21~ 8 c o t h  

So 

, (D) 

a__~((4~t)~(1 I v ~g~' , ,  ~,, 

=(~)"(A(~)ch(A)),. 
this is the local At/yah-Singer index theorem for twisted Dirac operators. 
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Note added in proof: We learned after completing this work that Berline-Vergne, in a 
preprint dating Sept. 1986, had also given a differential geometric proof of this Bismut local 
index theorem. (Topology 26 No.4 (1987)) 


