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§0. Introduction

The first success of proving the Atiyah-Singer index theorem direcily by heat kernel method
was achieved by Patodi [10], who carried out the “fantastic cancellation” (cf. [9]} for the Laplace
operators and for the first time proved a local version of the Gauss-Bonnet-Chern theorem. In
recent years, several different direct heat kernel proofs of the Ativah-Singer index theorem for
Dirac operators have appeared independently: Bismut [3], Getzler [6], {7] and Yu [13] or [14],
see also Berline- Vergne [2]. All the proofs have their own advantages.

Motivated by the problem of generalizing the heat kernel proofs of the index theorem to
prove a local index theorem for families of elliptic operators, Quillen [12] introduced the concept
of superconnections, and this was developed by Bismut to give a heat kernel representation for
the Chern character of families of first order elliptic operators. Then using his probabilitistic
method, Bismut [4] obtained a proof of the local index theorem for families of Dirac operators.

In this paper, we will use the method of Yu [14] to give another proof of the local index
theorem for families of Dirac operators. The key point is Yu’s idea of comparing the corre-
sponding terms in the Taylor expansion series of functions, thus avoiding probability and some
complicated estimates.

It seems that the method in [7] can be also generalized to give a proof of the local index
theorem for families of Dirac operators.

Note also that Yu [15] has presented a direct proof of the local index theorem for signa-
ture operators explicitly in the same spirit as [13]. We found that our proof can be modified
immediatly to give a proof of the local index theorem for families of signature operators.

For simplicity, we write out our proof only for classical Dirac operators, but our proof works
also for twisted Dirac operators, as pointed out in {13]. For a brief account cf. the Appendix.

We take Yu [13] and Chap. I-III of Bismut [4] as our basic references.

We are deeply grateful to Professor Yu Yanlin who introduced this subject to us and kindly
explained to us the key points of his work [13], without his encouragement, the present paper
could never have been finished. We would also like to thank Nankai Institute of Mathematics
for hospitality and some other services.

§1. Clifford module and supertrace

Let V = VO V! be a super (or Zy-graded) complex vector space. As in [12], we use ¢
to denote the involution giving the grading: e(v) = (~1)%¢(")y. Then the space End (V) of
endomorphisms of V is a super algebra. The even (resp.odd) elemenis of End (V) commute
{resp. anticommute) with e.

Definition 1.1 The supertrace trs of k € End(V) is defined by

trok = trek.
It is easy to verify that

trok = trlklyo) — tr(kly1), & even

(12) trgk =0, k odd

Now let H be a Grassmann algebra, then H is naturally Z,- graded. Let K be the graded
tensor product

K =End(V)&H
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then K possesses a nature Zy-grading. The supertrace concept can be naturally extended to K
and takes its value in H (cf. [8], [4]).
Definition 1.3 If h€ H, k € K, define

try(hk) = h(tr k).

Now let N = 2n be an even integer. ¢(R%*") denotes the Clifford algebra of R?" generated
by 1,ey,---,eg, with the following commutative relations:

e = ~1, ejej +eje; =0, $#£7.

As well known, Spin (2n) acts unitarily on the 2"-dimensional complex vector space of
spinors S and that ¢(R?") ®g C can be identified with End(S), so that Spin (2n} ¢ End(S).
Set

{1.4) T=(V=1)"e; - eam
Then + acts unitarily on $ and moreover
(1.5) i=1

Set
{1.6) Sy={s€S:78=2},S_={s€S:78=-3s}.
Then S;.,5. are 2" !.dimensional vector subspaces of § such that
(1.7) S=S @S-

Spin(2n) acts unitarily and irreducibly on S} and S_.

S can be naturally regarded as a super vector space with obvious grading and involution 7.
Let W be a usual vector space, then S® W also carries a naural grading.

Lemma 1.8

trye;, e, =0, p<2n

2 n
..62n=(7___«i.)'

Let m be another integer, fy,---, fo, -+, fm denote the canonical oriented Euclidean basis,
and dy’,- - ,dy®,---,dy™ the basis of the corresponding dual space.

Definition 1.0 ¢ denote the graded tensor product of the Z;-graded algbra ¢{R?") and
A(R™),ie.

treeyq -

€ = ¢(R*)®A(R™).

For simplicity, we will use no “@” sign to indicate the product in €. e.g. we have
p g p

(1.10) edy™ +dy“e; = 0.

§2. Fibration of manifolds
A large portion of this section, which is adapted from [4], is included here only for com-
pleteness.
Let B be an m-dimensional connected compact Riemannian manifold. Denote its Rieman-
nian metric by gg.
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X is a connected compact orientable manifold of even dimension 2n. We assume that X is
a spin manifold, so that wz(X} = 0.

M is a 2n + m dimensional compact connected manifold. We assume that 7 : M — Bisa
submersion of M onto B, which defines a fibration of M with fiber X. Namely, we assume that
there is an open covering .U of B such that for every U€.U, there exists a O°-diffeomorphism
pu:atU) - UxX,andifUNV # ¢, puopy! : (UNV)x X - (UNV) x X is given
by {y,2) — (3, fuv (y,2)) where fuy{y, ) 15 a C®-diffeomorphism of X which is 0 in both
variables y and z.

For y € B, x~'(y) is then a submanifold Gy of M, and # defines a fibration G of M. TG
denote the 2n- dimensional vector bundle on M whose fiber T, G is the tangent space at x to
the fiber G, ;). And we assume that M is oriented.

By using any Riemannian structure on M, we can obtain an m-dimensional smooth sub-
vector bundle TH M of TM such that

(2.1) T™ =THM & TG

In particular, Yz € M, THM and Tx(z)B are isomorphic under 7.

Recall that B is Riemannian, so we can lift the Euclidean scalar product gg of T to
THAM . And we assume that T'G is endowed with a scalar product gg. Thus we can introduce in
TM a new scalar product gg @ gg, and denote by VL the Levi-Civita connection on TM with
respect to this metric.

Let O be the SO(2n) bundle of oriented orthonormal frames in TG.

We now do the assumption that the bundle T'G is spin. Namely we assume that the SO(2n)
bundle O — M can be lifted to a Spin{2n) bundle O’ so that the projection O’ — O induces
the covering projection Spin(2n)—SO(2n) on each fiber.

Let F,Fy,F_ be the bundle of spinors:

2.2) F= 0 xspiniam) 5
Fy = o X8pin{2n) St

Recall that if ¢ € TG, |le]] = 1, ¢ acts unitarily by Clifford multiplication on F, and

interchanges Fy and F_.

Definition 2.3 ¢ is the bundle defined by

€ = C(TxG)®A,(z) (B)

The supertrace construction of §1 can be extended obviously to give a supertrace on the
superalgebra bundle ¢.

Next we construct a connection on TG

Definition 2.4 V denotes the connection on TG defined by the following relation:

VyZ=Pg(V£Z), YeTM, Ze€TG

where Pz denote the orthogonal projection of TM on TG. V obviously preserves the scalar
product in TG.

V can be lifted to give a connection on F,Fy and F. respectively. Let H* HP® HX
denote the set of 0 sections of F, Fy,F. over M.

Clearly, we may regard H™, H®, as the set of C™ sections over B of infinite dimensional
vector bundles, which we still denote by H*, HY. The fibers H°, HY,, are the sets of O
sections over Gy of F, Fy.
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Also note that since F is an Hermitian bundle, and since the fibers G, carry a natural
volume element dz, if k, A’ € H,, we can define the scalar product

(2.5) <h b >= f < hz), K (2) > da.

7

We now define a connection on Hy.
Definition 2.6 V denotes the connection on Hy such thatif Y € TB, h € Hy, then

Vyh=Vynah
where YH is the (unique) Lifting of Y € TB in THM.

§3. Dirac operators and a heat kernel formula for the index
Definition 3.1 D denotes the operator acting on H

2n
D= Z C,‘VC,’
1

Of course the operator D acts fiberwise in the fibers G,.

For y € B, Dy denotes the restriction of D to the fiber Hy°. D interchanges H® and H>.
Dy, D_ are the restrictions of D to H}®, H>.

By Atiyah and Singer [1], the difference bundle over B

(3.2) kerDy , —kerD_

is well defined in the sense of K-theory.

The aim of this paper is to present a calculation of the Chern character of (3.2) as a
differential form over B explicitly.

First, we will give a brief review of the heat kernel representation of this Chern character
given by Bismut [4].

In what follows, to simplify the notations, we will use the following conventions:

{1) All the summation signs will be omitted;

(2) The subscripts a,3 will be used for horizontal variables and the subscripts 4,5 for
vertical ones (i.e. the variables in TG);

(3) We omit H in (f,)¥, i.e., we identify the orthonormal basis fi, -, fm of TyB with
their Lift in THM (for € G,). Also, dy',---,dy™ are now considered as differential forms on
M;

(4) We omit the exterior product sign A;

(5) We omit the “~” in V.

We extend ey, ,€an; fi, ", fm to give an orthonormal frame E,---,Fep; Fy, -+, Fp in
the way of [13] and pick a fixed spin frame as in [13].

Denote

Ff(_, =< VIéIZJ,ZK >

where Z; is the total notation for E;  F,,, etc.
Definition 3.3 Define

. 1 1 1
H = (E; + ZPfjcjek + sTfesdy” + —l"fudyo’dyﬂ)+

2 4
1. 1 1 ‘
dy*(Fy + Zl"fﬂe;c,- + EI‘gie;dyﬂ + ZI";’,ﬂdyﬁdy" )y
I=H?
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Let IY be the restriction of I to G,,. For a given y € B, the operator I¥ acts on H,,@A,,(B) in
the followmg sense: if h €End(F), 0,5’ € A(B), ¢ € F, then the action of hqy €End(F)&A(B)
on en’ € FRA(B) is given by

(3.4) (hn)(en') = (=1) 876 h(e) -y’
farther more, if k € H°, n € A4(B),
(3.5) I9(hn) = (I7h)n.

As indicated in [4), usmg standard results on elliptic equations, we can construct the “heat
kernel” se xm-gronp ¢~ " which also acts in the fiber. For any £ > 0, e~H” is given by a kernel
P} (z,2') (for z,2' € G,) whxcExs C* in (t,z,2') € {0,+00) X Gy X G

Since the fibration M — B is locally trivia.l, there is an open neighborhood of y in B such
that x~' (U) is diffeomorphic to U x X. In what follows, we will not distinguish #~!(U) and
Ux X.

In particular, since IV is a smooth family of second order elliptic differential operators,
it is not difficult to prove that P/ (z,2') is C in (t,2,2',y) € (0,00) x X x X x U, f. 4],
Proposition 2.8.

For z,2' € Gy, P{(z,2') is a linear mapping from F, into F,, QA4 (B).

Let 7, be the involution defining the grading in Fy. then Hom{F,:, F,;) has a nature grading.
The even (resp.odd) elements commute (resp. anticommute) with 7. Thus, P} (z,z') is an even
element of the graded tensor product Hom(F,, F;)®A,(B). In particular, P}(z,) is an even
element in the graded algebra End(F;)®Ay(B), and tr, P} (z,z) is an even element in Ay (B).

As in [12], we change the normalization constant in the definition of the Chern character.
Namely, for a vector bundle V with connection form g and curvature O, we set

{(3.6) Ch(V) = Trezp(—C).

In [4], Bismut proved the following fundamental result:
Theorem 3.7 (Bismut [4]). Let H® be given by

1 d
H =& (B + —Ffjege, + I‘"’ e \";_ E—I‘ﬁ,dy"dy )
38 d dy’dy”
( ) \/‘ (FOI + 411336’6} + 21‘&8, 5; F’y t )
I! =t(Ht)2
Then
(3.9) ./; tr, (PEY (2, 2))de

is a C° form over B which is a representative of Ch(kerDy ,~kerD_ ), where PEY (2 2') is
the O™ kernel over Gy of =13,
The goal of this paper is to calculate out

3.10 tr, (PLY z,z))dx
1

§4. A local parametrix and Minakshsundaram-Pleijel equations
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In this section, we shall deduce (3.10) to a calculable form, and in the next section we will
carry out the explicit calenlation.

In all what follows, we may keep in mind that we are fixing a typical Gy, so that the
subscript y will be omitted unless necessary.

First, as in [5], V¢ > 0, let ¢ be the homomorphism

w1 : Hom(Fyi, F,)®A,(B) — Hom(F,:, F,)®A,(B)
o0t hdy® > —lzhdy"’, h € Hom(Fy:, Fy)

7

(4.9)

then clearly,
H ¢ = Wi (H )‘

Hence

trpe !’ =f tr, LY (2, 7)da

r
=-tl-»c’“('f»'e(H))2 = tr,c'—w‘HQ

—_ 2
=tr,pre”H

:/ petr, Py (z,x)dz

G,

Thus we get a corollary of Theorem 3.7:
Proposition 4,1 Vt > 0,

Py / tr, P} (z,z)dz
c

b

is a representative of Ch(kerDy ,—kerD_ ).
We wish to calculate out

4.2) lim A tr,(pe P (2, 2))de
¥
Now we note that P;(z,z’) is uniquely characterized by the following properties:
(4.9) lim(2 + 1, Py, 2) = 0
o 10'8t z ti

and VV (') € Hy,
(4.4) lim / Py(z, ')V (2')dz’ = V(2)

Proof: Recalling that
eV (z) = f Pi(s, 2')V (+')da’
Gy

s0 {4.3) and (4.4) are clearly hold. Now let Gy{z,2’) be another C° function satisfying (4.3)
and (4.4), we have

3

(4.5a) ( 30

+ I ) (Pi(x,2") — Ge(z,2')) = 0
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and YV € H,
(4.5h) lim L, (Pi(w,2') - G, 2"))V (2')da’ =0
From (4.5a,b} it is obvious that we should have
Pz, z') = Gi(a,2").

Definition 4.6 Vt > 0, set

~p?i4t N

(4.7 Hy{z,o'5t) = (4 i 2 Z: U (z,2),

where N > n +[im] and p = d(z,2'), (z,2') € Ale) = {(z,2') € M x M|d(z,2’) < ¢} for some
sufficiently small ¢ > 0, and each U is a .

(4.8) U (z,2') : Fpr — F,@A,(B)
If Hy(z,2';t) satisfies the following two conditions:
(1)
9 _,2
N
{4.9) 8t+I NHn{z, 2’ f,)- ir t)"t hiz,a';t)
(2)

Uz, 2)=1d:F, - F,

where h is a continnous function, then we call Hy a local parametrix for I.
We now show that this Hy does exist.
Lemma 4.10 {Compare Yu [13])
If ¢ C*(M), S € H®, then

I(¢S) = — ¢S — 26,V E,S + ¢I(5)
+ (@i¢iTh ejer + b T e;dy® + el dy*dy”)

for some constants a;, b, ¢;.
Proof. First, as in [13], we easily deduced that

(4.11) H($S) = e;:S + dy*$oS + ¢HS

1
He;9;S) =e;(eidi)erS + ;191 (B S) + —Pfjeie;’ek@ets
+ r,,e,e,dy rerS + = rﬂ } eidy®dyPedS
(4.12) + dy* (Fadn)erS + dydiei(FoS) + ZI‘iidy”e;ej #S
+1ips dy®eidyP e S + r sy dyPdy’ e S

2 o
=— i — pie; HS + dnidy®™ e.S —~ 26V S

+ ai¢|’ €5k +b; ¢‘ ejdl'l + cs¢lrﬂad?lad.'lﬂ
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(4.13) H(¢ady®S) = iqeidy®S — ¢ody® (HS)
and from (4.11) it follows that
(4.14) H(SHS) = e;0:(HS) + dy*do (HS) + $(H?S)

Now from (4.11) to (4.14), we obtain the Lemma by summation.
—p%/at

Set ¢ = %W as in (4.9). Recall from [13] that in the local normal coordinate system, if
Pz, z') =22+ .- + 23, we have

x;
(4.15) ¢ =—¢5

2 1
(4.16) $ii = ¢(’;—t - % -3 Z:xx'Bi)

for some functions B;. )
Set S = E?LO t*UC) (z,2'), then from (4.15), (4.16) and (4.10) we have

Sy ( "t)"ﬁi i_3+f)gigti)(z')
N = IR

§=0

I(Hn(="3t)) = - ¢(f:; - % - f‘l—B‘)S - 2¢(—'§)V&S+ ¢IS
+ (@i D5 eje + bihiT e dy™ + iDL, dy*dyP) s
=- i(i _r_ it%)t‘U(‘) + Xn:t-'—lj(](s)
§==0 i=0
+ iI(U(‘))t‘ - %(a;:c;l‘fjcjek + b TS e dy
§=20

+ ¢ x;I‘fady"dyﬂ)t‘"lU(‘).

Hence we obtain from (4.9) the following analogue of the Minakshsundaram-Pleijel equa-
tions given by Yu {13]:
(d + wi(aiTh ejer + biT G eidy™ + oiTL, dy* dy?))UD + (;B; + iU
(4.17) = - Jut-1, i<N
UO(z,2)=1Id: F, — F,.
Proposition 4.18 The local parametrix Hy exists if i < N, U () satisBes the equations in

{4.17).
In the next section, we will calculate out the local index throughout these equations.

§5. The local index theorem
First we make it explicit what to be calculate. Recall from [14] that if Hy is the local
parametrix, we have

CRY) Py(z,2') - Hn (@, 2';1) = OtV ")
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while from {4.0) it is clear that

(5.2) mt[%mH%‘p, =0

so when N > [+m] + n, we have

(5.3) lim o (O =")) = 0

From (5.1) and {5.3), it follow that

(54) lim 1P (e, 2) = lim o Hp (2, 73)

The supertrace of the right hand of (5.4) is precisely what we procceed to calculate out.
Now we take a convension similar 1o that in [13]:

Let ¢ be a C* function defined locally in a neighborhood of , denote the degree of zero
of v at « by v(p), to every

o ) I’
a(z') =§011(5")5;"“ﬁ13 (&) th:mﬂ(a:')dy"“ o dy®r.
1 tm

(5.5a)

e e, Fy o Foait oy (£ 5)ija#(a#t)
We define
(5.5b) x(a)=m+p+s—vipr - Oms1)

and we denote {x < m} the linear space generated by all the elements o for which x(e) < m,
etc. and denote (x < m) an element of {x < m}, e.g. w = g+ (x < m) means that there exists
a B € {o < m} such that w = 5 + 3, we can also write it as

(5.6) w=1n mod{x < m}

Lemma 5.7
rf; = ;EZI:R;:,‘;:?: +{x < -1),
Iy = gi ZRujazt +(x < -1),
1
rf,= % ZRuaﬂﬂ:t + (x < -1).
!

Proof. Comparing [13], we only need to note that we are working on a fixed G,.
Proposition 5.8

I=- % + ‘i‘&jvtxié’a;;'eact + %Rijsaxib%;esdya + %&jaﬂxi%dyadyﬁ
+ éxiszirlerjuelekcuet + i%xiij;rkaeremeedya*‘
+ %xi-"’j-Rirlerjaﬂelekdyad?lﬁ + I%miijirkr_yRrjlﬂekd?laeldy'a +
+ 1—16wiijirlaRrjAueld'yad?/)\dyp+

1
+ axisziraﬂRrjAudya‘dyp dy’dy* + (x < 2).
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Proof. It follows directly from Lemma 5.7 and the generalized Lichnerowicz formula given
by Bismut [4], Theorem 3.5.
As in [13], we denote

ap = — i&;‘em%e,ez - %Rijsaxi éi—jcedya - é-&jaﬁ“’i%‘fi‘f&dﬂﬁ3
92
a3 = ,' 5‘;?;
Qg =— (am;ij,',k{R,.j”eleke,eg + IlgxaxjﬁwkaRrjuekesetdya'f'
+ éxiijirlerjaﬂelekd!Iad?lﬁ + I%xw,‘RnkaRrﬂﬂekdyae:d.'lﬁ+
%msxg&rzaRr;xpe:dy“dykdy” +
+ -élza:g:chiraﬁRrj,\udyﬂéyﬁdykd-’!p )-
And we set
A; = aixy Ryjrejer + bix  Ryjoe;dy” + Cileilaﬂdyadyﬂ-
Obviously,
(5.9) & (a;l‘fjejek + b,-I‘;’jejdy“ + c;F?&dyadyﬁ) =z;Ai + (x <0).
Lemma 5.10 ¥1 < 5 < 2n,
é“i—j(ng“) = 6.

Proof.

P

T(ximlRﬂsteset) = x; (Rjigt + Rijst)eser = 0,
Ty

the other two can be proved in the same way.
Corollary 5.11 For § € (Hom(F, F)& Ay {B)),

ag((Z ng,')S) :(Z .’l:g-A,')a;)S -+ (X < X(aOS)),
33((2 x,'A;)S’) Z(Z x,-A;)aQS.

Lemma 5.12
a.3A; = Aja_,, mod{y < 3}.

Proof. Direct calculations.

Now we recall the basic idea of Yu[13] of comparing the corresponding terms of the Taylor
expansion series: let f be a function in a neighborhood of z, f : U — R or F'. We expand f by
its Taylor series:

fe o]
(5.13) f=3 f(m)
m=0
where f(m) is the m-th degree homogeneous polynomial in zy,---,%2n. We know that, for

V € Fpr, U8 z,2") : Fpr — Fp,USV can be viewed as a spinor field, which under the fixed
spin frame, can be viewed as a function with values in F' which we still denote by I7{),
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Notice that dUf (m) = mU(m), and denote 2.; #iB; = h for some h, comparing the corre-
sponding terms of Taylor series in (4.17), we get

(m + )0 (m) + ;4,0 (m - 2)
+ Y h(m)0 (my)

mit+me=m
m1>0
-‘-‘02[}(;—1) (m + 2) + aoﬁ(i_l) (m) + d_zﬁ(‘—l) (m - 2)
+ X /U6 (m))

where x(f;) < 2. Rewrite it as

U9 (m) =

1 Ali=1 FG~1)f,
L ’(m+a)+Zq,~U‘ (mj)+
Zau,A)E U("'l) {m;)

with x(g;) < 2, x(Sm;) < 2. From (5.14), it can be easily deduced that

(5.14)

Oy, oy

(6.15)
Z_ iU (0)(7":‘) + (Z: ziAi) Z 5;0) (m;)

with x(f;) < 24, x(.éj) < 2. Note that in the deducing, Lemma 5.12 and Corollary 5.11 are
freely used.

Proposition 5.16 For ¢ < n, )
tr, U (z) =0.

Proof. ¢ .f. [13] or compare with the following proof of Lemma 5.20.

Corol 5.1
~1

hm ot Z tr, U

=0

) =

So what we really ought to calculate out is
(4m)

(n+k) n+k
im Pt((4 tm Zo el (e, 2"

(5.18)

[gm]

=l Gy 2 el (e, ),
Let us take a look at the one
(5.19) mt"go, (tr, UK (2,2)), 0<k< [%m]
Lemma 5.20 If x (@) < 2n + 2k, then

1
}’_u.ttx)tkgo:(tr.a) =0, 0<k< [Em]
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Proof. We can assume that o can be written as

a=p(d)dy™ - dy®re;, ¢

If x(a} < 2n+ 2k, then either p(z) = 0 or p+ ¢ < 2n+2k. In the former case, tryor = 0 is trivial
and in the latter case, if 8 < 2n, then tr,(p(z)dy®---dy®re; ---¢;,) = p(z)dy*r - dy°r -
try(e;, - +-¢;,) =0 and if # > 2n, then p < 2k s0

lim t* ¢ (tree) = lim p(2) e (dy™ - - dy**)tFtn, (e, - - ei,)

=lim p(a)tr (e, - er,)dy™ - dy™ttTH =0
Lemma 5.21 If p(x,#') € Hom{F,:, F,)® A, (B), and some o = 0, then

(acn " ‘am‘P) < 21+X(90)

Proof. f. [13].

Now we can easily see from (4.17), (5.15), (5.19), (5.20) and the above Lemma 5.21 that
Y %iAiy ag, h = Y, z;B; and the term (x < 2) in Propotion 5.18 are really irrelavent for the
calculation of the supertrace (5.19). We write this result as follows:

Proposition 5.22 If V) (z,2') € Hom(F,, F,)& A, (B) satisfies the following equations:

3 . ) 82 )
5.23 R 740D IS 74 C) R _)pi-n
(5.23) 25V +iV (2‘,:62?-*-‘1 2)
VO (g, z)=1d: F, - F,
then

(5.24) th_% go,(tr,V(""'k)(x, o))tk = ']j_z'% go,(tr,,U(""'”) (=, a:))tk

where 0 < k < [1m].
Now the analogue of (5.15) is

5.25 V) (m) = _fa;Gai (y(0) et o
(5.25) (m) a;alp(al,_,_’m;o)( (m+ar - +e))

with each o, # 0. So
(5.26) x(V*+E) < 2n 4 2k.
V("+E) can be expressed as a sum of the following terms:

(5.27) a=p(z')dy™ ---dy°re;, - e,
where in the process, we only take the interchanging between dy“'s and els, e.g., e;dy® =
—dy“e;, and has not interchanged the order of e/s. It may be happened to a the following cases:

(1) p(x) = 0, then o(x) = 0;

(2) p(2) # 0, but 3r # ¢3 a, = 0oy, then a(z) = 0;

(3) p(x) #£0,and Vr £ q, ar # aq, then p+s = 2k+2n,if p < 2k, then lim,_,¢ i (p(z)dy* - - -
0, and if p > 2k, then s < 2n,try(e;, ---€;,) = 0. So in this case we must have p = 2k and
8 = 2n for a possible non-zero contribution to the supertrace, but if we have some i, =i, r# ¢,
then x(e;, -+ €;,,) < 2n which implies that tre{e;, - -e,) = 0.
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Summarizing these, we get
Proposition 5.28 The only terms having nontrivial contributions to (5.24) are thouse of a's
such that
o= (p(x’)dyal e dyaﬂcil e,
where p(x) #0, ar £ ag (r # ¢), i, # &, (t #1) and p + # = 2n + 2k. In particular, if in the
original expression of a, there have some e}s resppeared, then lim¢—q t¥p; (tr,a) = 0.
Proof. All that we need to notice is the following:

eje; = —eje;  (mod{x < 2}).

From this proposition and Lemma 1.8, we immediately have:
Proposition 5.29 If W() (x,2') € Ay (TGQ)D Ay (B) satisfies the equations

9 Wm Liw®

T
(5-30) _(Z (%2 = ar#ia; Rigts Ryysrdst e’ 45 4T YW,
W(O) (z,2) =1

where we denote 2z = (z,y) and use I,J etc., to denote the total subscripts 1, j, @, etc. Then

[4m]

g L 7 @)

k=0

(5.51) lim ¢ iz, (P (z, 2)))d = (

where (-)2r stands for the term which is a multiple of da; - - - dzgp.

Proof. This follows directly from (5.4), (5.18), {5.19), (5.22), {5.28) and (1.8). Notice that
dz - dz = 0.

Denote by (I = —%R.',j;dz' dz? the matrix of two forms over M. Clearly, Q is the cur-
vature matrix for the connection V in {2.4) of the vector bundle TG over M. As in the usual
computations of characteristic classes, we take the identification of {1 to its Chern root matrix:

0 (3}
Wy 0
(5.32)
0 Up
-4y, O
then
n
(5.33) @iz ir(lrj = ~ Z(xgz—x + zy)uf
i=1

and (5.30) becomes

7
* 1 i1y
(5:34 = (3 5 + 16 @b + R)upywi D
+==0 1
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As in [13], set

e=? t/4t O
(5.85) H(zy, - 2an3t) = o ZW(') T1, e, Tt

=0

By (5.34) and (5.35), we have:

AH a2 1, g 3y 2
e Z; 5;?73 T ;(9’21—1 + z3)ui H

&%(47{(}"1?(0, ety =1

(5.36)

Solving this equation as in [13], we find

oy (L TT VY TI0/2 (a3, od) Yo corh ¥Rt
(5.37) H(zy, - 2an3t) = (45) g(sinh \/—lwt/ze s )
So
7
V—1u;/2
5.38 H(0,---,0;) = V-
(5.38) (0,---,0;8) = (41r Hsmh Tuit/2

Combining with (5.35), we get

[24] 7
(5.39) PRTC T | e UL
= P lsmh\/—lugt/2

Thus

Notice that when N > n +[ m], W(N)( ) = 0 and when N < n, W(¥)(0) is not a multipul of
dz' .- -d2*". Hence from (5. 31) and (5.40) we ﬁnally get

)HAV=10))2n

(5.41) lim ¢ (tr, P, 7))z = (

271'\/—1

This is what we call the local Atiyah-Singer index theorem for families of Dirac operators. As
a direct corollary, we get
Theorem (Atiyah-Singer [1]):

(5.42)

| S / -
A(V-111
ey [, AT
is a representative of ChikerDy y — kerD_ ).

APPENDIX
In this appendix, we will briefly outline how our method works for twisted Dirac operators.
For simplicity (and without loss of generality), we only carry out the single operator case. Now,
by Lichnerowicz formula, we can deduce that (Cnmpare [13])

pr=-2 4
(a.1) fz*
+5eie; ® Fleiyej) + (x < 2)

a3
Rt]etxs 3z ¢t + 64 xsijtrvth]pqesetepeq
H
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where F is the curvature matrix of the connection of the vector bundle £ over G. Now doing
similarly as in §5, we see that if V() is the solution of the following equations

L
16

Vil =g, vOWO)=I1d: (FQ &), — (FRE):

o : s (s o? 1 -
mi-é-x—iV(') 44V = [Z,: 51? e 5 Qi — Edtadwt ® Flep, e)]VOY

{(a.2)

then the local index is

(a.3) (D) = tr,V (™ (0)

1
2n(yv/=1)"

Aside (5.32), we pick another identification

vy
{a.4) —%dxidxj @ F(e;,e;) = 1® ( )
UN
where N = dimé. Set H = e ¢;:‘ ¥, 'V 0) then by solving an equation similar to (5.36), we
find
"y YTy Vet
Hiz:. - ¢ (33: i+25) coth Yoply
(o1, amit) = H(&rsmh \/_u;t/2) )
th
( . e""’)

So

7(D)

)(H Volu ey powty)

n
=i 25\/ ) n' 82“ 8x sinh{y/—1ut/2)

=(3, ) (A(m)eh( \/——))271

this is the local Atiyah-Singer index theorem for twisted Dirac operators.
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