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Abstract. We establish a generic counting formula for the Euler number of
a flat vector bundle of rank 2n over a 2n-dimensional closed manifold in terms
of vertices of transversal open covers of the underlying manifold. We use the
Mathai—Quillen formalism to prove our result.
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1. Introduction

By the celebrated Gauss-Bonnet—Chern theorem [1] and its ramifications, if a real
vector bundle F' of rank 2n over a 2n-dimensional closed smooth manifold M
admits a flat connection preserving a certain Euclidean metric on F, then the
Euler number of F' vanishes, (e(F),[M]) = 0, where e(F) is the Euler class of F.
Milnor [2] constructs examples of rank two flat vector bundles over a closed surface
of genus g > 2 such that the corresponding Euler number is nonzero. A closely
related question is the famous Chern conjecture on the vanishing of the Euler
characteristic of a closed affine manifold (cf. [3]).

Our original motivation is to understand the Chern conjecture by using the
Mathai-Quillen formalism on the geometric construction of the Thom class [4].
While our efforts [5] on proving the Chern conjecture in this way have not been
successful, we find that our method leads us to a kind of mysterious counting
formula for the Euler number of a flat vector bundle in terms of transversal open
covers of the underlying manifold. The purpose of this paper is to present this
mysterious formula.

This paper is organized as follows. In Sec. 2, we present an exterior alge-
bra version of the Mathai—Quillen formalism, which allows us to avoid the usual
difficulty in computing the Euler class that the connection in question need not

© Springer Nature Switzerland AG 2021 142
V. M. Manuilov et al. (eds.), Differential Equations on Manifolds and Mathematical Physics,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-37326-9 9



Flat Vector Bundles and Open Covers 143

preserve any metric on a given vector bundle. In Sec. 3, we prove our main result,
which is stated as Theorem 3.4 in Sec. 3.1.

2. Exterior Algebra Version of the Mathai—Quillen Formalism

In this section, we present an exterior algebra version of the Mathai—Quillen for-
malism [4]. That is, we replace the spinor bundle considered in [4] by the exterior
algebra bundle. This gives a formula for the Euler class for an arbitrary connection
on a Fuclidean vector bundle.

Let m: E — M be a real oriented vector bundle of even rank over a closed
oriented manifold M. Let V¥ be a connection on E. Then it induces a connection
VA(E") on A*(E*) preserving the Zo-splitting A*(E*) = AV (E*) @ A°4(E*).

Let ¢F be a Euclidean metric on E. For any Z € E, let Z* € E* be its metric
dual. As usual (cf. [6, Sec. 4.3]), let ¢(Z) be the Clifford action on A*(E*) defined
by

co(Z)=7Z"N—ig, (1)
where Z*A (respectively, iz) is the exterior (respectively, interior) multiplication
by Z* (respectively, Z). Then

co(2)* = ~|Z|3e. (2)
Let A be the superconnection [7] on 7*A*(E*) defined by
A=mVANED) 4 ¢(2), (3)

where ¢(Z) now acts on (7*A*(E*))|z by

c(Z2) (") [z) = (7" (c(Z)a))l,
for any o € A*(E*). By (2) and (3), exp(A4?) is of exponential decay along vertical
directions in E.

Theorem 2.1. The closed form (%)rk(E){fE/M try[exp(A2)]}OKE) on M is a rep-
resentative of e(E), where e(E) is the Euler class of E.

Proof. By the Chern—Weil theory for superconnections (cf. [8, Prop. 1.43]) and the
above-mentioned exponential decay property of exp(A?), we see that the cohomol-
ogy class represented by [, oz s [exp(A?)] is independent of the choice of VE

and g¥. Thus, we may well assume that V¥ preserves ¢. Then one can follow
the strategy in [4].

In fact, since the computation is local, one may well assume that E is spin.
Then one has the following decomposition (cf. [9]) in terms of the (Hermitian)
spinor bundle S(E) = S, (E) ® S_(FE) associated with (E, g¥):

A*(E) = (S4(E) ® S—_(E)®(S1(E) & S*(B)), (4)

and ¢(Z) now acts on (7*S(E))|z. Moreover, VA (F") has the decomposition into
VSE) @ lds-(g) +Ids(E) VS (B) where V3(E) and V5 (E) are the induced Her-
mitian connections on S(F) and S*(F), respectively.
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From (3) and (4), one obtains

trs[exp(A?)] = try [exp((W*VS(E) + c(Z))z)] “trg [exp((ﬂ*vs*(E)f)]. (5)

By [4, Thm. 4.5], one has
rk(E) 1

v—=1\ ? v S(E 2 rk(E) sinh(7*RF /2)\ 2

( o trg [exp((m*VSE) 4 ¢(2))7)] = (1) "2 det T U,

where RE = (V)2 and U is the Thom form constructed in [4, (4.7)].
By [9, Prop. II1.11.24], one has

e(E)
ch (ST (F)—-S*(F)) = =——. 6
(S7(E) (£)) A5 (6)
By (5)-(6) and [4, Thm. 4.10], which integrates U along vertical fibers, one
sees that (%)rk(E){fE/M trg[exp(A?)]}CKED) is a representative of e(E). O

Corollary 2.2. If rk(F) = dim M, then

(e(B),[M)) = (%)M) [ fesp (42)].

3. Counting Formula for the Euler Number of Flat Vector Bundles

In this section, we state and prove a generic counting formula for the Euler number
of a flat vector bundle in terms of transversal open covers.

This section is organized as follows. In Sec. 3.1, we present the basic setting
and state our main result as Theorem 3.4. In Sec. 3.2, we present an application of
Corollary 2.2 to the special case of flat vector bundles. In Secs. 3.3-3.5, we prove
Theorem 3.4.

3.1. Flat Vector Bundles and the Counting Formula

Let m: FF — M be a real oriented flat vector bundle of rank 2n over a 2n-dimen-
sional closed oriented manifold M. Let V¥ denote the underlying flat connection
on F. Then there exists a finite collection of open coordinate charts {(U,, (z%,))},
a=1,---, N, covering M such that V¥ induces a canonical identification

Fly, ~ U, x R2"

over each U,. For any U,, we fix a coordinate system (y’,) of R2". Then (y’)
and (y;}) are related to each other over U,NUg by a constant linear transformation.
Moreover, the horizontal exterior differential and the vertical exterior differential

A =2 da aig’ 4" =2 de aig

(2

I The ordering of U, ’s, while arbitrary, will play an important role in what follows.
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on F|y, are independent of «, the exterior differential on the total space F of F
has the decomposition

d=d"+d", (7)
and
(@)’ = (V)" = d"a" + dVa" = 0.

Without loss of generality, we assume that each U, has smooth boundary oU,,
and that these boundaries intersect each other completely transversally. Such
an open cover of M will be called a transversal open cover.? Then each point
of M lies on at most 2n distinct boundaries. Moreover, the set

B = {p € M: p lies on 2n distinct boundaries}

is finite.

Let h: [0,1] — [0, 1] be the smooth function h(t) = exp(—1/t?).

Let g™ be any metric on TM. For each U,, let r, be the normal geodesic
coordinate near OU,,. Let p, € C*°(M) be a function such that

Pa = h(?"a) (8)
in U, near OU,, Supp(p) C Uy, and
Po >0 in U,. (9)

The existence of p, is clear.

For any function or a smooth form p on M, we use the same notation p to
denote its lift 7*p.

For any p € B, set U, = (,cyy, Ua- Then there exists a (sufficiently small)
open neighborhood W, of p € M with Wp C U, such that Wp N Wq = () for any
distinct p,q € B.

Remark 3.1. For any p € B, let Ual,...,UaNp, ay > -+ > ap,, be the open
coordinate charts containing p. Without loss of generality, we assume that p,, =
0= pay, = 1in Wy Let Ug,,...,Up,,, B1 > -+ > [Ba,, be the open coordinate
charts such that dUsg, ,...,0Ugs,, meet at p. Moreover, by taking W, to be suffi-
ciently small, we may assume that the intersection Wp N U, is empty for every

05¢ {ala"'aaNpaﬁlw'wBQn}-

As a final notation, we set

Bi={pe€B: f2, >}

The following proposition will be proved in Sec. 3.4.

21t is easily seen that there always exists a transversal open cover.
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Proposition 3.2. For any p € B, there exists a sufficiently small open neighbor-
hood V,, C W), of p such that the limit

:TETOO/ ¢H<dﬂﬁzTﬁz ;d(y%i)Q)
-exp( Z pe T (yp,)? — T i(y&V) (10)

1, 7=1 j=1
exists for any ¢ € C°>°(M) supported in V, with ¢ =1 near p.
Remark 3.3. The local index I/p in (10) essentially depends only on the correlations

between Z] 1(ya1) and Z] 1(y5 )2, i = 1,...,2n. For example, if there exist
constants a;, i = 1,...,2n, such that

2n o, 2n g
> ai(yh) =Y (vh)
i, j=1 j=1

on m1(p), then v, = 0. This fact might be of help when studying affine manifolds.
Now we can state our main result as follows.

Theorem 3.4. The following identity holds:

(e(F),[M) =) v (11)

pEBy
Theorem 3.4 will be proved in Sec. 3.5.

Remark 3.5. Milnor’s above-mentioned example shows that the index v, can be
nonzero. On the other hand, the sum on the right-hand side in (11) looks mys-
terious. While it should be related to Cech cohomology (at least in the case of
F =TM), it depends on the ordering of the coordinate charts U,,. If one changes
the ordering, then the set B changes. This sounds interesting and deserves further
study.

3.2. Superconnections and Flat Vector Bundles

In what follows, for clarity, we use the hat = over symbols to indicate elements
of T*A*(F™*). Set

—Zya—efw F) (12)
for each =1 (U,). Then Yisa Well—deﬁned canonical section of 7* F" over the total

space F of F.
For any T' > 0, let iy € I'(7*F™*) be defined by

N
Ar =Y paT*Y ykdyk. (13)
a=1 k
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Remark 3.6. For each T > 0, if we equip F' with the Euclidean metric
al 2
gr = paT* Y (dyh)”,
a=1 k

then 77 is the metric dual of Y (with respect to 7* gk).

Set
er(Y) =frA — iy, (14)
as in (1). Then cT(l?) acts on (m*A*(F™*))|y. Moreover,
o 2
|Y\§g =—cr(Y)? = Z,OaT (vh)" (15)

For any T > 0, let Ap be the superconnection on 7*A*(F™*) defined by
Ap = VA D Len(Y). (16)
By Corollary 2.2,

MFHsz(%)MLﬁAWPM%] a7)

We need to compute [ trg[exp(A7)], which is independent of T > 0. It
follows from (12), (13), and (14)—(16) that

A% _ [W*VA*(F*), E paTaygdyg _ Z}’;—} _ |Y|37€
:/k\ k 7k k 2 (18)
— e k k) _ o
=Y T*(dpayhdyk + padyl dyk) §k clngwajg Yigr

Set
v 0
1
d zkjdya oy (19)

on each 7=1(U,). Clearly, dV is well defined over F. It follows from (15), (18),
and (19) that

1 (e}
sz%%m@+ZTmmwa§y%zA—m2 (20)
a, k
Set
2 1 H 3V 2 k . 2
B} = 5d™d <|Y|g$> ~N gk eis — Y. (21)
k e

By (20), (21), [10, Prop. 4.9], and a simple degree counting along vertical directions,
one sees that

tr, [exp (A7)] = tr, [exp (B7)]. (22)



148 Huitao Feng and Weiping Zhang

—_—

By (19), (21), and [10, Prop. 4.9], we see that if we exchange dy% and dyF,
then we obtain the same supertrace of exp(B2). Thus,

(4n) /\
tr, [exp (B%)} = {exp (%deV]Y\iE — ]Y\§¥>} tr lexp(—Zdy’géi/i)}
k

oygs

(4n)
1
= {exp (EdeV|Y|§$ — |Y|§$>} : (23)

From (17), (22), (23), and a simple transgression argument, one gets

Proposition 3.7. For any Fuclidean metric h* on F, one has

ey = () [ (Sama v - i),

3.3. Analysis outside of B,
We continue to work with g&.

Proposition 3.8. Every p € M \ B has an open neighborhood V,, C M such that
. L oHv vy 2 2 ) _
TL])IilOO/Ff exp (§d d |Y|g$ — |Y|g¥ =0 (24)

for any smooth function f € C°°(M) supported in V.

Proof. By (7) and (15), one has

1 (67
SATdV Y5 =Y dpaT ysdy.
a, k

Thus,

1 [e%
exp (édeV|Y|3$ — |Y|3$> = H(l + dpoT zk:yidy’oi) exp(—|Y|§¥). (25)
For simplicity, we write
2
ho = Z (ylgz) : (26}
k

Take a p € M. We assume that among {U, })_,, there are exactly N, elements U,,,
ai > -+ > ay,, containing p. If p does not lie on the boundary of any U,, then it
follows from (25) and (26) that

(4n) 2n dh..
1 o o
o (g W)} = 8 T, T et

{ai;}5=1

(27)
near 7~ 1(p), where a;, runs through «a;, 1 <4 < N,,. Each «;; occurs at most once
in a product. Moreover, by (9) and (15), one has

1 2
‘Y|?,; > B Pas (p) T Z (vs,) (28)
k
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near 7~ *(p), where p,, (p) > 0. We see from (28) that there exists an open neigh-

borhood V), of p € M such that
2n 1
e O(HT v 1) = O(—Tn(Qn—l))

j=1
(29)
for ' > 0 for any f € C°°(M) supported in V,. Formula (24) follows from (27)
and (29).
Now let p lie on the boundaries of some U,’s. To be more precise, assume
that p lies on the boundaries of {Ug}f\i‘i with 8y > B2 > ... > Bar,. Then, by (25),
the terms that we need to consider near 7~!(p) are of the form

2n
[ 5 L, 70 b sz
Foio

k 2n—k
11 (dogs, % dhg,, ) 11 (dpa, T dha,,) exp(=[Y 2). (30)
h=1 j=1

For simplicity, we assume that 3;, > --- > f;, and a;; > -+ > g, _,. By (15),
there exists a constant ¢; > 0 such that

k
Y2y = (S0, % 4 om0 T ) S04,)° (31)
j=1

l

near 1 (p). It follows from (31) that there exists a constant C; > 0 such that

k 2n—k
‘/}_ H (dP,Bih TPin dhg,, ) 1_[1 (d,oaij T dhaij ) exp(— |Y|3$)
=

/M p—y
k d T,Bi 2n—k d TOéi-
[T5_. (dps,, T50) T2 (dpa,, T*)

k i aq)2n
(35=1 P8, T + pay (P)T1)

for T' > 0 near p € M, where we write |F'dvol | = |F|dvol for a form Fdvol and
|F'dvol| < |Gdvol | means that |F| < |G|.

Recall that the boundaries of Ug,, ’s intersect each other transversally.

Since the function h used in the definition of p, in (8) is increasing, we have

k ] n—k (o730
Hh:l(dpﬁihTﬁlh) H?:l (dpaij T ) ‘
k 7. « 2n
(ijl PBi; T + Pay (P)T 1)

<0 (32)

) P A g (33)
a h=1 pBihTﬁih +p041 (p)Tal j=1 Pay (p)Tal
k 2n—k d Tozij
pOLi.
= dlog(pg,, + pa, (p)T " ) ' — |-
<hl;[1 ( Bip, ) ]1:[1 o, (p) T

It is easily seen that for 7' > 0 and sufficiently small @ > 0 the integration
of dlog(ps,, + Pa, (P)T*~Pin) along the interval 0 < rg, < a gives O(logT)
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(respectively, O(T1)) provided that 3;, > a; (respectively, 3;, < 1) for each
h=1,... k. Further, if £ < 2n — 2, then, in view of (29),

IN

T 1
jl;[l Tor ST for ' > 1. (34)

One finds from (32)—(34) that if a3 > f3;, or k < 2n — 2, then there exists a suffi-
ciently small open neighborhood V), of p € M such that

k 2n—k
TEI—Ii—lm/Ff hl:[l(dpﬂihTﬁihdhﬁih) ]1;[1 (dpaij T dhaij) exp(—|Y|3$) =0 (35)

for any smooth function f € C°°(M) supported in V.

We only need to consider the case of k = M, = 2n — 1 with B2,—1 > oy
in (30) and the case of M, = 2n. In the former case, one still obtains (35) by (33)
if a;;, < a1, and it only remains to consider the term

2n—1
1 (dps, TP dhg,) (dpa, T dha,) exp(—|Y|§;)
h=1

2n—1

h=1
2n—1 N.

~ TT (s 7, ) ol (3 e T, ) exp( 1Y)
h=1 =2

from which we still obtain (35) via (33) using the Stokes formula.

For the case of M, = 2n, one has p,; = 1, j = 1,..., Ny, near p € M by
Remark 3.1. Thus, one may assume that k& = 2n. Since 5a,(p) < a1(p), we see
that (35) follows from (33).

Thus, (35), which implies (24), holds for p ¢ B.. O

3.4. Proof of Proposition 3.2

Now assume that p € B,. Recall that p is a point of intersection of {9Usp,
Np
j=1

2n
’1::17

1 > ... > [a,, and lies in the open coordinate charts {U,, }
Moreover, (82, > «y. For brevity, set

a1>~-->aNp.

2n
|Y|% - ZpﬁiTﬁihﬁi + T ha, (37)
i=1
on H(W),).
Let ¢, 0 < ¢ < 1, be a smooth function on M such that Supp(¢) C V),
where V,, C W, is a sufficiently small open neighborhood of p, and ¢ = 1 near
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p € M. We only need to prove that there exists a limit

2n
TETOO /]: gb]l;[l (dpﬁjTﬁjdhﬁj) exXp (_|Y|%“) :

For any T > 0, set

o 2n
- = Bj —_|V12
YT = oT /}_ij];[l (dpﬁjT th’ﬁj) exp( |Y‘T) . (38)
Lemma 3.9. For T'> 0, one has
(log T)Qn—l
yr =0 (T . (39)
Proof. Set iy =Y, yk i_o_ on each 7~ 1(U,); this is independent of . Then
Oygy
(df —iy)? =0. (40)
One can verify that
(@7 —iy) (padha) = dpadha — 2 paha (41)

for 1 < a < N. By (37), (38), (40), (41), and the Stokes formula,

2n
a > Z N Oél
7T:22n-8T/ ng(e(dH—Zy)(pgiTB dhﬁi/Q))e(dH—ZY)T dhay /2
Foi=1

22n—1

2n
=7 / ¢(dH —iy) ((Z ﬁipgiTBidhgi + alTo‘ldhal>
F i=1

2n
) ( e(dH—iy)(pﬁiTBithi/Q))e(dH—iy)Taldha1/2>
i=1

2n

1 . ’

- —f/}—dqﬁ(E Bips, T%dhg, | (dpﬁjT’Bthﬁj)> exp (—[Y[7)  (2)
i=1 JFi

2n
-2 o dhe, (ZH (dPBjTﬁjdh6j>> exp (—Vz)

i=1 j#i

1 2n -
= T /}_d¢Taldha1 <Z Bi H (dp/j’jT’Bthgj)> exp (—|Y|2T)

i=1  j#i

2n
aq ,
- = de T dh,, (Z H (deijBJ dh,(ij)> exp (—|Y|%) ,
F i=1 j#i
where the last equality follows from a vertical transgression argument (cf. (36)).
For any ¢ € Supp(d¢), either one of the numbers pg, (q) is positive, or one
of the pg,’s vanishes near ¢. In the former case, since 3; > oy, we can proceed as
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in (33) and prove that there exists a small open neighborhood V, C W), of ¢ such
that

2n
/}_ fdd T dhg, <Z B; H (dpﬁjTﬁjdhﬁj)) exp (—|Y‘%)

o (43)
2n
log T)27—1
~ar [ paoreang, (Y T] (s, 7 ahs,) ) exo (-Iv) = 0 HE ")
g i=1 jAi

for T > 1 for any f € C°°(M) with Supp(f) C V;. In the later case, by an easy
vertical transgression argument,

2n
/F/M dé T dhe, (Z Bi | [ (dpp, T dhgj)) exp (—|Y7)

i=1  j#i (44)

2n
— o / de T dhag, (ZH (deBjT/Bjdh,Bj)) exp (—|Y|%) =0
F/M

i=1 j#i

near ¢ € M. Now one obtains (39) by combining (42)—(44) with a simple partition
of unity argument. O

From (38) and Lemma 3.9, one sees that there exists a limit

2n
lim /f ¢ [ (dps, 7 dhg,) exp (=Y |7)
j=1

T—~+o00

2n T
= dpg,dhg. —|Y|3_ li dt
/]:¢j11< pa;dhg;) exp (=Y |7-1) +T;r£m/1 Ve dt,
which completes the proof of Proposition 3.2. U

3.5. Proof of Theorem 3.4

First, we still assume that p € By. Recall that p,, = 1,1 < j < N, on W, by
Remark 3.1. Further,

2n Np
Y2e =2 pp. T hs, +) T*ha, (45)
1=1 =1

near 7~ !(p). We only need to consider the term

T—~+o00

2n
lim /¢H(dmeBidhm)GXP(—’Y@F)7
Fooi=1 ’

which is examined in the following lemma.
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Lemma 3.10. The following identity holds:

T—+oo

2n
lim /F ¢ | [ (dps, 7% dhs,) eXp(—|Y|§;)
=1

T—+oo

2n
= lim /;¢H (dpﬁiTﬁithi) exp(—]Y|2T).
i=1
Proof. Tt follows from (37), (40), (41), and (45) that

2n 2n
% L1 (dps, 7% dhg,) exp(=|Y[2r) — ;% 1 (dps, TP dhg,) exp (—Y|7)
i=1 i=1
2n N (4n)
{¢H(e(dH—iyxpaiTﬁidh@i/2))6—T°‘1ha1 (e(dH—z'y> it T dha; /2 _ 1)}

1=1

N,

2n D

i=1 =2

Il
—

N.

e~ oL, T ha; _ 1 )
. 5 ‘
=D ima T ha,

(47)

N,

2n D
— do [ (4"~ oo T dhay /21 =T o, (Z T dh,, /2>

i=1 =2
— ZNP T b, (4n)
e i=2 oy — 1}
. ~, : .
— 2 ito T ha,

From (37), (41), (47), and the Stokes formula, one obtains

2n 2n
/;¢ 11 (dps, T dhg, ) exp(~IY [3;) — /f¢ [T (dos, 7% dhg, ) exp(—|Y[3)
h=1 h=1

= /F dqs(i [T (dps. 7" dhﬁi)> <é T"‘idhai> (48)

h=1i#h
_21_\7:;72 T%ha,; _ 1
e 7 7 2
exp (—|Y|7) -
Zf\]:pQ T hai ( T)
Recall that oy > «a; for ¢ > 2. Further,
1 — —t
0< te <1 (49)

for any ¢ > 0. We derive (46) from (37), (48), and (49), arguing as in (33). O

Returning to the proof of Theorem 3.4, we take a finite selection of V},’s in Propo-
sitions 3.2 and 3.8 so that they form an open cover of M. Let {fy, } be a partition
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of unity subordinate to this cover. We assume that each p € B is covered by only
one V, on which fy, = 1 near p. Since B consists of finitely many points, the
existence of such a cover and partition of unity is clear.

Now Theorem 3.4 follows from Propositions 3.2, 3.7, and 3.8 and Lemma 3.10:

1 2n ' 1
o) = () 3 m [ sy es (G YR - ) = Y

qeB
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