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In Ref. 9, we announced the asymptotic expansion of the G-invariant Bergman

kernel of the spinc Dirac operator associated with high tensor powers of a positive

line bundle on a symplectic manifold. In this note, we describe several consequences

of our asymptotic expansion of the G-invariant Bergman kernel in the Kähler case,

especially, we study the Toeplitz quantization in the framework of the symplectic

reduction. The full details can be found in Ref. 10.

1. Toeplitz quantization

Let (X, ω) be a compact Kähler manifold with Kähler form ω, and

dimC X = n. Let J be the almost complex structure on the real tangent

bundle TX . Let gTX(v, w) := ω(v, Jw) be the corresponding Riemannian

metric on TX .

Let L be a holomorphic line bundle over X with Hermitian metric hL.

Let ∇L be the holomorphic Hermitian connection on (L, hL) with curvature

RL := (∇L)2. We suppose that (L, hL) is a pre-quatum line bundle of

(X, ω), i.e.
√
−1

2π
RL = ω. (1)

According the geometric quantization introduced by Kostant and
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Souriau, the Kähler manifold (X, ω) is the classical phase space and

H0(X, L), the space of holomorphic sections of L on X , is the quantum

space. The set of classical observables is the Poisson algebra C ∞(X), the

quantum observables are the linear operators on H0(X, L). The semi-

classical limit is a way to relate the classical and quantum observables,

basically, for any p ∈ N, we replace L by Lp, then we obtain a sequence of

spaces H0(X, Lp), the semi-classical limit is the process of p → ∞. In this

note, we will restrict ourself to a family of quantum observables : Toeplitz

operators.

Let { , } be the Poisson bracket on (X, 2πω): for f1, f2 ∈ C∞(X), if

ξf2
is the Hamiltonian vector field generated by f2 which is defined by

2πiξf2
ω = df2, then

{f1, f2}(x) = (ξf2
(df1))(x). (2)

Let dvX be the Riemannian volume form of (X, gTX), then dvX =

ωn/n!. We define the L2-scalar product 〈 〉 on C∞(X, Lp) by

〈s1, s2〉 =

∫

X

〈s1, s2〉Lp(x) dvX (x) . (3)

Let Πp denote the orthogonal projection from (L2(X, Lp), 〈 〉), the

space of L2 sections of Lp on X , to H0(X, Lp), the space of holomorphic

sections of Lp on X .

For any f ∈ C
∞(X), consider the Toeplitz operators

Tp(f) = ΠpfΠp : H0(X, Lp) → H0(X, Lp). (4)

We denote by ‖Tp(f)‖ the operator norm of Tp(f) with respect to the scalar

product 〈 〉.
We now state two results of Bordemann-Meinrenken-Schlichenmaier2,

concerning the asymptotic behavior of Tp(f) as p → +∞.

Theorem 1.1. As p → +∞, one has

lim
p→+∞

‖Tp(f)‖ = ‖f‖∞, (5a)

[Tp(f), Tp(g)] =
1√
−1p

Tp({f, g}) + O(p−2). (5b)

2. Hamiltonian action and symplectic reduction

Let E be a holomorphic vector bundle on X with Hermitian metric hE .

Let ∇E be the holomorphic Hermitian connection on (E, hE). Let G be a

compact connected Lie group. Let g be the Lie algebra of G.
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Suppose that G acts holomorphically on X , and the action of G lifts

holomorphically on L, E and preserves the metrics hL, hE . Then the action

of G preserves ω, the connections ∇L,∇E .

For K ∈ g, we denote by KX the vector field on X generated by K, and

by LK the infinitesimal action induced by K on the corresponding vector

bundles. Let µ : X → g
∗ be defined by

2π
√
−1µ(K) := ∇L

KX − LK , K ∈ g. (6)

Then µ is the corresponding moment map, i.e. for any K ∈ g,

dµ(K) = iKX ω. (7)

Definition 2.1. The Marsden-Weinstein symplectic reduction space

XG is defined to be

XG = µ−1(0)/G. (8)

Basic assumption: 0 ∈ g
∗ is a regular value of the moment map µ : X →

g
∗.

Then µ−1(0) is a closed manifold. For simplicity, also assume that G

acts on µ−1(0) freely, then XG is a compact smooth manifold and carries

an induced symplectic form ωG.

Moreover, J induces a complex structure JG on TXG such that

ωG(·, JG·) determines a Riemannian metric gTXG on TXG. Thus

(XG, ωG, JG) is also Kähler.

The line bundle (L, hL) induces a Hermitian line bundle (LG, hLG) on

XG by identifying G-invariant sections of L on µ−1(0). In fact (LG, hLG)

is a pre-quantized holomorphic line bundle over (XG, ωG), cf. Ref. 5.

In the same way, (E, hE) induces a holomorphic Hermitian vector bun-

dle (EG, hEG) on XG.

3. Toeplitz quantization and symplectic reduction

We now assume that a connected compact Lie group acts on (X, ω, J, L) in

a Hamiltonian way as before.

Let i : µ−1(0) ↪→ X denote the canonical embedding. We assume as

before that 0 is a regular value of µ and G acts on µ−1(0) freely. Then

π : µ−1(0) → XG

is a principal fibration with fiber G.

Let H0(X, Lp ⊗ E)G be the G-invariant part of H0(X, Lp ⊗ E), the

space of holomorphic sections of Lp ⊗E on X . Let C
∞(X, Lp ⊗E)G (resp.
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C
∞(µ−1(0), Lp ⊗E)G) be the G-invariant smooth sections of Lp ⊗E on X

(resp. µ−1(0)). Let πG : C ∞(µ−1(0), Lp ⊗ E)G → C∞(XG, Lp
G ⊗ EG) be

the natural identification. By a result of Zhang13, for p large enough, the

map

πG ◦ i∗ : C
∞(X, Lp ⊗ E)G → C

∞(XG, Lp
G ⊗ EG)

induces a natural isomorphism

σp = πG ◦ i∗ : H0(X, Lp ⊗ E)G → H0(XG, Lp
G ⊗ EG). (9)

(When E = C, this result was first proved by Guillemin-Sternberg5.)

Let dvXG
be the Riemannian volume form on (XG, gTXG). Let ΠG,p be

the orthogonal projection from C∞(XG, Lp
G⊗EG) (with the scalar product

〈 〉 induced by hLG, hEG and dvXG
as in (3)), onto H0(XG, Lp

G ⊗ EG).

Definition 3.1. A family of operators Tp : H0(XG, Lp
G ⊗ EG) →

H0(XG, Lp
G ⊗ EG) is a Toeplitz operator if there exists a sequence of sec-

tions gl ∈ C ∞(XG, End(EG)) with an asymptotic expansion g(·, p) of the

form
∑∞

l=0
p−lgl(x) + O(p−∞) in the C∞ topology such that

Tp = ΠG,pg(·, p)ΠG,p + O(p−∞). (10)

We call g0(x) the principal symbol of Tp.

For any x ∈ XG, let vol(π−1(x)) be the volume of the orbit π−1(x)

equipped with the metric induced by gTX . We define the potential function

h(x) =
√

vol(π−1(x)). (11)

For any p > 0, let PG
p denote the orthogonal projection from

(C ∞(X, Lp ⊗ E), 〈 〉) to H0(X, Lp ⊗ E)G. Set

σG
p = σpP

G
p : C

∞(X, Lp ⊗ E) → H0(XG, Lp
G ⊗ EG). (12)

Let

(σG
p )∗ : H0(XG, Lp

G ⊗ EG) → C
∞(X, Lp ⊗ E)

denote the adjoint of σp.

Theorem 3.1. For any f ∈ C∞(X, End(E)), let fG ∈ C∞(XG, End(EG))

denote the associated G-invariant section defined by fG(x) =
∫

G
gf(g−1x)dg, here dg is a Haar measure on G. Then

Tp(f) = p−
dim G

2 σG
p f(σG

p )∗ : H0(XG, Lp
G ⊗ EG) → H0(XG, Lp

G ⊗ EG)

(13)
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is a Toeplitz operator with principal symbol 2
dim G

2
fG

h2 (x). Especially,

Tp(f) = ΠG,p2
dim G

2

fG

h2
ΠG,p + O(1/p) (14)

as p → +∞. In particular, p−dim G/2σG
p (σG

p )∗ is a Toeplitz operator with

principal symbol 2dim G/2/h2.

Corollary 3.1. For any f1, f2 ∈ C ∞(X), we identify them as sections of

End(E) by multiplications, then one has

[Tp(f1), Tp(f2)] =
2dimG

√
−1p

ΠG,p

{

fG
1

h2
,
fG
2

h2

}

ΠG,p + O(p−2). (15)

One can view this corollary as a generalization of the Bordemann-

Meinrenken-Schlichenmaier theorem, Theorem 1.1, in the framework of

geometric quantization. If E = C and G = {1}, Corollary 3.1 is (5b).

If G = {1} and general E, Corollary 3.1 was obtained in Ref. 7, 8.

On the other hand, if one defines the unitary operator

Σp = (σG
p )∗(σG

p (σG
p )∗)−1/2 : H0(XG, Lp

G ⊗ EG) → C
∞(X, Lp ⊗ E), (16)

then one has the following result:

Theorem 3.2. For any f ∈ C∞(X, End(E)),

T G
p (f) = Σ∗

pfΣp : H0(XG, Lp
G ⊗ EG) → H0(XG, Lp

G ⊗ EG) (17)

is a Toeplitz operator on XG with principal symbol fG.

Remark 3.1. If E = C, Paoletti11 also claimed that p−
dim G

2 σG
p (σG

p )∗ is a

Toeplitz operator. When G = T k is a torus, and E = C, Theorem 3.2 was

first proved by Charles3.

Let 〈 , 〉Lp

G
⊗EG

be the metric on Lp
G ⊗EG induced by hLG and hEG . In

view of Tian and Zhang’s analytic approach (cf. Ref. 12. (3.54)) of geomet-

ric quantization conjecture of Guillemin-Sternberg, the natural Hermitian

product on C∞(XG, Lp
G⊗EG) is the following weighted Hermitian product

〈 , 〉h:

〈s1, s2〉h =

∫

XG

〈s1, s2〉Lp

G
⊗EG

(x0)h
2(x0) dvXG

(x0). (18)

Theorem 3.3. The isomorphism (2p)−
dim G

4 σp is an asymptotic isometry

from (H0(X, Lp⊗E)G, 〈 , 〉) onto (H0(XG, Lp
G⊗EG), 〈 , 〉h): i.e. if {sp

i }
dp

i=1
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is an orthonormal basis of (H0(X, Lp ⊗ E)G, 〈 , 〉), then

(2p)−
dim G

2 〈σps
p
i , σps

p
j 〉h = δij + O(

1

p
). (19)

4. The asymptotic expansion of the G-invariant Bergman

kernel

Definition 4.1. The G-invariant Bergman kernel PG
p (x, x′) with x, x′ ∈ X

is the smooth kernel of the orthogonal projection PG
p : C∞(X, Lp ⊗ E) →

H0(X, Lp ⊗ E)G with respect to dvX(x′).

Our proof of the results in Section 3 relies on the asymptotic behavior

as p → +∞ of the G-invariant Bergman kernel PG
p (x, x′). We now describe

some behavior of PG
p (x, y), as p → +∞.

Let U be an arbitrary (fixed) small open G-invariant neighborhood of

µ−1(0). At first, we have that for any x, x′ ∈ X \ U , as p → +∞,

|PG
p (x, x′)|C∞ = O(p−∞). (20)

This result shows that when p → +∞, PG
p (x, x′) “localizes” near µ−1(0)

(and thus close to XG). The main technical result of Ref. 9. Theorem

2.2, and 10. Theorem 0.2 is the asymptotic expansion of PG
p (x, x′) for

x, x′ ∈ U when p → ∞ whose proofs use techniques adapting from the

works of Bismut-Lebeau 1, Dai-Liu-Ma4 and Ma-Marinescu6. One key step

is to deform the Laplacian of the spinc Dirac operator by a Casimir type

operator. We refer the readers to Ref. 9, 10 for the details.
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