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Abstract

We show that theAtiyah–Patodi–Singer reducedη-invariant of the twisted Dirac operator on a closed
4m − 1-dimensional spin manifold, with the twisted bundle being the Witten bundle appearing
in the theory of elliptic genus, is a meromorphic modular form of weight 2m up to an integral
q-series. We prove this result by combining our construction of certain modular characteristic forms
associated to a generalized Witten bundle on spinc-manifolds with a deep topological theorem due
to Hopkins.

1. Introduction and statement of results

Let X be a smooth manifold. Let TCX be the complexification of the tangent bundle T X. One defines
the Witten bundle on X [13] as follows:

�q(T X) =
∞⊗

u=1

Squ(TCX − Cdim X) ⊗
∞⊗

v=1

�−qv−1/2(TCX − Cdim X), (1.1)

where St (·) (respectively, �t(·)) denotes the symmetric (respectively, exterior) power and q =
e2π

√−1τ with τ ∈ H, the upper half-plane.
Let gT X be a Riemannian metric on T X and ∇T X be the associated Levi-Civita connection. If we

write
�q(T X) = B0(T X) + B1(T X)q1/2 + B2(T X)q + · · · , (1.2)

then each Bi(T X) carries a Hermitian metric as well as a Hermitian connection ∇Bi(T X) canonically
induced from gT X and ∇T X. In this way, ∇T X induces a Hermitian connection ∇�q(T X) on the Witten
bundle �q(T X).
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Now assume that X is closed, spin and of dimension 4m. Let S(T X) = S+(T X) ⊕ S−(T X)

be the corresponding Hermitian bundle of spinors. For each i, let D
Bi(T X)
X,+ : �(S+(T X) ⊗ Bi(T X))

→ �(S−(T X) ⊗ Bi(T X)) be the corresponding twisted Dirac operator. It is an important and well-
known fact (cf. [14]) that the q-series

Ind(D
�q(T X)

X,+ ) =
∞∑
i=0

Ind(D
Bi(T X)
X,+ )qi/2, (1.3)

which by the Atiyah–Singer index theorem [1] equals to the elliptic genus (We refer the reader to [9,
Section 2.1; 16, Chapter 1] for the notation of the corresponding characteristic forms appearing
below.) ∫

X

Â(T X, ∇T X)ch(�q(T X), ∇�q(T X))

=
∞∑
i=0

qi/2
∫

X

Â(T X, ∇T X)ch(Bi(T X), ∇Bi(T X)) (1.4)

is an integral modular form of weight 2m over �0(2), where �0(2) is the index 2 modular subgroup
of SL2(Z) defined by

�0(2) =
{(

a b

c d

)
∈ SL2(Z)

∣∣∣∣ b ≡ 0 (mod 2)

}
.

It is natural to look at what would happen if X is a 4m − 1-dimensional closed spin manifold.
In this case, let E be a Hermitian vector bundle over X carrying a Hermitian connection ∇E . Let
DE

X : �(S(T X) ⊗ E) → �(S(T X) ⊗ E) be the associated twisted Dirac operator, which is formally
self-adjoint.

Following [2], for any Re(s) 
 0, set

η(DE
X, s) =

∑
λ∈Spec(DE

X)\{0}

Sgn(λ)

|λ|s . (1.5)

By [2], one knows that η(DE
X, s) is a holomorphic function in s with Re(s) > dim X/2. Moreover,

it extends to a meromorphic function over C, which is holomorphic at s = 0. The η invariant of DE
X ,

in the sense of Atiyah–Patodi–Singer [2], is defined by

η(DE
X) = η(DE

X, 0),

while the reduced η invariant is defined and denoted by

η̄(DE
X) = dim(ker DE

X) + η(DE
X)

2
.

It is the aim of this paper to study the modularity of the q-series

η̄(D
�q(T X)

X ) =
∞∑
i=0

η̄(D
Bi(T X)
X )qi/2, (1.6)

which is a spectral invariant depending on gT X.
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Assume temporarily that X is the boundary of a 4m-dimensional spin manifold Y . Let gT Y be a
Riemannian metric on T Y , which is of product structure near ∂Y = X and restricts to gT X on X. By
the Atiyah–Patodi–Singer index theorem established in [2], one has∫

Y

Â(T Y, ∇T Y )ch(�q(T Y ), ∇�q(T Y )) − η̄(D
�q(T X)

X ) ∈ Z[[q1/2]]. (1.7)

The term of integration over Y in (1.7) is a modular form of weight 2m over �0(2) (similar to the
modularity mentioned above for the elliptic genus in (1.4), cf. [11]), although it is not necessary to be
an integral modular form anymore. Therefore, from (1.7), one sees that if X bounds a spin manifold,
then for any Riemannian metric on T X, η̄(D

�q(T X)

X ), up to an integral q-series, is a modular form of
weight 2m over �0(2).

Now the natural question is whether this modularity property for the reduced η-invariants holds
for any 4m − 1-dimensional closed spin manifold. The main difficulty of this problem lies in the fact
that, given a 4m − 1-dimensional closed spin manifold, it may happen that it does not bound a spin
manifold.

Indeed, it is a well-known fact in cobordism theory that there is a positive integer k such that k

disjoint copies of X bound a spin manifold Ỹ . In this case, one has the following analogue of (1.7):∫
Ỹ

Â(T Ỹ , ∇T Ỹ ) ch(�q(T Ỹ ), ∇�q(T Ỹ )) − k η̄(D
�q(T X)

X ) ∈ Z[[q1/2]]. (1.8)

From (1.8), one sees that η̄(D
�q(T X)

X ) is a modular form up to an element in Z[[q1/2]]/k. Thus, the

natural classical method gives the conclusion that η̄ (D
�q(T X)

X ) is a modular form up to an element in
Q[[q1/2]] instead of Z[[q1/2]].

On the other hand, if g̃ is another Riemannian metric on T X with ∇̃T X being its Levi-Civita
connection and D̃

�q(T X)

X being the corresponding twisted Dirac operator, then by the variation formula
for the reduced η invariant (cf. [2, 3]), one has

η̄(D
�q(T X)

X ) − η̄(D̃
�q(T X)

X ) =
∫

X

CS
(∇T X, ∇̃T X, τ ) mod Z[[q1/2]], (1.9)

where CS
(∇T X, ∇̃T X, τ ) is the Chern–Simons transgression form associated to 
(∇T X, τ ) =
{Â(T X, ∇T X)ch(�q(T X), ∇�q(T X))}(4m). It is easy to see that

∫
X

CS
(∇T X, ∇̃T X, τ ) is a modu-

lar form of weight 2m over �0(2) (cf. [7]). Thus, the variation of η̄(D
�q(T X)

X ) has mod Z modularity

property. It turns out to be an interesting open problem that whether η̄(D
�q(T X)

X ) is by itself a modular
form of weight 2m over �0(2) up to an element in Z[[q1/2]].

The purpose of this short note is to give an answer to this question. Our main result can be stated
as follows.

Theorem 1.1 Let X be a 4m − 1-dimensional closed spin Riemannian manifold. Then the reduced
η-invariant η̄(D

�q(T X)

X ) of the twisted Dirac operator D
�q(T X)

X is a meromorphic modular form of
weight 2m over �0(2), up to an element in Z[[q1/2]].

Here meromorphic modular form is a weaker notion than modular form without requiring
holomorphicity, but only meromorphicty on the upper half-plane.
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To prove Theorem 1.1, instead of using the cobordism result as above, we make use of a result due
to Hopkins (cf. [10, Section 8]) which asserts that for any complex vector bundle V over X, there is a
non-negative integer s such that X × CP 1 × · · · × CP 1 (s-copies of CP 1) bounds a spin manifold Y

and V � Hs on X × CP 1 × · · · × CP 1 extends to Y , where H denotes the Hopf hyperplane bundle
on CP 1. We then apply the modular characteristic forms, which is associated to a generalized Witten
bundle we have constructed in [9], on the bounding manifold, as well as the Atiyah–Patodi–Singer
index theorem [2] to get the modularity of the reduced η-invariant in question.

It remains a challenge to find a purely analytic proof of Theorem 1.1 without using the deep
topological results as the above-mentioned Hopkins’ theorem.

Theorem 1.1 immediately implies that the quantity in (1.8) is a meromorphic modular form up to
an element in kZ[[q1/2]], where k is the positive integer such that k disjoint copies of X bounds Ỹ as
explained before (1.8). Observe that in (1.8), each q-coefficient mod k is a mod k index studied by
Freed and Melrose [8]. It is a topological invariant and the main result in [8] provides a topological
interpretation of it. Therefore, as an application of Theorem 1.1, we have the following corollary.

Corollary 1.1 Let Y be a 4m-dimensional spin Z/k-manifold in the sense of Sullivan (cf. [8]).
Then the mod k index associated to the Witten bundle �q(T Y ) can be represented by a meromorphic
modular form of weight 2m over �0(2).

On the other hand, in view of [5, (25)], which corresponds to the case of k = 1 in (1.8) for the
category of stable almost complex manifolds, Theorem 1.1 might become a starting point of a kind of
tertiary index theory, in the sense of [5, Theorem 4.2], for spin manifolds. Recently, Bunke informed
us that Theorem 1.1 can be given an alternative proof by using the theory of the universal η invariant [4,
Lemma 3.1], and a spin version of the f -invariant has also been constructed in [4, Definition 13.2].

For completeness, we would like to point out what happens in dimension 4m + 1. Actually,
when X is an 8n + 5-dimensional closed spin manifold, since for each i, η(D

Bi(T X)
X ) = 0 and

dim(kerDBi(T X)
X ) is even (cf. [2]), we have η̄(D

�q(T X)

X ) = 0 mod Z[[q1/2]]. In dimension 8n + 1,

since η(D
Bi(T X)
X ) = 0 for each i (cf. [2]), we have η̄(D

�q(T X)

X ) = dim(ker D
�q(T X)

X )/2. Therefore, in

view of the Atiyah–Singer mod 2 index theorem, η̄(D
�q(T X)

X ) can be identified with Ochanine’s beta
invariant βq(X), the modularity of which has been shown in [12].

This paper is organized as follows. In Section 2, we briefly recall our construction (in [9]) of the
modular form associated to a generalized Witten bundle involving a complex line bundle. In Section 3,
we combine our modular form and the Hopkins boundary theorem to prove Theorem 1.1. In Section 4,
we propose a possible refinement of Theorem 1.1 in 8n + 3 dimension.

2. Complex line bundles and modular forms

In this section, we briefly review our construction (in [9]) of a modular form, which is associated to
a generalized Witten bundle involving a complex line bundle.

Let M be a 4l-dimensional Riemannian manifold. Let ∇T M be the associated Levi-Civita
connection.

Let ξ be a complex line bundle over M . Equivalently, one can view ξ as a rank 2 real oriented vector
bundle over M . Let ξ carry a Euclidean metric and also a Euclidean connection ∇ξ , let c = e(ξ, ∇ξ )

be the Euler form associated to ∇ξ (cf. [16, Section 3.4]). Let ξC be the complexification of ξ .
If E is a complex vector bundle over M , set Ẽ = E − dim E ∈ K(M).
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Following [9, (2.5)], set

�q(T M, ξ) =
∞⊗

u=1

Squ(˜TCM) ⊗
∞⊗

v=1

�−qv−1/2(˜TCM − 2ξ̃C)

⊗
∞⊗

r=1

�qr−1/2(ξ̃C) ⊗
∞⊗
t=1

�qt (ξ̃C), (2.1)

which is an element in K(M)[[q1/2]]. As before, ∇T M and ∇ξ induce a Hermitian connection
∇�q(T M,ξ) on �q(T M, ξ).

Let P(T M, ξ, τ ) ∈ 4l(M) be the characteristic form defined by

P(T M, ξ, τ ) :=
{
Â(T M, ∇T M) cosh

( c

2

)
ch(�q(T M, ξ), ∇�q(T M,ξ))

}(4l)

. (2.2)

It is shown in [9] that P(T M, ξ, τ ) can be expressed by using the formal Chern roots of
(TCM, ∇TCM) and c through the Jacobi theta functions, which are defined as follows (cf. [6; 9,
Section 2.3]):

θ(v, τ ) = 2q1/8 sin(πv)

∞∏
j=1

[(1 − qj )(1 − e2π
√−1vqj )(1 − e−2π

√−1vqj )],

θ1(v, τ ) = 2q1/8 cos(πv)

∞∏
j=1

[(1 − qj )(1 + e2π
√−1vqj )(1 + e−2π

√−1vqj )],

θ2(v, τ ) =
∞∏

j=1

[(1 − qj )(1 − e2π
√−1vqj−1/2)(1 − e−2π

√−1vqj−1/2)],

θ3(v, τ ) =
∞∏

j=1

[(1 − qj )(1 + e2π
√−1vqj−1/2)(1 + e−2π

√−1vqj−1/2)].

The theta functions are all holomorphic functions for (v, τ ) ∈ C × H, where C is the complex plane
and H is the upper half-plane. Let {±2π

√−1xi} be the formal Chern roots for (TCM, ∇TCM) and
c = 2π

√−1u, we have

P(T M, ξ, τ ) =
{(

2l∏
i=1

xi

θ ′(0, τ )

θ(xi, τ )

θ2(xi, τ )

θ2(0, τ )

)
θ1(u, τ )

θ1(0, τ )

θ2
2 (0, τ )

θ2
2 (u, τ )

θ3(u, τ )

θ3(0, τ )

}(4l)

. (2.3)

By using the transformation laws of theta functions (cf. [6; 9, Section 2.3]), one sees as in
[9, Proposition 2.6] that P(T M, ξ, τ ) is a modular form of weight 2l over �0(2).

3. Proof of the main theorem

In this section, we will prove our main result Theorem 1.1.
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The topological tool we will use is the following boundary theorem of Hopkins (cf.
[10, Section 8]).

Theorem 3.1 (Hopkins) Let X be a compact, odd-dimensional spin manifold and V → X be a
complex vector bundle over X. Then there is an integer s such that the vector bundle V � (�s

j=1Hj) →
X × (CP 1)s is a boundary, where Hj denotes the Hopf hyperplane bundle on the j th copy of CP 1.
In other words, there is a spin manifold Y with a complex vector bundle W on Y such that W |∂Y =
V � (�s

j=1Hj).

In what follows, we will combine this Hopkins boundary theorem with the modular characteristic
form constructed in Section 2 to give a proof of Theorem 1.1.

Proof of Theorem 1.1 Without loss of generality, for the 4m − 1-dimensional closed spin manifold
X, in view of the Hopkins boundary theorem, we take an even integer s so that the complex line
bundle

p∗(�s
j=1Hj) → X × (CP 1)s

bounds, where p : X × (CP 1)s → (CP 1)s is the natural projection. This means that there is a spin
manifold Y and a complex line bundle ζ over Y such that ∂Y = X × (CP 1)s and ζ |X×(CP 1)s =
p∗(�s

j=1Hj).

Let gT X be any Riemannian metric on X. Equip (CP 1)s with arbitrary Riemannian metrics and
the Hj s with arbitrary Euclidean metrics and Euclidean connections.

Let gT Y be a metric on T Y such that it is of product structure near X × (CP 1)s and restricts to
the product metric on X × (CP 1)s . Let ∇T Y be the Levi-Civita connection associated to gT Y .

Let gζ be an Euclidean metric on ζ (viewed as an oriented real plane bundle) such that gζ is of
product structure near X × (CP 1)s and restricts to the Euclidean metric on p∗(�s

j=1Hj) on X ×
(CP 1)s . Let ∇ζ be an Euclidean connection of gζ which is of product structure near X × (CP 1)s

and restricts to the canonically induced Euclidean connection on p∗(�s
j=1Hj) on X × (CP 1)s .

Let c = e(ζ ) and zj = c1(Hj )/π
√−1, 1 ≤ j ≤ s.

By applying the Atiyah–Patodi–Singer index theorem [2] to the twisted Dirac operator

D
�q(T Y,ζ 2)⊗ζ

Y , in noting that

(�q(T Y, ζ 2) ⊗ ζ )|X×(CP 1)s = �q(T (X × (CP 1)s), (p∗(�s
j=1Hj))

2) ⊗ p∗(�s
j=1Hj),

one finds that there exist integers ais such that

η̄(D
�q(T (X×(CP 1)s ),(p∗(�s

j=1Hj ))
2)⊗p∗(�s

j=1Hj )

X×(CP 1)s
)

=
∫

Y

Â(T Y, ∇T Y ) ch(�q(T Y, ζ 2) ⊗ ζ, ∇�q(T Y,ζ 2)⊗ζ ) −
∞∑
i=0

aiq
i/2

=
∫

Y

Â(T Y, ∇T Y ) ec ch(�q(T Y, ζ 2), ∇�q(T Y,ζ 2)) −
∞∑
i=0

aiq
i/2

=
∫

Y

Â(T Y, ∇T Y ) cosh(c) ch(�q(T Y, ζ 2), ∇�q(T Y,ζ 2)) −
∞∑
i=0

aiq
i/2, (3.1)

where the last equality follows from the fact that s is an even integer.
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Let r : X × (CP 1)s → X be the natural projection. For bundles E → X and F → (CP 1)s , by
separation of variables, we have

η(D
(r∗E)⊗(p∗F)

X×(CP 1)s
) = η(DE

X) · Ind(DF
(CP 1)s ,+).

So we have

η̄(D
(r∗E)⊗(p∗F)

X×(CP 1)s
) = η̄(DE

X) · Ind(DF
(CP 1)s ,+) + dim(kerDE

X)dim(ker(DF
(CP 1)s ,−)).

From the above formula, we can see that there are integers bis such that

η̄(D
�q(T (X×(CP 1)s ),(p∗(�s

j=1Hj ))
2)⊗p∗(�s

j=1Hj )

X×(CP 1)s
) −

∞∑
i=0

biq
i/2

= η̄(D
�q(r∗T X⊕p∗T (CP 1)s ,(p∗(�s

j=1Hj ))
2)⊗p∗(�s

j=1Hj )

X×(CP 1)s
) −

∞∑
i=0

biq
i/2

= η̄(D
r∗�q(T X)⊗p∗(�q(T (CP 1)s ,(�s

j=1Hj )
2)⊗�s

j=1Hj )

X×(CP 1)s
) −

∞∑
i=0

biq
i/2

= η̄(D
�q(T X)

X ) · Ind(D
�q(T (CP 1)s ,(�s

j=1Hj )
2)⊗�s

j=1Hj

(CP 1)s ,+ )

= η̄(D
�q(T X)

X ) ·
∫

(CP 1)s
Â(T (CP 1)s, ∇T (CP 1)s ) ec1(H1)+···+c1(Hs) ch(�q(T (CP 1)s, (�s

j=1Hj)
2))

= η̄(D
�q(T X)

X ) ·
∫

(CP 1)s

⎛⎝ s∏
j=1

zj

θ ′(0, τ )

θ(zj , τ )
× θ2(zj , τ )

θ2(0, τ )

⎞⎠
θ1(

∑s
j=1 zj , τ )

θ1(0, τ )

θ2
2 (0, τ )

θ2
2 (

∑s
j=1 zj , τ )

θ3(
∑s

j=1 zj , τ )

θ3(0, τ )

= η̄(D
�q(T X)

X ) ·
∫

(CP 1)s

θ1(
∑s

j=1 zj , τ )

θ1(0, τ )

θ2
2 (0, τ )

θ2
2 (

∑s
j=1 zj , τ )

θ3(
∑s

j=1 zj , τ )

θ3(0, τ )
, (3.2)

where the last equality holds due to the fact that x/θ(x, τ ) and θ2(x, τ ) are both even functions about
x and

∫
CP 1 zn

j = 0 if n > 1.
Since s is an even integer, from the knowledge about the modular form P(T M, ξ, τ ) constructed

in Section 2, we know that

fs(τ ) :=
∫

(CP 1)s

θ1(
∑s

j=1 zj , τ )

θ1(0, τ )

θ2
2 (0, τ )

θ2
2 (

∑s
j=1 zj , τ )

θ3(
∑s

j=1 zj , τ )

θ3(0, τ )

is an integral modular form of weight s over �0(2). Moreover, since∫
(CP 1)s

Â(T (CP 1)s, ∇T (CP 1)s ) ec1(H1)+···+c1(Hs) = 1,

we see that fs(τ ) has constant term 1. Therefore, f −1
s (τ ) ∈ Z[[q1/2]].
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From (3.1) and (3.2), we have

η̄(D
�q(T X)

X ) = f −1
s (τ ) ·

∫
Y

Â(T Y, ∇T Y ) cosh(c) ch(�q(T Y, ζ 2), ∇�q(T Y,ζ 2))

− f −1
s (τ ) ·

( ∞∑
i=0

(ai + bi)q
i/2

)
. (3.3)

Still by the modularity of P(T M, ξ, τ ) constructed in Section 2, we know that∫
Y

Â(T Y, ∇T Y ) cosh(c) ch(�q(T Y, ζ 2), ∇�q(T Y,ζ 2))

is a modular form of weight 2m + s over �0(2). So

f −1
s (τ ) ·

∫
Y

Â(T Y, ∇T Y ) cosh(c) ch(�q(T Y, ζ 2), ∇�q(T Y,ζ 2))

is a meromorphic modular form of weight 2m over �0(2).
Therefore, from (3.3), we see that

η̄(D
�q(T X)

X ) = f −1
s (τ ) ·

∫
Y

Â(T Y, ∇T Y ) cosh(c) ch(�q(T Y, ζ 2), ∇�q(T Y,ζ 2)) mod Z[[q1/2]],

a meromorphic modular form of weight 2m over �0(2). The proof of Theorem 1.1 is complete. �

Remark 3.1 The modular form fs(τ ) in the above proof can be explicitly expressed by theta
functions and their derivatives. For example, we have

f2(τ ) = − 1

π2

(
θ ′′

1 (0, τ )

θ1(0, τ )
− 2

θ ′′
2 (0, τ )

θ2(0, τ )
+ θ ′′

3 (0, τ )

θ3(0, τ )

)
(3.4)

and

f4(τ ) = 1

π4

(
θ

(4)
1 (0, τ )

θ1(0, τ )
− 2

θ
(4)
2 (0, τ )

θ2(0, τ )
+ θ

(4)
3 (0, τ )

θ3(0, τ )
+ 18

(
θ ′′

2 (0, τ )

θ2(0, τ )

)2

−12
θ ′′

1 (0, τ )

θ1(0, τ )

θ ′′
2 (0, τ )

θ2(0, τ )
− 12

θ ′′
3 (0, τ )

θ3(0, τ )

θ ′′
2 (0, τ )

θ2(0, τ )
+ 6

θ ′′
1 (0, τ )

θ1(0, τ )

θ ′′
3 (0, τ )

θ3(0, τ )

)
. (3.5)

Remark 3.2 Let X be a compact, odd-dimensional spin manifold. Define

H(X) := {h ∈ Z : the line bundle p∗(�h
j=1Hj) → X × (CP 1)h bounds},

where p : X × (CP 1)h → (CP 1)h is the natural projection and Hj denotes the Hopf hyperplane
bundle on the j th copy of CP 1. Define the Hopkins’ index of X, h(X) := min H(X). Obviously,
when X is a boundary by itself, h(X) = 0. It is clear that H(X) = {s ∈ Z : s ≥ h(X)}.
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In the proof of Theorem 1.1, we may take any even number s ∈ H(X) and denote the corresponding
Y and ζ by Ys and ζs . Then the proof of Theorem 1.1 tells us that, up to an element in Z[[q1/2]],

η̄(D
�q(T X)

X ) = f −1
s (τ ) ·

∫
Ys

Â(T Ys, ∇T Ys ) cosh(e(ζs)) ch(�q(T Ys, ζ
2
s ), ∇�q(T Ys ,ζ

2
s )).

Clearly, if h(X) = 0, one gets (1.7). Therefore, for every even number s ≥ 2[(h(X) + 1)/2], one
can construct a meromorphic modular form of weight 2m over �0(2) of above form, that is equal to
η̄(D

�q(T X)

X ) up to an element in Z[[q1/2]]. The poles of these meromorphic modular forms are just
the zeros of the modular forms fs(τ ). We hope that further study of the modular forms fs(τ ) will
bring better understanding of modularity of η̄(D

�q(T X)

X ).

Remark 3.3 We refer the reader to [4] for an alternative approach to the modularity of η̄(D
�q(T X)

X ),
which is shown to be not only a meromorphic modular form, but also a modular form using the theory
of universal η-invariant.

4. The cases of dimension 8n + 3

In this section, we discuss the case of dimension 8n + 3. In this dimension, it is known that η̄(D
�q(T X)

X )

is mod 2Z[[q1/2]] smooth. That is, in the right-hand side of (1.9), the term mod Z[[q1/2]] can be
replaced by mod 2Z[[q1/2]]. Therefore, it is natural to propose the following conjecture whose
statement refines Theorem 1.1 in this case.

Conjecture 4.1 Let X be an 8n + 3-dimensional closed spin Riemannian manifold. Then the
reduced η-invariant η̄(D

�q(T X)

X ) of the twisted Dirac operator D
�q(T X)

X is a meromorphic modular
form of weight 4n + 2 over �0(2), up to an element in 2Z[[q1/2]].

Recall that a mod 2k refinement of the Freed–Melrose mod k index for real vector bundles over
8n + 4-dimensional manifolds has been defined in [15, Section 3]. In view of this, one can propose
a refinement of Corollary 1.1, in the case of dim Y = 8n + 4, as follows.

Conjecture 4.2 Let Y be an 8n + 4-dimensional spin Z/k-manifold in the sense of Sullivan (cf. [8]).
Then the mod 2k index associated to the Witten bundle �q(T Y ) can be represented by a meromorphic
modular form of weight 4n + 2 over �0(2).

By the method of this paper, in order to prove Conjectures 4.1 and 4.2, one perhaps needs a kind
of Hopkins boundary theorem for real vector bundles. Or, one may try to develop a direct analytic
approach, which, even for Theorem 1.1, is a challenging problem as we indicated in Section 1.
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