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1 Introduction

Vijay Kumar Patodi was born on March 12, 1945 in Guna, India. He passed away on
December 21, 1976, at the age of 31.

It is remarkable that even in such a short period of life, Patodi made quite a number
of fundamental contributions to mathematics. These contributions have had deep and
wide spread influences in geometry, topology, number theory, as well as in mathemat-
ical physics.

Patodi gave an invited talk at the International Congress of Mathematicians in 1974.
His Collected Papers [1], edited by Atiyah and Narasimhan, was published by World
Scientific in 1996.

Patodi’s work centers around the Atiyah–Singer index theory, a major subject in
global analysis. He published 13 mathematical papers, all included in his Collected
Papers [1]. Many of these papers have become classical literatures in mathematics.
They cover almost all aspects of the index theory, from the classical period where
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the topological methods play a major role, to the modern era where more geomet-
ric methods, including those developed by Patodi himself, become more and more
important.

In this article, we will give a survey of Patodi’s works on local index theorems, on
η invariant, and on analytic torsion, as well as their implications. Due to the limitation
of the knowledge of the author, we only concentrate on subjects we are most familiar.

2 Local Index Theorem

The celebrated index theorem proved by Atiyah and Singer [25] has been regarded
as one of the most significant mathematical results of the last century. It connects
many areas of mathematics. Roughly speaking, it states that the analytically defined
index of an elliptic differential operator on a closed manifold can be computed by
purely topologically defined quantities. Many famous results in geometry, topology,
and algebraic geometry are special examples of the Atiyah–Singer index theorem. We
mention typically the Gauss–Bonnet–Chern theorem [63], the Hirzebruch signature
theorem [85], the Riemann–Roch–Hirzebruch theorem for algebraic varieties [85],
and the index theorem for Dirac operators on spin manifolds [25]. In order to have a
thorough understanding of Patodi’s first paper [2], we take the Gauss–Bonnet–Chern
theorem as a typical example.

Let M be a closed oriented manifold of dimension 2n. Let gT M be a Riemannian
metric on the tangent vector bundle T M of M . Let ∇T M be the Levi–Civita connection
on T M associated to gT M . Let RT M = (∇T M )2 be the curvature of ∇T M . This
curvature locally can be viewed as a skew-adjoint matrix with elements consisting of
2-forms. For example, if e1, . . . , e2n is a (local) oriented orthonormal basis of T M and
ei , 1 ≤ i ≤ 2n, is the dual basis of T ∗M , the cotangent vector bundle of M , then each
element RT M

i j , with 1 ≤ i, j ≤ 2n, can be written as RT M
i j = 1

2

∑2n
s, t=1 RT M

i jst es ∧ et .

We define Pf(RT M ), the Pfaffian of RT M , by

Pf
(

RT M
)

= 1

2nn!
2n∑

i1, ..., i2n=1

εi1···i2n RT M
i1i2

∧ · · · ∧ RT M
i2n−1i2n

, (2.1)

where εi1...i2n is the permutation number of {i1, . . . , i2n} with respect to {1, . . . , 2n}.
Let χ(M) be the Euler characteristic number of M .
The Gauss–Bonnet–Chern theorem [63] states that the following identity holds:

χ(M) =
(−1

2π

)n ∫

M
Pf

(
RT M

)
. (2.2)

In particular, when n = 1, one gets the Gauss–Bonnet formula
∫

M K dvM = 2πχ(M),
where K is the Gauss curvature of gT M , and dvM is the volume form associated to
gT M .

We first show how (2.2) can be viewed as an index theorem in the sense of Atiyah
and Singer.
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Let �∗(T ∗M) = ⊕2n
i=0�

i (T ∗M) be the exterior algebra bundle of T ∗M . Let
�i (M) = �(�i (T ∗M)) be the space of smooth i-forms on M . Let (�∗(M), d) be the
de Rham complex:

(
�∗(M), d

) : 0 → �0(M)
d→ �1(M)

d→ · · · d→ �2n(M) → 0. (2.3)

The metric gT M induces natural metrics on each �i (T ∗M) and thus on �∗(T ∗M)

through orthogonal direct sum. They induce a natural inner product 〈·, ·〉 on �∗(M).
Let d∗ be the formal adjoint of d with respect to the inner product on �∗(M). That

is, for any α, β ∈ �∗(M), one has 〈dα, β〉 = 〈α, d∗β〉. The operator

D = d + d∗ : �∗(M) −→ �∗(M) (2.4)

is called the de Rham–Hodge operator associated to gT M . It is a formally self-adjoint
elliptic differential operator. Let

D+ = d + d∗ : �even(M) =
n⊕

i=0

�2i (M) −→ �odd(M) =
n−1⊕

i=0

�2i+1(M), (2.5)

D− = d + d∗ : �odd(M) −→ �even(M)

be the natural restrictions of D. Then D± are elliptic differential operators, and D− is
the formal adjoint of D+. Moreover, by the Hodge decomposition theorem, one finds
that the index of D+ equals to χ(M):

χ(M) = ind (D+) := dim (kerD+) − dim (kerD−) . (2.6)

By (2.6), one can reformulate the Gauss–Bonnet–Chern formula (2.2) as an index
formula:

ind (D+) =
(−1

2π

)n ∫

M
Pf

(
RT M

)
. (2.7)

This is a typical form of the Atiyah–Singer index theorem. For a different elliptic
differential operator D+, the right hand side will have different topological meaning.

We now explain a simple and beautiful idea due to Mckean and Singer [94].
Let E , F be two Hermitian vector bundles over M . Let D+ : �(E) → �(F)

be a first order elliptic differential operator. Let D− : �(F) → �(E) be the formal
adjoint of D+. Then both D−D+ : �(E) → �(E) and D+D− : �(F) → �(F) are
nonnegative formally self-adjoint elliptic operators. In particular, for any t > 0, the
heat operators exp(−t D−D+) and exp(−t D+D−) are well-defined.

The following simple formula due to Mckean–Singer is the starting point of the
whole local index theory:
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ind (D+) = Tr
[
exp (−t D−D+)

] − Tr
[
exp (−t D+D−)

]

=
∑

λ∈Spec(D− D+)

exp(−tλ) −
∑

μ∈Spec(D+ D−)

exp(−tμ), (2.8)

where “Spec(·)” denotes the set of spectrum (or eigenvalues) of the corresponding
elliptic operator.

The proof of (2.8) is very simple: if λ ∈ Spec(D−D+) and λ �= 0, then by
D−D+s = λs with s �= 0, one gets D+D−(D+s) = λ(D+s) with D+s �= 0.
Thus λ ∈ Spec(D+D−). Similarly, any nonzero μ ∈ Spec(D+D−) belongs also
to Spec(D−D+). On the other hand, one verifies that ker(D∓D±) = ker(D±). In
summary, one finds

∑

λ∈Spec(D− D+)

exp(−tλ) −
∑

μ∈Spec(D+ D−)

exp(−tμ)

= dim(kerD+) − dim(kerD−) = ind (D+) , (2.9)

from which (2.8) follows.
Formula (2.8) suggests new interpretations of the index. In fact, as both

exp(−t D−D+) : �(E) → �(E) and exp(−t D+D−) : �(F) → �(F) are eas-
ily seen to be compact operators, they admit smooth kernels (called heat kernels)
Pt (·, ·), Qt (·, ·), respectively, such that for any x, y ∈ M , Pt (x, y) ∈ Hom(Ey, Ex ),
Qt (x, y) ∈ Hom(Fy, Fx ), and that for any u ∈ �(E), v ∈ �(F), one has

(exp (−t D−D+) u) (x) =
∫

M
Pt (x, y)u(y) dvM (y), (2.10)

(exp (−t D+D−) v) (x) =
∫

M
Qt (x, y)v(y) dvM (y).

From (2.8) and (2.10), one gets

ind (D+) =
∫

M
(tr [Pt (x, x)] − tr [Qt (x, x)]) dvM (x). (2.11)

The nice point of (2.11) is that since the left-hand side does not depend on t > 0, one
can deform t in the right-hand side to try to get more information about the left-hand
side. Indeed, the asymptotic behavior as t → 0 of Pt (·, ·) and Qt (·, ·) has been studied
in classical literature (cf. [97]). In particular, there exist smooth functions a0, . . . , an

(resp. b0, . . . , bn) on M such that when t → 0+, one has for any x ∈ M ,

tr [Pt (x, x)] = 1

(4π t)n

(
a0(x) + a1(x) t + · · · + an(x) tn + O

(
tn+1

))
, (2.12)

tr [Qt (x, x)] = 1

(4π t)n

(
b0(x) + b1(x) t + · · · + bn(x) tn + O

(
tn+1

))
.
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Combining (2.11) with (2.12), one gets

ind (D+) =
n∑

i=0

t i

(4π t)n

∫

M
(ai (x) − bi (x)) dvM (x) + O(t). (2.13)

Since t > 0 can vary, while the left-hand side of (2.13) does not depend on t , from
(2.13) one deduces that if 0 ≤ i ≤ n − 1, then

∫

M
(ai (x) − bi (x)) dvM (x) = 0, (2.14)

while if i = n, one has

1

(4π)n

∫

M
(an(x) − bn(x)) dvM (x) = ind (D+) . (2.15)

Combining with (2.7), one gets, in the case of D+ = d + d∗, that

1

(4π)n

∫

M
(an(x) − bn(x)) dvM (x) =

(−1

2π

)n ∫

M
Pf

(
RT M

)
. (2.16)

Now at least for the de Rham–Hodge operator D± = d + d∗, by [97] one knows
that theoretically, the functions ai ’s and bi ’s can be expressed by local (pointwise)
geometric quantities associated directly to the Riemannian metric gT M . It leads Mck-
ean and Singer to pose in [94] the conjecture that for the classical geometric operators
such as the de Rham–Hodge operator, one can refine (2.14) and (2.15) so that for any
0 ≤ i ≤ n − 1, one has1

ai − bi = 0 (2.17)

over M , while for i = n, 1
(4π)n (an(x) − bn(x)) dvM (x), which we call the index

density, would provide the geometric/topological information desired by the Atiyah–
Singer index theorem. In particular, for the de Rham–Hodge operator D+ = d + d∗ :
�even(M) → �odd(M), one may expect

1

(4π)n (an(x) − bn(x)) dvM (x) =
(−1

2π

)n

Pf
(

RT M
)

. (2.18)

Mckean and Singer were able to prove (2.18) for the case of n = 1, while in this
case, (2.17) is a trivial consequence of the Hermann Weyl result. They went on to
raise (2.17) and (2.18) for the de Rham–Hodge operator as a conjecture of “fantastic
cancellation.”

1 That a0 = b0 = 1 is a classical result of Hermann Weyl.
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We should point out that while theoretically the functions ai ’s and bi ’s can be
constructed from gT M , the process is very complicated and involves taking higher-
order derivatives of gT M . This is why Mckean and Singer called their conjecture, if it
would hold, fantastic.

We can now describe the contribution obtained by Patodi in his very first paper [2].
If one should describe it in one sentence, then one simply says that in [2], Patodi proved
that (2.17) and (2.18) hold for the de Rham–Hodge operator. That is, the “fantastic
cancellation” expected by Mckean and Singer does hold!

It is easy to see that by integrating (2.17) and (2.18) over M , we get (2.2). Thus,
(2.17) and (2.18) together refine (2.2) significantly. It is a local pointwise formula. For
this reason, we call it a local index theorem, and in this case, we can say that Patodi
established the local Gauss–Bonnet–Chern theorem.

The proof of Patodi in [2] for (2.17) and (2.18) is a true tour de force. From
the work of Minakshisundaram and Pleijel [97] (and also its generalizations in [4]),
when t > 0 is very small, one can approximate Pt (x, y) and Qt (x, y) by the so-
called paramatrices which are determined by a series of inductive equations involving
the Laplacians D−D+ and D+D−, as well as other local geometric data. It takes
remarkable insight and highly nontrivial computations to show that they can all be put
into an ordered manner so that the final contribution indeed gives (2.17) and (2.18).

While the paper [2] already gives a breakthrough contribution by showing that
the local index theorem does hold for the de Rham–Hodge operator, in his second
paper [3], Patodi moved on to show that the local index theorem also holds for the
Dolbeault operator on Kähler manifolds, whose global version implies the Riemann–
Roch–Hirzebruch theorem for algebraic manifolds [85]. He also mentioned in the end
of [3] that he was able to prove the local index theorem for the signature operator
whose global version is the Hirzebruch signature theorem [85].

The computations in [3] are more complicated than those given in [2], and it is truly
remarkable that Patodi was able to accomplish all these while staying in India.

Mathematically, among the four theorems mentioned above, now only the local
index theorem for Dirac operator was missing, and it is the subject of the joint paper
[5] with Atiyah and Bott.

Before describing the content of [5], we mention that almost during the same time
as Patodi established local index theorems for the de Rham–Hodge and Dolbeault
operators by direct tour de force methods, Gilkey, on the other hand, developed an
indirect way to prove local index theorems in [80,81], by using Weyl’s invariant theory.

In [5], together with Atiyah and Bott, Patodi examined the local index theorem
systematically by combining his direct approach with Gilkey’s method. The authors
of [5] showed that the local index theorem holds for the so-called twisted signature
operator, which allows a vector bundle to be twisted to the signature operator, as well as
the Dirac and twisted Dirac operators. Moreover, from the twisted signature theorem,
by combining it with the Bott periodicity theorem, they arrived at a new proof of the
(global) Atiyah–Singer index theorem for general elliptic differential operators.

There are two points one should mention about [5]. The first is that the method and
result in [5] enable one to generalize the index theorem for geometric operators such as
the signature operator and the Dirac operator to the case of manifolds with boundary.
This is the content of [7–10] and will be described in the next section. The other one is
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that while the local Gauss–Bonnet–Chern and the local Riemann–Roch–Hirzebruch
theorems can be proved directly in [2,3], the proof of the local index theorem for Dirac
operators in [5] is not direct. The direct proof of the local index theorem for Dirac
operators, by using the method of Patodi, was later given by Yu [113].

In [6] and in the joint paper with Donnelly [14], Patodi generalized his method
to the equivariant situation and proved the Lefschetz fixed point formula of Atiyah–
Bott–Segal–Singer ([20,21,24,26,27]) by the heat equation method. The paper [6] is
an announcement for the holomorphic case, while the paper [14] covers the case of the
equivariant signature theorem with respect to an isometry on a Riemannian manifold.

We would like to mention that locally, all the geometric operators mentioned above:
the de Rham–Hodge operator, the signature operator, and the Dolbeault operator on
Kähler manifolds can be expressed as a twisted Dirac operator. So now by local index
theorem one usually means the local index theorem for (twisted) Dirac operators.

In the early 1980s, several physics-inspired formal proofs of the index theorem for
Dirac operators appeared. Among them, Atiyah described in [17] an idea due to the
physicist Witten, who suggested that by formally applying the Duistermaat–Heckman
localization formula [74] in equivariant cohomology to the loop space of a closed spin
manifold, one can obtain the index theorem for Dirac operators tautologically, though
non-rigorously. The ideas of Witten and other physicists (cf. [15,77]) stimulated a
number of new proofs of the local index theorem for Dirac operators, notably the
probabilitistic proof due to Bismut [33], the two proofs of Getzler [78,79] inspired by
supersymmetry, and the group-theoretic proof given by Berline–Vergne [32]. It turns
out that the index density is closely related to the heat kernel of the harmonic oscillator.

The proofs of Bismut [34] and Berline–Vergne [32] also cover the equivariant
case. Another heat kernel proof of the equivariant index theorem for Dirac operators,
which is closely related to the method developed by Patodi (which is extended to spin
manifolds in [113]), is given in [88].

It is amazing that Patodi’s direct computation now has connections with so many
areas: from physics to probability, and to group representations.

In ICM-1986, Bismut gave an invited talk entitled “Index theorem and the heat equa-
tion” [36]. Besides providing an overview of the history of the heat equation approach
to the index theorem, which was started from the pioneering works of Mckean–Singer
and Patodi, the talk also describes the most recent advances due to the speaker himself:
a vast generalization on the heat equation proofs of the index theorem for a family of
Dirac operators [35], by making use of Quillen’s concept of superconnection [103]. It
marks the beginning of a new era of the local index theory.

We refer the interested reader to the book of Berline–Getzler–Vergne [31] for a
systematic treatment of the local index theorems for geometric operators, as well as
the Bismut local families index theorem for Dirac operators [35].

3 η-Invariant and the Index Theorem on Manifolds with Boundary

It is always important in analysis to study differential equations with boundary condi-
tions. Thus, even at the early stage of the development of the index theory, the problem
of index theorems for elliptic operators on manifolds with boundary was studied, cf.
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[19]. However, among the four geometric operators we have mentioned above—the de
Rham–Hodge operator, the signature operator, the Dolbeault operator on Kähler man-
ifolds and the Dirac operator on spin manifolds—only the de Rham–Hodge operator
admits the elliptic boundary condition in the classical context studied in [19]. These
boundary conditions are “local” in the sense that if P is such a boundary condition
which acts on smooth sections on the boundary, then for any smooth section u on
the boundary, if u vanishes on an open subset of the boundary, one requires that Pu
also vanishes on this open subset. It is known that the result in [19] does not apply to
signature and/or Dirac operators.

The problem of the index theorem for signature and Dirac operators on manifolds
with boundary was solved in a series of joint papers [8–10] due to Atiyah, Patodi and
Singer, with an earlier announcement presented in [7]. In this section, we will discuss
this solution and its ramifications.

This section consists of two subsections. In Sect. 3.1, we present the index theo-
rem. In Sect. 3.2, we will discuss in more detail the η-invariant which occurs as the
contribution from the boundary in the index theorem.

3.1 The Atiyah–Patodi–Singer Index Theorem

It is discovered in [8] that for a Dirac operator on a spin manifold with boundary to be
elliptic, one needs to impose a global boundary condition, instead of the usual local
ones.

To be more precise, let M be an oriented spin manifold with smooth boundary ∂ M .
We assume M is of even dimension 2n, then ∂ M is of dimension 2n − 1, and carries
an induced orientation and also an induced spin structure. Let gT M be a Riemannian
metric on T M . We assume that gT M is of product structure near the boundary ∂ M .
That is, there exists a neighborhood ∂ M ×[0, a) ⊂ M of ∂ M , with a > 0 sufficiently
small, such that

gT M
∣
∣
∂ M×[0,a)

= π∗ (
gT M

∣
∣
∣
∂ M

)
⊕ dt2, (3.1)

where t ∈ [0, a) is the parameter and π : ∂ M × [0, a) → ∂ M = ∂ M × {0} denotes
the canonical projection.

Let S(T M) = S+(T M) ⊕ S−(T M) be the Hermitian vector bundle of spinors
associated to (T M, gT M ). Let (E, gE ) be a Hermitian vector bundle over M carrying
a Hermitian connection ∇E . We assume that gE and ∇E are of product structure on
∂ M × [0, a). That is,

gE
∣
∣
∂ M×[0,a)

= π∗ (
gE

∣
∣
∣
∂ M

)
, ∇E

∣
∣
∣
∂ M×[0,a)

= π∗ (
∇E

∣
∣
∣
∂ M

)
. (3.2)

Let DE : �(S(T M) ⊗ E) → �(S(T M) ⊗ E) denote the twisted (by E) Dirac
operator defined by the above geometric data. Let DE± : �(S±(T M) ⊗ E) →
�(S∓(T M) ⊗ E) denote the obvious restrictions of DE .
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In view of (3.1) and (3.2), one finds that on ∂ M × [0, a), one has

DE = c

(
∂

∂t

)(
∂

∂t
+ π∗DE

∂ M

)

, (3.3)

where c(·) is the notation for the Clifford action, and DE
∂ M : �((S(T M)⊗ E)|∂ M ) →

�((S(T M)⊗E)|∂ M ) is the induced Dirac operator on ∂ M . Let DE
∂ M,± : �((S±(T M)⊗

E)|∂ M ) → �((S±(T M) ⊗ E)|∂ M ) denote the obvious restrictions. Then both DE
∂ M,±

are elliptic and formally self-adjoint. We also call them the induced Dirac operators
on the boundary ∂ M .

Let L2((S±(T M) ⊗ E)|∂ M ) be the L2-completions of �((S±(T M) ⊗ E)|∂ M ). Let
L2≥0((S±(T M)⊗E)|∂ M ) ⊂ L2((S±(T M)⊗E)|∂ M ), and L2

>0((S±(T M)⊗E)|∂ M ) ⊂
L2((S±(T M) ⊗ E)|∂ M ) be defined by

L2≥0((S±(T M) ⊗ E)|∂ M ) =
⊕

λ∈Spec
(

DE
∂M,±

)
, λ≥0

Eλ, (3.4)

L2
>0((S±(T M) ⊗ E)|∂ M ) =

⊕

λ∈Spec
(

DE
∂M,±

)
, λ>0

Eλ,

where Eλ denotes the eigenspace of λ. Let P E±,≥0, P E±,>0 denote the orthogonal pro-

jections from L2((S±(T M)⊗ E)|∂ M ) to L2≥0((S±(T M)⊗ E)|∂ M ), L2
>0((S±(T M)⊗

E)|∂ M ), respectively.
The first result in [8] shows that the boundary problems (DE±, P E±,≥0) and

(DE±, P E±,>0) are elliptic. Moreover, (DE−, P E−,>0) is the adjoint of (DE+, P E+,≥0). Thus,

one can define the index of (DE+, P E+,≥0) by

ind
(

DE+, P E+,≥0

)
= dim

(
ker

(
DE+, P E+,≥0

))
− dim

(
ker

(
DE−, P E−,>0

))
, (3.5)

where both

ker
(

DE+, P E+,≥0

)
=

{
u ∈ � (S+(T M) ⊗ E) : DE+u = 0, P E+,≥0 (u|∂ M ) = 0

}

(3.6)

and

ker
(

DE−, P E−,>0

)
=

{
u ∈ � (S−(T M) ⊗ E) : DE−u = 0, P E−,>0 (u|∂ M ) = 0

}

(3.7)

are of finite dimension.
One of the immediate observations is that here P E±,≥0 and P E±,>0 no longer veri-

fies the requirements of the local boundary condition. Thus, they are global boundary
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conditions. The price one pays here is that these boundary conditions no longer con-
tribute topologically invariant indices. In particular, ind(DE+, P E+,≥0) defined in (3.5)
now depends on the induced geometric data on ∂ M .

The first main result in [8] provides an explicit formula for ind(DE+, P E+,≥0), gener-

alizing the Atiyah–Singer index theorem for ind(DE+) in the case where M is closed.
The amazing thing here is that besides the usual geometric term which can be seen
from the local index computation, there appears in this index formula a new term
contributed from the boundary ∂ M . Thus, before stating the index formula, let us
first describe this extra term: the η-invariant associated to the induced Dirac operator
DE

∂ M,+ on ∂ M .

Recall that DE
∂ M,+ : �((S+(T M) ⊗ E)|∂ M ) → �((S+(T M) ⊗ E)|∂ M ) is elliptic

and formally self-adjoint. By standard elliptic theory, one sees that for any complex
number s with Re(s) >> 0, the following η-function of DE

∂ M,+ is well defined,

η
(

DE
∂ M,+, s

)
=

∑

λ∈Spec
(

DE
∂M,+

)
, λ�=0

sgn(λ)

|λ|s , (3.8)

where sgn(λ) = 1 if λ > 0, while sgn(λ) = −1 if λ < 0. It is a spectral func-
tion depending only on the restriction of the geometric data (gT M , gE ,∇E ) on the
boundary.

It is shown in [8] that η(DE
∂ M,+, s) can be extended to a meromorphic function

of s over C, which is holomorphic at s = 0. Naturally, one calls η(DE
∂ M,+, 0) the η-

invariant of DE
∂ M,+ and denotes it by η(DE

∂ M,+). If one also counts the zero eigenvalue

of DE
∂ M,+, then one defines as in [8]

η
(

DE
∂ M,+

)
=

dim
(

kerDE
∂ M,+

)
+ η

(
DE

∂ M,+
)

2
(3.9)

and calls it the reduced η-invariant of DE
∂ M,+.

One can now state the index theorem for (DE+, P E+,≥0) as follows. It is stated in [8,
(4.3)].

Theorem 3.1 The following identity holds:

ind
(

DE+, P E+,≥0

)
=

∫

M
Â

(
T M,∇T M

)
ch

(
E,∇E

)
− η

(
DE

∂ M,+
)

, (3.10)

where Â(T M,∇T M ) and ch(E,∇E ) are the Hirzebruch Â-characteristic form asso-
ciated to ∇T M , and the Chern character form associated to ∇E defined, respectively,
by

Â
(

T M,∇T M
)

= det1/2

(
RT M/4π

sinh
(
RT M/4π

)

)

(3.11)
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and

ch
(

E,∇E
)

= tr

[

exp

(√−1

2π

(
∇E

)2
)]

. (3.12)

Remark 3.2 If M is closed, then ∂ M = ∅ and (3.10) becomes ind(DE+) =
〈 Â(T M)ch(E), [M]〉, which is the original Atiyah–Singer index theorem for DE+
([25]).

Remark 3.3 If the metrics gT M , gE and ∇E are not of product structure near the
boundary ∂ M , then one can first deform them to ones of the product structure (without
changing their restrictions on the boundary) and apply Theorem 3.1 to get a geometric
formula involving the new geometric data, and then obtain a formula involving only the
original geometric data by using the Chern–Weil theory. For a systematic treatment
of the index theorem for geometric operators without the “product structure” near
boundary assumption, see [82].

Remark 3.4 In its most general form, the main result of [8], stated in [8, Theorem 3.10],
holds for any first-order elliptic differential operator on manifolds with boundary.
However, only for the geometric operators one gets the explicit local expression for
the interior contribution. On the other hand, as we have mentioned, all geometric
operators of interests can locally be expressed as a kind of (twisted) Dirac operators.
This is why in the above we state explicitly the index theorem for Dirac operators.

One of the motivations of [8–10] is to solve a conjecture of Hirzebruch [86] con-
cerning the computation of the signature of Hilbert modular varieties having cusp
singularities. We mention here that by making use of the version of Theorem 3.1 for
signature operators, this Hirzebruch conjecture was later solved by Atiyah, Donnelly,
and Singer (all have collaborated with Patodi) in [22]. An independent proof was given
by Müller [99]. These two works establish a solid place for Theorem 3.1 in number
theory. We refer to [18] for an overview on this aspect.

Now let us examine Theorem 3.1 from purely index theoretic point of view.
One observes first that by (3.10), η(DE

∂ M,+) depends on (gT M , gE ,∇E )|∂ M . Thus,
it is not a topological invariant. Moreover, it does not admit a local expression, i.e.,
it cannot be expressed as an integration of local geometric terms. This later fact is in
fact pointed out in [8–10], by indicating that the η-invariant is not multiplicative under
finite coverings.

The second observation from (3.10) is that when mod Z, η(DE
∂ M,+) depends

smoothly on (gT M , gE ,∇E )|∂ M . Moreover, by combining with the Chern–Weil the-
ory, one may calculate explicitly the variation of this η-invariant with respect to smooth
deformations of (gT M , gE ,∇E )|∂ M .

The third observation is that if (gT M , gE ,∇E )|∂ M changes, then dim(kerDE
∂ M,+)

might jump, thus by (3.10), ind(DE+, P E+,≥0)depends in general on (gT M , gE ,∇E )|∂ M .

Indeed, this can also be seen directly from (3.5)–(3.7): when dim(kerDE
∂ M,+) jumps,

P E+,≥0 also jumps, and certainly we get a different elliptic boundary value problem
which may give a possibly different index.
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The problem of characterizing the variation of the index in Theorem 3.1, with
respect to different elliptic boundary conditions, was solved in [10] by introducing the
concept of spectral flow.

Theorem 3.1, as well as the associated concepts ofη-invariant and spectral flow, have
later on played very important roles in many aspects of geometry, topology, number
theory (as mentioned above), and mathematical physics. We will describe some of
these ramifications in the next subsection. Here we just quote what Atiyah wrote in
his Forward to [1] concerning [8–10]: “It was a great collaboration, exploiting the
different talents of the participants, and I am glad it came to a successful conclusion.”
In another place, Atiyah wrote in the “Commentary on Papers on Index Theory” in
his Collected Works [16] about [8–10] that “In many ways the papers on spectral
asymmetry were perhaps the most satisfying ones I was involved with.”

We conclude this subsection by mentioning that for Theorem 3.1 itself, there are
now several books and different proofs devoting to it. For the books, we mention two:
one is due to Booß-Bavnbek and Wojciechowski [56] which gives a fairly complete
treatment following the lines of [8]; the other one is due to Melrose [95] which gives a
different treatment on the analytic aspects of the problem. For other proofs of Theorem
3.1, we refer to [45] and [69].

3.2 η-Invariants and its Applications

We first point out that the η-invariant, or rather the reduced η-invariant defined in (3.9),
for (twisted) Dirac operators can in fact be defined for any formally self-adjoint elliptic
differential operator on a closed manifold. For odd-dimensional manifold case, this
has been studied systematically in [10, Sects. 2–4]. For brevity, we will concentrate
on Dirac operators.

For any closed odd-dimensional oriented Riemannian spin manifold X and a Her-
mitian vector bundle E over X carrying a Hermitian connection ∇E , one can define
the (twisted by E) Dirac operator DE : �(S(T X) ⊗ E) → �(S(T X) ⊗ E) to be
the induced Dirac operator Dπ∗ E

∂ M,+|X , in the sense of the previous subsection, with
M = X × [0, 1] and π : M → X = X × {0} being the canonical projection. The
(reduced) η-invariant of DE is thus well defined, without assuming that X is the
boundary of another spin manifold.

The basic properties of η(DE ) have indeed been studied in [8,9]. We mention in
particular that in [8, Sect. 4.2], it is proved by using heat kernel method that the η-
function η(DE , s) is holomorphic for Re(s) > − 1

2 ,2 while in [9, Sect. 4], the intrinsic
relation between the η-invariant and the Chern–Simons invariant [64] was exploited.
Moreover, by applying Theorem 3.1 to M = X × [0, 1], one can prove an anomaly
formula for η(DE ) with respect to the variations of gT X , gE and ∇E .

One of the most interesting outcomes from the above-mentioned anomaly formula
occurs when one assumes that the unitary connection ∇E is flat, that is, the curva-
ture RE = (∇E )2 vanishes. In this situation, one finds that the following geometric

2 This result is later improved in [49] to Re(s) > −2.
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quantity,

ρE = η
(

DE
)

− rk(E) η
(

DC
)

mod Z (3.13)

does not depend on gT X . Thus, we get a topological invariant for unitary representa-
tions of the fundamental group of X . The remarkable Index theorem for flat bundles
proved in [10, Sect. 5.3] gives a topological interpretation of this analytically con-
structed invariant. This reminds us the relation between two other invariants for flat
vector bundles: the Reidemeister torsion and the Ray–Singer analytic torsion, which
will be discussed in the next section.

We now turn to a beautiful observation due to Witten [111]. Based on the reasonings
in physics, Witten needed to compute the (reduced) η-invariant for Dirac operators on
manifolds fibering over a circle. What Witten claimed in [111] is that when taking the
adiabatic limit, the η-invariant for a fibered manifold over a circle is closely related to
the holonomy of the Quillen determinant line bundle [104] over the circle, constructed
through the fiberwise Dirac operators. This conjecture of Witten was proved indepen-
dently by Bismut–Freed [49,50] and Cheeger [62]. Both proofs were reported at the
ICM-1986 in Berkeley [36,61]. For an approach in the spirit of both [49,50] and [62],
see [66].

With the encouragement of the solution to the Witten conjecture, it is natural to
study the η-invariant on general fibered manifolds, and this was first accomplished in
the celebrated joint work of Bismut and Cheeger [44].

To be more precise, let Z → X
π→ B be a smooth fibration of closed oriented

spin manifolds, with compatible orientations and spin structures. We assume dim X is
odd. Let T V X (usually denoted by T Z ) be the vertical tangent bundle of the fibration
and T H X ⊂ T X be a fixed horizontal subbundle of T X . Then we have the splitting
T X = T H X ⊕ T Z .

Let gT Z be a Euclidean metric on T Z . Let gT B be a Riemannian metric on T B. It
determines a Euclidean metric π∗gT B on T H X . Let gT X be the Riemannian metric
on T X given by the orthogonal direct sum gT X = π∗gT B ⊕ gT Z .

For any ε > 0, let gT X
ε be the rescaled metric on T X defined by

gT M
ε = π∗gT B

ε
⊕ gT Z . (3.14)

Let E be a Hermitian vector bundle over X carrying a Hermitian connection ∇E .
Then for any b ∈ B, on the fiber Zb = π−1(b), the restrictions of gT Z , gE and ∇E

on Zb determine a Dirac operator DE
Zb

on Zb.

Let DE
ε be the Dirac operator on X associated to gT X

ε , gE and ∇E . The following
result computes the adiabatic limit of η(DE

ε ) when ε tends to zero:

Theorem 3.5 (Bismut–Cheeger [44]) If for any b ∈ B, DE
Zb

is invertible, then there

is ε0 > 0 such that for any 0 < ε < ε0, DE
ε is invertible. Moreover, the following

identity holds:
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lim
ε→0

η
(

DE
ε

)
=

∫

B
Â

(
T B,∇T B

)
η̂, (3.15)

where ∇T B is the Levi–Civita connection of gT B and η̂ ∈ �∗(B) is the η̂-form
canonically constructed in [44].

In the special case where B is a circle, there are no specific assumptions on the
fiberwise Dirac operators in the proofs [49,50,62] of the Witten holonomy conjecture.
For general fibrations, a refinement of Theorem 3.5 was obtained by Dai [65] under the
assumption that ker(DE

b ), b ∈ B, form a vector bundle (denoted by ker(DE
Z )) over B.

If this assumption holds, then ker(DE
Z ) admits a naturally induced Hermitian metric

as well as a Hermitian connection. Thus, one can construct the associated (twisted
by ker(DE

Z )) Dirac operator Dker(DE
Z ) on B. The main result in [65] shows that the

η̂-form of Bismut–Cheeger appeared in (3.15) is still well defined under this condition.
Moreover, the following identity holds (compare with [91]):

lim
ε→0

η
(

DE
ε

)
≡ η

(
Dker(DE

Z )
)

+
∫

B
Â

(
T B,∇T B

)
η̂ mod Z. (3.16)

In particular, if dim B is even, then one has

lim
ε→0

η
(

DE
ε

)
≡

dim
(

kerDker(DE
Z )

)

2
+

∫

B
Â

(
T B,∇T B

)
η̂ mod Z. (3.17)

In [48], by applying Theorem 3.5 to flat torus bundles, a new proof of the Hirzebruch
conjecture, which was first proved by Atiyah–Donnelly–Singer [22] and Müller [99],
is given. The η̂-form for circle bundles was computed in [67] and [114]. It was applied
in [114] to obtain a higher dimensional Rokhlin-type congruence which at the same
time extends the divisibility result of Atiyah-Hirzebruch [23], which states that the
Â-genus of an (8k + 4)-dimensional closed spin manifold is an even integer, to the
case of spinc-manifolds.

When B is a point, then η̂ is simply (half of) the η-invariant of DE . Thus, the η̂-form
of Bismut–Cheeger generalizes the η-invariant of Atiyah–Patodi–Singer to the case
of families. The natural question of whether there is a families generalization of the
Atiyah–Patodi–Singer index theorem 3.1 was answered positively in [46,47] and [96].
On the other hand, the concept of spectral flow was generalized to the families index
theory in [68].

The ideas and methods in [44–47,96], and [68] have been further generalized to
the framework of noncommutative index theory. We refer to [89,90] for an overview.

The η-invariant and the η̂-form have also played important roles in the actively
studied differential K -theory. Besides (3.15)–(3.17), the Riemann–Roch property of
the η-invariant under embedding, which is established in [55], is also used in the proof
of the index theorem in differential K -theory [76]. On the other hand, as a simple
application of the main result in [55], a geometric formula for the mod Z component
of the (reduced) η-invariant for Dirac operators is given in [116]. This later formula,
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which can be proved independently, is in turn used in [75] to give a more geometrical
proof of the embedding formula in [55].

We now describe another line of applications of the η-invariant. It concerns the
heat kernel proof of the index theorem for Toeplitz operators on odd-dimensional
manifolds.

Recall that X is an odd-dimensional closed oriented spin Riemannian manifold,
E a Hermitian vector bundle over X carrying a Hermitian connection, and DE :
�(S(T X)⊗ E) → �(S(T X)⊗ E) is the Dirac operator which is elliptic and formally
self-adjoint.

Now let N > 0 be an integer and CN
X be a trivial vector bundle over X carrying

the canonical trivial Hermitian metric and connection. Then DE extends naturally to
a Dirac operator acting on �(S(T X) ⊗ E ⊗ CN

X ), which we still denote by DE .
Let g ∈ �(Aut(CN

X )) be a fiberwise automorphism of CN
X . It extends to a fiberwise

automorphism IdS(T X)⊗E ⊗ g, which we still denote by g. Then g acts as a bounded
linear operator on the L2-completion L2(S(T X)⊗ E ⊗CN

X ) of �(S(T X)⊗ E ⊗CN
X ).

Let P E≥0 : L2(S(T X) ⊗ E ⊗ CN
X ) → L2≥0(S(T X) ⊗ E ⊗ CN

X ) be the orthogonal
projection defined as in between (3.4) and (3.5).

We define the Toeplitz operator T E
g by

T E
g = P E≥0g P E≥0 : L2≥0

(
S(T X) ⊗ E ⊗ CN

X

)
−→ L2≥0

(
S(T X) ⊗ E ⊗ CN

X

)
.

(3.18)

It was observed in [30] that T E
g is a zeroth-order elliptic pseudodifferential operator,

so that one can apply the Atiyah–Singer index theorem [26] to compute its index. More
precisely, one gets

ind
(

T E
g

)
= − 〈

Â(T X)ch(E)ch(g), [X ]〉 , (3.19)

where ch(g) is the odd Chern character of g, when viewing g as an element in K 1(X)

(cf. [115, Chap. 1]).
Following [56], we outline below a proof of (3.19) using heat kernels and the η-

invariant. The first observation is that by the homotopy invariance of the index, one
may deform g to assume that it is fiberwise unitary. Now as g is fiberwise unitary,
we see that the operator g−1 DE g : �(S(T X) ⊗ E ⊗ CN

X ) → �(S(T X) ⊗ E ⊗ CN
X )

is formally self-adjoint. Moreover, DE
t = (1 − t)DE + tg−1 DE g, t ∈ [0, 1], form

a smooth family of formally self-adjoint elliptic operators acting on the same space
�(S(T X) ⊗ E ⊗ CN

X ).
One first observes that the index of T E

g can be identified with the spectral flow for
the above family {DE

t : 0 ≤ t ≤ 1}. That is, one has

ind
(

T E
g

)
= −sf

{
DE

t : 0 ≤ t ≤ 1
}

. (3.20)

On the other hand, by the variation formula for the η-invariant as in [10], one has
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η
(

DE
t=1

)
− η

(
DE

t=0

)
= sf

{
DE

t : 0 ≤ t ≤ 1
}

+
∫ 1

0

dη
(
DE

t

)

dt
dt. (3.21)

Now it is clear that η(DE
t=1) = η(g−1 DE g) = η(DE ) = η

(
DE

t=0

)
, from (3.20) and

(3.21) one gets

ind
(

T E
g

)
=

∫ 1

0

dη
(
DE

t

)

dt
dt, (3.22)

with the right-hand side being able to be evaluated by local index computations (i.e.,
the heat kernel method), which leads to (3.19).

Inspired by Theorem 3.1, it is natural to ask whether (3.19) can be generalized to
the case of manifolds with boundary. This problem was first studied in [73], where
an index formula is obtained, under the assumption that the restriction of g on the
boundary is an identity. No boundary contribution appears in the index formula under
this assumption.

On the technical side, [73], which is inspired by an earlier note of Singer [109],
initiated the study of η-invariants on manifolds with boundary, which have been stud-
ied actively since then. Here we only mention the papers [59,87,101] from the vast
literature on this subject.

A solution to the problem of generalizing (3.19) to the case of manifolds with
boundary, without any condition on g, is later given in [70], where the results in [87]
and [101] play important roles. The result proved in [70] may be thought of as an odd
dimensional analogue of Theorem 3.1. In particular, there appears a boundary contri-
bution in the index formula established in [70], which is indeed an η-type invariant.

Certainly there are many other implications of Theorem 3.1 and the η-invariant,
which are not touched in this very brief account. We refer to the survey papers [102]
and [84] for some of the topics we did not discuss above.

4 Reidemeister Torsion and Ray–Singer Analytic Torsion

As we have pointed out in Introduction, Patodi’s work touches almost all aspects of
the index theory. Besides the works we have described in the previous two sections,
in his ICM talk [11], his interests moved on to two other important problems: the first
is to give an explicit combinatorial formula for the Pontryagin classes; the second is
to give an analytic interpretation of the Reidemeister torsion [107].

The former problem is still open up to now, while Patodi made his own contributions
in [12]. Here we only mention that the famous Chern–Simons invariant [64] was in
fact originated from an attempt to give a purely combinatorial expression for the first
Pontryagin class of 4-manifolds.

In this section, we will concentrate on the other problem touched in [11], which
concerns the Reidemeister torsion.

The Reidemeister torsion is a classical invariant in topology associated to orthogonal
representations of the fundamental group of a CW complex.
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Inspired by the Atiyah–Singer index theory, Ray and Singer [105] studied an ana-
logue of the Reidemeister torsion for the de Rham complex on a smooth manifold.
They called this analogue the analytic torsion and discovered that it has a lot of prop-
erties similar to those of the Reidemeister torsion. They further made the conjecture
that their analytic torsion (now widely called the Ray–Singer torsion) equals to the
Reidemeister torsion.

For simplicity, we start directly with a smooth closed manifold M which we assume
to be oriented. Let ρ : π1(M) → O(N ) be an orthogonal representation of the
fundamental group of M . Then ρ determines an orthogonal flat vector bundle Eρ =
M̃ ×ρ RN over M , where M̃ is the universal covering of M .

Take any triangulation {cα} of M , where each cα is a simplex. Over each simplex cα ,
Eρ can be trivialized tautologically. Thus, the boundary operator ∂ : cα → ∂cα extends
naturally to a twisted boundary operator ∂ρ : cα ⊗ (Eρ |cα ) → (∂cα) ⊗ (Eρ |∂cα ).

For any simplex cα , let eα1, · · · , eαN be the trivialized global orthonormal basis
of Eρ |cα , let [cα ⊗ eαi ], 1 ≤ i ≤ N , denote the real line generated by cα ⊗ eαi . For
any integer 0 ≤ q ≤ dim M , let Cq denote the vector space obtained by the direct sum
Cq = ⊕N

i=1 ⊕dim cα=q [cα ⊗ eαi ]. With these data, one can construct a combinatorial
complex (C∗, ∂ρ) with coefficient Eρ ,

(
C∗, ∂ρ

) : 0 −→ Cdim M
∂ρ−→ Cdim M−1

∂ρ−→ · · · ∂ρ−→ C0 −→ 0, (4.1)

i.e., one has ∂2
ρ = 0. For simplicity, we also assume that the homology of the complex

(C∗, ∂ρ) vanishes: H∗(C∗, ∂ρ) = {0}. Then for any 0 ≤ q ≤ dim M , ker(∂ρ |Cq ) �
Im(∂ρ |Cq+1).

3

For any 0 ≤ q ≤ dim M , let bq j ’s be a basis of Im(∂ρ |Cq+1), let b′
(q−1) j ∈ Cq be

such that ∂ρb′
(q−1) j = b(q−1) j . Then the (bq j , b′

(q−1) j )’s form a basis of Cq . Recall
that the cα ⊗ eαi ’s with dim cα = q, 1 ≤ i ≤ N , form another basis cq of Cq . Let
[bq j , b′

(q−1) j : cq ] > 0 be the absolute value of the determinant with respect to these
two basis. Then one sees that this determinant depends only on the b(q−1) j ’s, not on
the lifts b′

(q−1) j ’s. Thus, we may denote it by [bq j , b(q−1) j : cq ].
One can now define the Reidemeister torsion τ(C∗, ∂ρ) of the complex (C∗, ∂ρ) by

the following formula:

log τ
(
C∗, ∂ρ

) =
dim M∑

q=0

(−1)q log
[
bq j , b(q−1) j : cq

]
. (4.2)

It is indeed a well-defined quantity as one can show that the right-hand side of (4.2)
does not depend on the choices of the bq j ’s. One can show further that τ(C∗, ∂ρ)

is invariant under subdivisions of the triangulation. Thus, it does not depend on the
triangulations in its definition and is a well-defined combinatorial invariant. We denote
it by τρ and call it the Reidemeister torsion associated to ρ.

3 We set C−1 = Cdim M+1 = {0}.
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Ray and Singer observed that the Reidemeister torsion defined in (4.2) admits
an expression through combinatorial Laplacians. To be more precise, let C∗ carry a
Euclidean metric such that the cα ⊗ eαi ’s with 0 ≤ dim cα ≤ dim M , 1 ≤ i ≤ N ,
form an orthonormal basis. Let ∂∗

ρ : C∗ → C∗ be the adjoint of ∂ρ with respect to this
Euclidean metric, then for any 0 ≤ q ≤ dim M , ∂∗

ρ : Cq → Cq+1.

Let �C∗
ρ : C∗ → C∗ be the Laplacian defined by �C∗

ρ = ∂∗
ρ∂ρ + ∂ρ∂∗

ρ . For any

0 ≤ q ≤ dim M , let �C∗
q,ρ : Cq → Cq be the restriction of �C∗

ρ on Cq . Since we have

assumed that H∗(C∗, ∂ρ) = {0}, we know that each �C∗
q,ρ is invertible. The following

identity is proved in [105, Proposition 1.7]:

log τρ = 1

2

dim M∑

q=0

(−1)q+1q log
(

det
(
�C∗

q,ρ

))
. (4.3)

Inspired by (4.3), Ray and Singer defined in [105] an analogue for the de Rham
complex with coefficient Eρ , i.e., the following complex where for any 0 ≤ q ≤
dim M , �q(M, Eρ) = �(�q(T ∗M) ⊗ Eρ),

(
�∗(M, ρ), dρ

) : 0 → �0(M, Eρ)
dρ→ �1(M, Eρ)

dρ→ · · · dρ→ �dim M (M, Eρ) → 0,

(4.4)

where dρ : �∗(M, Eρ) → �∗(M, Eρ) is the (twisted) exterior differential operator
with coefficient Eρ .

Let gT M be a Riemannian metric on T M .
By using gT M and the orthogonal flat structure on Eρ , one can produce a canonically

induced inner product on �∗(M, Eρ). Let d∗
ρ : �∗(M, Eρ) → �∗(M, Eρ) be the

formal adjoint of dρ with respect to this inner product. Let �ρ = d∗
ρdρ + dρd∗

ρ be the
associated Laplacian. For any 0 ≤ q ≤ dim M , let �q,ρ : �q(M, Eρ) → �q(M, Eρ)

be the restriction of �ρ on �q(M, Eρ).
If one wants to define an analogue of (4.3), one needs to at first define a kind of

“determinant” for the Laplacians �q,ρ’s. The obvious difficulty is that the �q,ρ’s act
on infinite dimensional spaces, so one cannot define a “determinant” directly for them.
The beautiful observation in [105] is that one can use a ζ -function regularization to
define a kind of regularized determinant which, in the finite dimensional case, coincides
with the usual determinant.

Since we have assumed H∗(C∗, ∂ρ) = {0}, by using the Hodge theorem, one knows
that for each 0 ≤ q ≤ dim M , �q,ρ is invertible. Following [105], by standard elliptic
theory, for any s ∈ C with Re(s) >> 0, the ζ -function in the following formula is
well defined,

ζq,ρ(s) =
∑

λ∈Spec(�q,ρ )

1

λs
. (4.5)

It is easy to show that ζq,ρ(s) can be extended to a meromorphic function on C which
is holomorphic at s = 0.
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Following [105, Definition 1.6], we now define the Ray-Singer analytic torsion Tρ

by the following formula:

log Tρ = 1

2

dim M∑

q=0

(−1)qq
dζq,ρ(s)

ds

∣
∣
∣
s=0

. (4.6)

By using (4.3), one sees easily that τρ admits a similar formula in terms of the combi-
natorial Laplacians. To be more precise, if we set ζ(�C∗

q,ρ, s) = ∑
λ∈Spect(�C∗

q,ρ )
1
λs for

0 ≤ q ≤ dim M , then we can rewrite (4.3) as

log τρ = 1

2

dim M∑

q=0

(−1)qq
dζ

(
�C∗

q,ρ, s
)

ds

∣
∣
∣
s=0

. (4.7)

It is proved in [105] that when dim M is even, Tρ = 1, while when dim M is odd,
Tρ does not depend on gT M , i.e., it is a smooth invariant! Ray and Singer also proved
in [105] that many properties of τρ are also satisfied by Tρ . They raised the conjecture
that these two invariants actually equal, i.e., the following identity holds:4

Tρ = τρ. (4.8)

It is this conjecture which Patodi dealt with in his ICM talk [11], and also in his
joint paper with Dodziuk [13]. In fact, as we have mentioned, τρ does not depend on
subdivisions of the triangulation in its definition. So one of the ways one could expect
to prove (4.8), in view of (4.6) and (4.7), is that if one keeps doing the subdivision,
then the ζ -function associated to the combinatorial Laplacians might converge in some
sense to the ζ -function of the Laplacians of the de Rham–Hodge operator. Moreover,
if this would hold, it might lead to a proof of (4.8).

The study of the approximation of the combinatorial Laplacian under subdivisions
were studied by Dodziuk in his thesis [72]. The method in [72] was then further
developed in the joint paper [13], of which some of the main results were announced
in [11], with the purpose of proving the Ray–Singer conjecture. While [13] does not
give a proof of (4.8), the methods and results obtained are inspiring. We just mention
one approximation result as follows.

In [13, Theorem 4.10], it is stated that for any compact subset U in the half plane
Re(s) > dim M

2 , there is a sequence of triangulations cα,k , such that for any 0 ≤ q ≤
dim M , the corresponding sequence of ζ -functions ζ(�C∗,k

q,ρ , s) converges to ζq,ρ(s)
uniformly on U .

While the above result does not lead to (4.8) which involves informations of the ζ -
functions around s = 0, it is obviously an important step toward a better understanding
of (4.8). In fact, a program was proposed in [13] toward a possible proof of (4.8)
by stating two further conjectures concerning the approximations of combinatorial
Laplacians.

4 The original conjecture also covers the case where H∗(C∗, ∂ρ) �= {0}.
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The Ray–Singer conjecture (4.8) was finally proved independently in the cele-
brated papers of Cheeger [60] and Müller [98], by different methods. While Cheeger’s
method is based mainly on surgery, what Müller did is indeed to further develop the
combinatorial approximation methods in [13], by completing the program proposed
in [13]. Thus, we could say that in some sense Patodi also played a pioneering role in
the study of the Ray–Singer conjecture, now the Cheeger–Müller theorem.

As stated, the Cheeger–Müller theorem holds for orthogonal representations of
the fundamental group of smooth manifolds. The natural question of whether (4.8)
can be extended to other representations of the fundamental group was solved by
Müller [100] for unimodular representations and by Bismut–Zhang [54] for arbitrary
representations.

The method used in [100] extends those of Cheeger’s in [60]. The method developed
in [54] is purely analytic and makes use of the Witten deformation [110] for the de
Rham complex by a Morse function. Moreover, the local index theoretic technique,
as developed from [2], plays essential roles in [54].

Ray–Singer also defined analytic torsion for manifolds with boundary in [105].
This concept has played important roles in the proofs of Cheeger and Müller on the
Ray–Singer conjecture (4.8). The boundary conditions appear here are of local type,
while comparing with the global boundary conditions discussed in Sect. 3. The Ray–
Singer torsion for manifolds with boundary has been studied extensively. Here we
only mention two papers of Brüning–Ma [57,58], which deal with the most general
case of arbitrary flat vector bundles as well as arbitrary metrics near the boundary. In
particular, a local Gauss–Bonnet–Chern theorem, generalizing the work of Patodi [2]
to the case of manifolds with boundary, is established in [57], where no condition on
metrics near the boundary is assumed.

Inspired by the construction of the Bismut–Cheeger η̂-form, which we have
described in the previous section, Bismut–Lott [53] constructed for smooth fibrations
(real) analytic torsion forms of which the degree zero term is the fiberwise Ray-Singer
torsion. A vast generalization of the Cheeger-Müller and Bismut–Zhang theorems, to
the Bismut–Lott torsion form for fibrations, was proved by Bismut–Goette in [51]. For
further developments concerning the torsion forms, we refer to the survey paper [83].

Recall that in (3.13), we have described the Atiyah–Patodi–Singer ρ-invariant for
flat vector bundles through η-invariants. It is natural to ask whether this invariant is
related to the Ray–Singer analytic torsion, which is also a topological invariant for
flat vector bundles. In the Introduction to [8], it is mentioned that a unification of the
η-invariant and the Ray–Singer torsion was not known. While this is still the case up to
now, the fact that they both appear prominently in the Chern–Simons gauge theory (cf.
[112] and [29]), which reflects other deep implications of the η-invariant and the ana-
lytic torsion, may shed a light on this mystery (cf. [92] where a holomorphic function
on the representation space of fundamental group, with absolute value being equal
to the associated Ray–Singer analytic torsion, is constructed by using generalized
versions of the above η-invariant and analytic torsion). On the other hand, relations
between the η̂-form and the Bismut–Lott torsion form have been exploited in [71,93].

In another direction, Ray and Singer also defined analytic torsion for the Dolbeault
complex on complex manifolds in [106], which we now call the Ray–Singer holomor-
phic torsion. While this holomorphic torsion is no longer a topological invariant, it has
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played important roles in complex geometry, arithmetic geometry and mathematical
physics. We refer to Bismut’s ICM-1998 Plenary Lecture [37] for a survey on some
of the developments concerning the holomorphic torsion.

As for the most significant recent advance of the (local) index theory, we mention
the groundbreaking theory of hypoelliptic Laplacians developed by Bismut and his
collaborators in [38,39,41,43,52], of which two surveys are given in [40,42]. The
motivation of this theory comes in part from an attempt to generalize the methods and
results developed in [54] to the loop space of the underlying smooth manifold.5 In this
whole new development, we find that the local index techniques, the Atiyah–Patodi–
Singer η-invariant and the Ray–Singer analytic torsion all find their new places. We
believe that if Patodi would still be alive, he would be happy to see that the local index
theory he helped to create has become one of the central areas in global analysis.
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