1.

In a previous paper,'* we have given an alternate formulation of (the mod
Z part of) the n-invariant of Atiyah-Patodi-Singer!™ associated to non-
unitary flat vector bundles by identifying explicitly its real and imaginary
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parts.

On the other hand, Gilkey has studied this kind of n-invariants system-
atically in,*® and in particular proved a general variation formula for them.

335
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However, it lacks in!? the identification of the real and imaginary parts of
the n-invariants as we did in.14

In this article, we first show that our results in'4 lead to a direct deriva-
tion of Gilkey’s variation formula Theorem 3.7.13

The second purpose of this paper is to apply the results in'* to examine
the n-invariants appearing in the recent papers of Braverman-Kappeler”™®
on refined analytic torsions. We show that the imaginary part of the
n-invariant appeared in these articles admits an explicit local expression
which suggests an alternate formulation of the definition of the refined an-
alytic torsion there. This reformulation provides an analytic resolution of a
problem due to Burghelea!®!'! on the existence of a univalent holomorphic
function on the representation space having the Ray-Singer analytic torsion
as its absolute value.

Finally, using the extension (to the case of non-self-adjoint operators)
given in'® of the concept of spectral flow,? we propose a refinement in C of
the above variation formula for n-invariants.

Acknowledgements. We would like to thank Maxim Braverman for
bringing'® to our attention, and for helpful discussions. The work of the
second author was partially supported by the National Natural Science
Foundation of China.

2. m-Invariant and the Variation Formula

Let M be an odd dimensional oriented closed spin manifold carrying a
Riemannian metric g7™. Let S(T'M) be the associated Hermitian vector
bundle of spinors. Let (&, ¢”) be a Hermitian vector bundle over M carry-
ing a unitary connection V. Moreover, let (F,g") be a Hermitian vector
bundle over M carrying a flat connection V. We do not assume that V¥
preserves the Hermitian metric g¥" on F.

Let DE®T : T(S(TM)® E® F) — T(S(TM)® E ® F) denote the
corresponding (twisted) Dirac operator.

It is pointed out in Page 933 that one can define the reduced n-invariant
of DE®F denoted by 7(DF®!"), by working on (possibly) non-self-adjoint
elliptic operators.

In this section, we will first recall the main result in Ref. 14 on 7(DF®F)

and then show how it leads directly to a proof of the variation formula of
Gilkey, Theorem 3.7.13
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2.1. Chern-Simons classes and flat vector bundles

We fix a square root of /—1 and let ¢ : A(T*M) — A(T*M) be the homo-
morphism defined by ¢ : w € A*(T*M) — (2rv/—1)""2w. The formulas in
what follows will not depend on the choice of the square root of v/—1.

If W is a complex vector bundle over M and V¥, V¥ are two connec-
tions on W. Let Wi, 0 < ¢ < 1, be a smooth path of connections on W
connecting V" and V. We define the Chern-Simons form C'S(V{, Vi)

to be the differential form given by

s (VYY) = - (%\1[__1)%@[01 T [BZ;W exp (- (vf")z)} dt.
(2.1)

Then (cf. Chapter 117)
dCs (V' , V) =ch (W,V}) —ch (W, V). (2.2)

Moreover, it is well-known that up to exact forms, CS(V§ , V) does not
depend on the path of connections on W connecting V¥ and VIV,

Let (F,V¥) be a flat vector bundle carrying the flat connection V¥.
Let ¢¥ be a Hermitian metric on F. We do not assume that V" preserves
g7, Let (VF)* be the adjoint connection of V¥ with respect to g*.

From (4.1), (4.2)% and §1(g),® one has

(VY =vF 1w (F g7 (2.3)

with
w(F,g") = (¢F) " (VFgF). (2.4)

Then
vhe=vF 4 %w (F, g™) (2.5)

is a Hermitian connection on (F, gf') (cf. (4.3)%).
Following (2.6)** and (2.47),' for any r € C, set

v —1r
2

Then for any r € R, VF(") is a Hermitian connection on {F, g*).
On the other hand, following (0.2),° for any integer j > 0, let
c25+1(F, g*') be the Chern form defined by

coin (F,g") = (2rv/=1) 7 27 @ DT [ (Fg5)] . (2.7)

vF,e,(T) — vF,e +

w (F,¢"). (2.6)
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Then C2j+1(F,gF) is a closed form on M. Let ¢;11(F) be the associated

cohomology class in H%+1(M,R), which does not depend on the choice of

g

For any j > 0 and 7 € R, let a;(r) € R be defined as

1 .
a;{r) = /o (1+ uzirz)ﬂ du . (2.8)

With these notation we can now state the following result first proved
in Lemma 2.12.13

Proposition 1: The following identity in H°34(M,R) holds for anyr € R,

“+oo
Fe Fe,(r}\ _ _L aj(T) ]
cs (v v )_ =3 e (F). (2.9)

i=

2.2. m-tnvariant associated to flat vector bundles

Let
DE®Fe TSITM)®EQF) — I(S(TM)® E® F) (2.10)

denote the Dirac operator associated to the connection V¢ on F' and
V¥Z on E. Then DP®F¢ ig formally self-adjoint and one can define the
associated reduced n-invariant as in.!

In view of Proposition 1, one can restate the main result of,' which is
Theorem 2.2,'* as follows,

7 (DFPF) =7 (DP®Te) 4 / A(TM)ch(E)CS (VP4 VT) mod Z,
M
(2.11)

where A\(TM) and ch(FE) are the A class of TM and the Chern character
of E respectively.l?

Now let V¥ be another flat connection on F. We use the notation with
" to denote the objects associated with this flat connection.

Then one has

-~

7 (DFer) =7 (DPere) + / ATM)en(E)CS (VF€, V7)) mod 7.
M
(2.12)
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By the variation formula for n-invariants associated to self-adjoint Dirac
operators,*? one knows that

7 (5E®F’e) 7 (DEOPe) = / A(TM)eh(E)CS (vFﬁ, er) mod Z.
M
(2.13)
From (2.11)—(2.13), one deduces that

-~

ﬁ(f)Ec@F) — F(DESFY = / A(TM)ch(E)CS (V”,?F’e) (2.14)
M
- ] A(TM)ch(E)CS (V5 v7) + / ATM)(E)CS (V7. V)
M M

= f A(TM)ch(E)CS (vFﬁF) mod Z,
M

which is exactly the Gilkey formula, Theorem 1.6'* for the operator P =
DF therein.

Remark 2: As was indicated in Remark 2.4,' the main result in'* holds
also for general Hermitian vector bundles equipped with a (possibly) non-
Hermitian connection. Indeed, if we do not assume that V! is flat, then
at least (2.3)-(2.6) still holds. Thus for any r € R, we have well-defined
(formally self-adjoint) operator DF®F () which is associated to the Hermi-
tian connection V&) on F. For any r € R, one then has the variation
formylat+4

n(DFEY(r)) —p(DF®He) = f A(TM)ch(E)CS (Ve 7)) mod Z.
M
(2.15)

By (2.1), one sees easily that the right hand side of (2.15) is a holomorphic
function (indeed a polynomial) of . Thus, by analytic continuity, as in,*
one gets that for any r € C, (2.15) still holds. In particular, if we set

r=+—1, we get

7 (DF®F) =7 (DFEFe) 4 | A(TM)ch(BE)CS (VF*,VF) mod Z,
( )=7( ) y ( )
(2.16)

which generalizes (2.11). Then by proceeding as above, we see that (2.14)
holds without the assumption of the flatness of connections V¥ and V¥,
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By (2.1) and (2.6},

Cs (vFe vFem) 2; /1Tr[32"-w (F, g%)

—1 Fie,(tr) 2
2 G dt
Xexp(27r _-1 (C )

dim A

= > a(VF, ") . (2.17)

=0

By (2.6), one has

2 v —1 2
(vF,E,(T)) — (vF,e)2 + TT (vFe (F g )) rz (UJ (51’9117'))2
(2.18)
Note that
VEew (Fg") = [V w(Fg¢")] =0, if V¥ is flat. (2.19)

By taking adjoint of (2.18), we see that when r € C is purely imaginary,
one has

(7 (7)) = s (07 =T o))
_ ( 1 ) V=Tr

o) 3 (VFew (F,¢7)). (2.20)

From (2.1), (2.17) and (2.20), one sees that when r € C is purely imag-
inary, then

Re (CS (VF’E,VF’E’(T))) = Z a; (VF,g") rt,

(2.21)
1m (€5 (958,750 ) = \/_ > ai (VF,gF) rt
odd

Thus when r € C is purely imaginary, from (2.16) and (2.21), we have

Re(f(DF®F (1)) = (DF®Fe) 4 Z / A (TM)ch(E)a;(VY, gF) mod Z,

t even

Im (7 (D®F (r))) \/_ Sor / A(TM)ch(E)a; (VF,¢7) . (2.22)

1 odd
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In particular, by setting r = v/—1, we get

+ Y (-1)f fM A(TM)ch(B)a; (v, gF) mod Z,

1 even

Im (7 (D#®F)) = ¥ (—1)’:2—1/ ATM)ch(E)a; (V7,g7) . (2.23)
i odd M

This generalizes the main result in Ref. 14.

3. n-Invariant and the Refined Analytic Torsion of
Braverman-Kappeler

Recently, in a series of preprints,”® Braverman and Kappeler introduce
what they call refined analytic torsion. The n-invariant associated with flat
vector bundles plays a role in their definition. In this section, we first ex-
amine the imaginary part of the n-invariant appearing in,” ® from the point
of view of the previous sections and propose an alternate definition of the
refined analytic torsion. We then combine this refined analytic torsion with
the n-invariant to construct analytically a univalent holomorphic function
on the space of representations of 7 (M) having the absolute value equals
to the Ray-Singer torsion, thus resolving a problem posed by Burghelea.!!

3.1. n-invariant and the refined analytic torsion of
Braverman-Kappeler

Since there needs no spin condition in,”™® here we start with a closed ori-
ented smooth odd dimensional manifold M with dim M = 2n+1. Let g7
be a Riemannian metric on T'M. For any X € T'M, let X* € T*M denote
its metric dual and ¢(X) = X* A —ix denote the associated Clifford action
acting on A*(T*M), where X*A and ix are the notation for the exterior
and interior multiplications of X respectively.

Let ey, ..., ezn+1 be an oriented orthonormal basis of T'M. Set

T = (V1) eler) - cleznsa) - (3.1)

Then I'? = 1d on A*(T*M).

Let (F,¢") be a Hermitian vector bundle over M equipped with a flat
connection VF which need not preserve the Hermitian metric g*" on F.
Then the exterior differential d on Q* (M) = I'(A*(T*M)) extends naturally
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to the twisted exterior differential d¥ acting on QO* (M, F) = D(A*(T*M) ®
We define the twisted signature operator Dgig to be
1
Df, = 5 (Td¥ +df'T) : QV(M, F) — Q%" (M, F). (3.2)

It coincides with the odd signature operator %Beven in.™*

Let VAT (T"MIQF (yogp GATT(T"M)@F.e) he the tensor product con-
nections on A®Ve™ (T* M) ® F obtained from V¥ (resp. V¢) and the canon-
ical connection on A¢Ve™(T* M) induced by the Levi-Civita connection V'™
of gTM,

From (3.2), it is easy to verify that

2n+4-1
D&, =T ( ) c(ei)vf”“”*M)@F) - (3.3)
i=1
Set
2n+1
D& =T (Z c(e,-)vf“”T*M)@Fve) . (3.4)
i=1
Then Dgi’ge is formally self-adjoint.

Since locally one has identification S(TM) @ S(TM) = AV (T*M),
one sees that one can apply the results in the previous section to the case
E = S(T'M) to the current situation.

In particular, we get

Re (7 (D)) =7 (DEs)  mod Z,

Im (77 (DE,)) = \/%_1 fM L(TM,V™)Cs (Ve vh)

= ——1 L(TM S ——22jj! F 3
3 : , 5

where L(TM, VT M) is the Hirzebruch L-form defined by

L(TM,VTM) = pdet'/? sk (3.6)
’ tanh (RTM /2) /]’

with RTM = (VTM)2 the curvature of V'™ and L(TM) is the associated
class.

Remark 3: By proceeding as in Section 2, we can get Theorem 3.7'2 easily
by using the results in Remark 2.
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Proposition 4: The function

¥ (F,97) = Im (7,(D&,)) + - /M L(TM)e (F) (3.7)

is a locally constant function on the set of flat connections on F. In par-
ticular, W (F,VE) =0 if V¥ can be connected to a unitary flat connection
through a path of flat connections.

Proof. Let Vf, 0 <t <1, be asmooth pass of flat connections on F.
From (3.5), we get

V=TIm (7 (DEg 1)) = V=-Tim (7 (Ddiyo)

:f L(TM, V™) Cs vFe vF f (TM, V™) CS (v{jﬁ,vg)
M
_ \f_1/ L(TM, V™) 1m (C$ (v, vE) - 08 (V] v5))

M

=+v—1 fM L (TM, V™) Im (CS (V{,VT)). (3.8)

Now consider the path of flat connections Vf , 0 <t < 1. Since for any
t €10,1], (VF)?2 =0, from (2.1), (2.5), one gets

CS(Vg, Vi) = (ﬂ%) T (VE - V) = (ﬁ) Tr (véﬂe _ Vf,e)

(i) (jentR o) - pntean) . @9)

Thus, one has

V—1Im (CS (V{, V1)) = —%\1/?1% (%WO(F,QF) - %WI(F, gF))
— 5= @ (V) — e (B9)) - (310
From (3.8) and (3.10), we get
i (7(D5.)) + g | LM e (1 9)
— I (7 (DE0)) + o= /ML(TM, VM) e (FVE),  (311)

from which Proposition 4 follows. Q.E.D.
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Remark 5: Formula (3.11) is closely related to Theorem 12.3.7 Moreover,
for any representation o of the fundamental group 7y (M), let (F,, V) be
the associated flat vector bundle. One has

exp (¥ (F,, VI=)) = r(a), (3.12)

where r(a) is the function appearing in Lemma 5.5.2 While from (3.5) and
(3.7), one has

+o0 2
v (F,VT) = —% /M L(TM)> é:%ﬁ@jﬂ(ﬁ’) . (3.13)
Jj=1

Combining with (3.12), this gives an explicit local expression of r(«) as well
as the locally constant function r¢ defined in Definition 5.6.°

Remark 6: To conclude this subsection, we recall the recent modifica-
tion due to Braverman-Kappeler (Braverman mentioned this in a recent
Oberwolfach conference) themselves of the original definition of the refined
analytic torsion in”? as follows: for any Hermitian vector bundle equipped
with a flat connection V¥ over an oriented closed smooth odd dimensional
manifold M equipped with a Riemannian metric g™, let p(VF, g7™) be
the element defined in (2.13).% Then the modified definition of the refined
analytic torsion is given by

pan (Vg™ = p (VF, g"™) emV/ =Lk Dess) (3.14)

where 7j(Dsig) is the reduced 7 invariant in the sense of Atiyah-Patodi-
Singer! of the signature operator coupled with the trivial complex line bun-
dle over M (i.e. Dgjg := Dgg). There are two advantages of this reformula-
tion. First, by multiplying the local factor e~ ™ (EY") hakes the compari-
son formula [9, (5.8)] of the refined analytic torsion has closer resemblance
in comparing with the formulas of Cheeger-Miiller and Bismut-Zhang (cf.?).
The advantage of this reformulation is that since 7j(Dsig) various smoothly
with respect to the metric g7™ (as the dimension of ker(Dg,) does not
depend on the metric g7™), the ambiguity of the power of v/—1 disappears
if one uses e™VIk(F)Dsig) to replace the factor e Iy L™ i
(2.14).°

3.2. Ray-Singer analytic torsion and univalent holomorphic
functions on the representation space

Let (F, V) be a complex flat vector bundle. Let g% be an Hermitian metric
on F. We fix a flat connection V¥ on F' (note here that we do not assume
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that VF and V¥ can be connected by a smooth path of flat connections).
Let g™™ be a Riemannian metric on TM and V7™ be the associated
Levi-Civita connection.

Let 7j(VF,V¥) € C be defined by
ﬁ(vFﬁF) :] L (TM,V™™)CS (ﬁF*E,vF) . (3.15)
M

One verifies easily that 7(VF, V) € C does not depend on ¢7M | and is a
holomorphic function of V¥. Moreover, by (3.5) one has

T (7 (VF,%F)) = Tm (7 (DL,)) . (3.16)

Recall that the refined analytic torsion of”? has been modified in
(3.14).
Set

Ton (VF,gTM) = Dan (VF,gTM) exp (\/——_17rfﬁ (VF, ﬁF)) . (3.17)

Then ’Z;H(VF , gTM ) is a holomorphic section in the sense of Definition 3.4.°
By Theorem 11.3% (cf. (5.13)%), (3.14), (3.16) and (3.17), one gets the
following formula for the Ray-Singer norm of T,, (V¥ g7™),

o (97 72 =1 (3.18)

In particular, when restricted to the space of acyclic representations,
Ton(VF, gTM) becomes a (univalent) holomorphic function such that

T (V5 g™ | = TRS(VT), (3.19)

the usual Ray-Singer analytic torsion. This provides an analytic resolution
of a question of Burghelea.!!

Remark 7: If one considers 7.2

an?

7;211 (VF’QTM)I = 7;211 (VF?QTM)

X exp (sz—T (ﬁ (ﬁg};) k()G (DSig))) . (3.20)

then one can further modify it to

which does not depend on the choice of vF , and thus gives an intrinsic
definition of a holomorphic section of the square of the determinant line
bundle, having the same norm as that of 7.2 (V¥, g?). The dependence
of 7,, on « indicates in part the subtleness of the analytic meaning of the
phase of the Turaev torsion (cf.!?:19).
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Next, we show how to modify the Turaev torsion'?16 to get a holomor-
phic section with Ray-Singer norm equal to one.

Let € be an Euler structure on M and o a cohomological orientation.
We use the notation as in” to denote the associated Turaev torsion by p .

Let c(e) € Hi(M,Z) be the canonical class associated to the Euler
structure ¢ (cf.1® or Section 5.2!2). Then for any representation ap corre-
sponding to a flat vector bundle (F, V'), by Theorem 10.2'? one has

|pe,0 ()75 = [det ap(c(e))]™2 . (3.21)

Let Laimar 1(TM) € HY™M-1(Af 7) be the degree dim M — 1 com-
ponent of the characteristic class L(T'M). Let Li(TM) € H;(M,Z) denote
its Poincaré dual. Then one verifies easily that

|det o (Ta(T2))| = exp (/M L (TM, V™) ¢, (F, VF)) . (3.22)
On the other hand, by Corollary 5.9,% Ly (T'M) + ¢(¢) € Hi(M,Z) is
divisible by two, and one can define a class 8, € H1(M,Z) such that
28, = Ly (TM) + c(e) . (3.23)
From Proposition 4, (3.22) and (3.23), one finds
det aF(c(s))|1/2 = |det ap (8:)] ' exp (~7® (F, VF) +xlm (77 (D&,))) ,

where ®(F, VF) is the locally constant function given by (3.13).
We now define a modified Turaev torsion as follows:

Tero (F,VE) = peg (ap) "V )IW=I0(VVT) (et ap (B.)) . (3.25)

Clearly, 7. o(F, V) is a holomorphic section in the sense of Definition
3.4.% Moreover, by (3.21), (3.24) and (3.25), its Ray-Singer norm equals to
one. Thus it provides another resolution of Burghelea’s problem mentioned

above which should be closely related to what in.'®
Combining with (3.18) we get
Tn FTM
w (V9.9 (3.26)
7;3,0 (F7 VF)

which, in view of (3.12), is equivalent to (5.10).”
On the other hand, since now 7,,(VF, ¢"M)/T; o(F,V¥) is a holomor-
phic function with absolute value identically equals to one, one sees that
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there is a real locally constant function 6. o(F, VE) such that

Tan (VF, g7M) _ VT o (B YT) (3.27)
Teo (F,V7) | |

which is equivalent to (5.8).°

Remark 8: While the univalent holomorphic Eections Tan and 7T, o depend
on the choice of an “initial” flat connection V¥, the quotients in the left
hand sides of (3.26) and (3.27) do not involve it.

Remark 9: One of the advantages of (3.26) and (3.27) is that they look in
closer resemblance to the theorems of Cheeger, Miiller and Bismut-Zhang5
concerning the Ray-Singer and Reidemeister forsions.

Now let VI and V£ be two acyclic unitary flat connections on F. We do
not assume that they can be connected by a smooth path of flat connections.

By (14.11)7 (c¢f. (6.2)%), (3.15), (3.17) and the variation formula for
n-invariants,»®* one finds

Tan(VEg™) _ TM(VE) | exp(o Imn(DS,,) + V= Lni(VE, V)
TlVE g™~ TRS(VE)  exp(—y/=Tnq(D, o) + V=1mi(V, V7))

_ TRV exp(— V=117i(D&, 1) + V177D, )
= TRE(VE) (v Tn [y (LM, VTH)OS(VE, V)
RS/ F
5R5E3F§ exp(\/_ﬂ- Sf(D81g 1 DSlg 2)) (328)

where DSlg , and DSlg , are the signature operators associated to V# and
VE respectively, while sf (DSIg 17D81g o) is the spectral flow of the linear
path connecting DSig’1 and DSIg,Q’ in the sense of Atiyah-Patodi-Singer.?

Remark 10: Since we do not assume that V1" and V4’ can be connected by
a path of flat connections, our formula extends the corresponding formula
in Proposition 6.2.°

Corollary 11: The ratio Ton(VE,g"M)/TRS(VE) is a locally constant
function on the set of acyclic unitary flat connections on F'.

Example 12: Let VY be an acyclic unitary flat connection on F. Let
g € T(U(F)) be a smooth section of unitary automorphisms of F. Then
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g~ 1V¥ g is another acyclic unitary flat connection on F. A standard calcu-
lation shows that

i 1l F
sf (D& 08 ") = [ TiTMans). (3.29)
where ch(g) € H°M(M,R) is the odd Chern character associated to g
(cf.*7). From (3.29), one sees that if [, L(TM)ch(g) is nonzero, then V¥
and ¢~ 'V¥g do not lie in the same connected component in the set of
acyclic unitary flat connections on F'.

3.3. More on n-invariants, spectral flow and the phase of
the refined analytic torsion

We would like to point out that the (reduced) n-invariant for non-self-
adjoint operators we used above, when considered as a C-valued function,
is the original 7 invariant appeared in® (see also!3). In this section, we show
that the R-valued variation formula for n-invariants (which has been used
in (3.28)) admits an extension to a C-valued variation formula valid also
for the non-self-adjoint operators discussed in the present paper.

First, the concept of spectral flow can be extended to non-self-adjoint
operators, and this has been done in'® in a general context.

For our specific situation, if Déﬂg’t, 0 <t <1, is a smooth path of
(possibly) non-self-adjoint signature operators, following,'® we define the
spectral flow of this path to be, tautologically,

sf (Dgig,wDSFig,l) =
# {spec (Dig0) N {Re(A) > 0} — spec (D§, 1) N {Re(p) < 0}}

— # {spec (D, o) N {Re()) < 0} — spec (D&, ;) N {Re(u) > 0} },
(3.30)

which simply replaces the number zero in the original definition for self-
adjoint operators® by the axis of purely imaginary numbers.

Now let V', 0 <t < 1, be a smooth path of (not necessary unitary
and/or flat) connections on F. Let Dgig,t, 0 <t <1, be the corresponding
path of signature operators. With the definition of spectral flow, one then
sees easily that the following variation formula holds in C,

W(Dg‘ig,l) - ﬁ(DE‘I:;g,O) = Sf(Dgig,Oﬂ Dgig,l) + /M L(TM7 VTM)CS(V[})?: Vf)
(3.31)
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Now we observe that in,”™® Braverman and Kappeler propose an alter-

nate definition of (reduced) 7 invariant, which if we denote by ngx, then
(cf. Definition 4.37 and Definition 5.2)

nex (Déig) =7 (D) — m- (DEg) (3.32)

where m _ (Dglg) is the number of purely imaginary eigenvalues of DSlg of
form Av/—1 with A < 0.

Formulas (3.31) and (3.32) together give a variation formula for npg,

which can be used to extend (3.28) to non-unitary acyclic representations.
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