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HOLOMORPHIC MORSE INEQUALITIES
IN SINGULAR REDUCTION

Youliang Tian and Weiping Zhang

Abstract. We extend our Morse type inequalities for holomorphic symplectic
reductions [TZ1, 2] to the case of singular reductions.

0. Introduction and the statement of main results

Let (M, ω) be a closed symplectic manifold. We make the assumption that
there is a Hermitian line bundle L over M admitting a Hermitian connection
∇L with the property that

√−1
2π (∇L)2 = ω. When such a line bundle exists, it

is usually called a prequantum line bundle over M . Let J be an almost complex
structure on TM such that gTM (u, v) = ω(u, Jv) defines a Riemannian metric
on TM . Then one can construct canonically a Spinc-Dirac operator

(0.1) DL : Ω0,∗(M, L) → Ω0,∗(M, L),

which gives the finite dimensional virtual vector space

(0.2) Q(M, L) =
(
kerDL

) ∩ Ω0,even(M, L) − (
kerDL

) ∩ Ω0,odd(M, L).

Next, suppose that (M, ω) admits a Hamiltonian action of a compact con-
nected Lie group G with Lie algebra g. Let µ : M → g∗ be the corresponding
moment map. Then a formula due to Kostant [Ko] (cf. [TZ2, (1.13)]) induces a
natural g action on L. We make the assumption that this g action can be lifted
to a G action on L. Then this G action preserves ∇L. One can also assume,
after an integration over G if necessary, that G preserves the Hermitian metric
on L, the almost complex structure J and thus also the Riemannian metric gTM .
Q(M, L) then becomes a virtual representation of G. We denote by Q(M, L)G

its G-invariant part.
Now let a ∈ g∗ be a regular value of µ. Let Oa ⊂ g∗ be the coadjoint orbit of

a. For simplicity, we assume that G acts on µ−1(Oa) freely. Then the quotient
space MG,a = µ−1(Oa)/G is smooth. Furthermore, ω descends canonically to a
symplectic form ωG,a on MG,a so that one gets the Marsden-Weinstein reduction
(MG,a, ωG,a). The pair (L,∇L) also descends canonically to a Hermitian line
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bundle LG,a with a Hermitian connection denoted by ∇LG,a . 1 The almost
complex structure J also descends canonically to an almost complex structure
on TMG,a. Thus once again one can construct canonically a Spinc-Dirac operator
DLG,a as well as the corresponding virtual vector space Q(MG,a, LG,a).

If 0 ∈ g∗ is a regular value of µ, then the well-known geometric quantization
conjecture of Guillemin and Sternberg [GS] asserts that

(0.3) dimQ(M, L)G = dimQ(MG,0, LG,0).

This conjecture has been proved in various generalities in [DGMW, G, GS, JK,
M1, M2, V], mainly in using the equivariant index theorem of Atiyah-Segal-
Singer [AS].

In [TZ1, 2], with the help of the techniques in [BL], we have developed a
direct analytic approach to this quantization conjecture. Besides offering an
alternative proof of (0.3), our analytic methods also lead immediately to further
generalizations which include (i) the case where L is replaced by an arbitrary G-
equivariant Hermitian vector bundle verifying certain natural conditions and (ii)
the case where (M, ω, J) is Kähler, in which one can refine the results mentioned
in (i) to systems of Morse type inequalities.

On the other hand, a generalization of (0.3) to the general case where 0 ∈ g∗

might be a singular value of µ has been given by Meinrenken-Sjamaar [MS].
The purpose of this note is to extend the Morse type inequalities mentioned

above to certain cases where 0 ∈ g∗ might be a singular value of µ.
For this purpose, we assume that (M, ω, J) is Kähler and that G acts holo-

morphically on M . Then L carries a unique holomorphic structure so that ∇L

is the associated Hermitian holomorphic connection. Furthermore, for each reg-
ular value a ∈ g∗ of µ, (MG,a, ωG,a) is Kähler and LG,a is a holomorphic vector
bundle over MG,a. We can now state our main result as follows, where we still
use the superscript G to denote the G-invariant part.

Theorem 0.1. In the case where (M, ω, J) is Kähler, if µ−1(0) is nonempty,
then there exists an open neighborhood O of 0 ∈ g∗ such that for any regular
value a ∈ O of µ with µ−1(a) nonempty, the following Morse type inequality for
Dolbeault cohomologies holds for any integer p,

(0.4)

dimH0,p(M, L)G − dimH0,p−1(M, L)G + · · · + (−1)p dimH0,0(M, L)G

≤ dimH0,p(MG,a, LG,a) − dimH0,p−1(MG,a, LG,a)

+ · · · + (−1)p dimH0,0(MG,a, LG,a).

Theorem 0.1 still holds, for orbifolds, when G does not act on µ−1(a) freely. It
reduces to the results proved in [TZ1, 2] when a = 0 is a regular value of µ. Also,
if we drop the assumption in Theorem 0.1 that (M, ω, J) is Kähler, then we get

1However, if a �= 0, then LG,a is in general no longer a prequantum line bundle over
(MG,a, ωG,a).
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as in [TZ3] the following singular quantization formula of Meinrenken-Sjamaar
[MS] which extends (0.3),

(0.5) dimQ(M, L)G = dimQ(MG,a, LG,a).

We organize the rest of this note as follows. In Section 1, we prove an easy
result which will play an essential role in the proof of Theorem 0.1. In Section
2, we prove Theorem 0.1.

1. An inequality for a ∈ g∗ sufficiently close to zero

In this section, we prove an easy estimate which is essential for the proof in
the next section. In order to explain the basic ideas clearer, we will first treat
the case where G is abelian in a) and then prove the remaining G nonabelian
case in b).

a) The abelian case. In this subsection, we assume that G is a torus.
For any a ∈ g∗, set

(1.1)
µa = µ − a,

Ha = |µ − a|2 = |µa|2.

Proposition 1.1. There is an open neighborhood O of 0 ∈ g∗ such that for any
a ∈ O, the following inequality holds at each critical point x of Ha,

(1.2) 〈µ(x) − a, µ(x)〉 ≥ 0.

Proof. We will use Kirwan’s geometric characterization [K1] of the critical point
set of the norm square of moment maps to prove (1.2).

As in [K1, 3.4], denote by A ⊂ g∗ the finite set of weights associated to µ,
which consists of the values of µ taking on the fixed point set of G on M . We
also denote by Y the set of convex hulls in g∗ generated by nonempty subsets
of A. Then Y consists naturally of two parts: the part YI consists of all those
convex hulls not containing 0, and the rest part denoted by YII .

Now let Uδ be an open ball in g∗ with center 0 and radius δ > 0 such that
the closure Uδ does not intersect with any convex hull in YI . The existence of
Uδ is clear. Set O = Uδ/2

Let a ∈ O. Let Aa = {A − a : A ∈ A} be the finite set of weights associated
to µa, and Ya = {Y − a : Y ∈ Y} the associated set of convex hulls. Then Ya

consists of two parts accordingly: YI,a = {Y −a : Y ∈ YI} and YII,a = {Y −a :
Y ∈ YII}. One verifies easily that the closure O does not intersect with any
convex hull in YI,a.

Let Ba be the open ball Ba = {y ∈ g∗ : |y + a
2 | < |a2 |}. Clearly, Ba ⊂ O.

Thus Ba does not intersect with any convex hull in YI,a.
Now take Y ∈ YII,a. Let y ∈ Y be the (unique) point on Y which is closest

to 0. We claim that y ∈ g∗\Ba.
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To prove this claim, we suppose on the contrary that y ∈ Ba. Let x ∈ ∂Ba,
with x �= −a, lie in the straight line generated by y and −a ∈ ∂Ba ∩ Y , then
it is easy to see that x ∈ Y . For if x /∈ Y , then y should lie in a face of Y
which does not contain −a. This would imply that y lies in a convex hull in
YI,a, a contradiction. But with such an x ∈ ∂Ba ∩ Y , one encounters another
contradiction d(0, x) < d(0, y). Thus we should have y /∈ Ba.

By this and by the result of Kirwan [K1, 3.12], one finds that if y is a critical
point of Ha, then

(1.3) 0 ≤
∣∣∣µa(y) +

a

2

∣∣∣
2

−
∣∣∣
a

2

∣∣∣
2

= 〈µ(y) − a, µ(y)〉,

which is exactly (1.2).

b) The nonabelian case. In this subsection, we no longer assume that G is
abelian.

Let T be a maximal torus of G, with Lie algebra t. Then µT = PT µ, where
PT is the orthogonal projection from g∗ to t∗, is the moment map of the induced
T action on (M, ω) (cf. [K1, 3.3]). Let OT ⊂ t∗ be the open set defined in a)
for µT . Then O = Ad G(OT ) ⊂ g∗ is an open neighborhood of 0 ∈ g∗.

Take a ∈ O. Recall that the coadjoint orbit Oa admits a canonical symplectic
(actually Kähler) form ωa and the (holomorphical) AdG action on Oa is Hamil-
tonian with the moment map given by the canonical embedding ia : Oa ↪→ g∗

(cf. [McS, Chap. 5]).
We now form the symplectic product (M ×Oa, ω× (−ωa)). Then the induced

action of G on M ×Oa is Hamiltonian with the moment map µa : M ×Oa → g∗

given by

(1.4) µa(x, b) = µ(x) − b.

Set

(1.5) Ha = |µa|2.
We can now state the main result of this section as follows.

Proposition 1.2. If (x, b) ∈ M ×Oa is a critical point of Ha, then one has the
following inequality for the inner product on g∗,

(1.6) 〈µ(x) − b, µ(x)〉 ≥ 0.

Proof. Without loss of generality, we can assume that a ∈ OT . By a result of
Kirwan [K2, pp. 551], we know that for any critical point (x, b) ∈ M × Oa of
Ha , one can find y ∈ t∗ such that (y, a) is a critical point of Ha in the G-orbit
of (x, b).

Now since a ∈ OT , one finds from Proposition 1.1 and from [K1, 3.3] that

(1.7) 〈µ(y) − a, µ(y)〉 ≥ 0.
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(1.6) then follows from the AdG-invariance of the inner product on g∗.

Remark 1.3. Propositions 1.1 and 1.2, while trivial, were first proved in a former
preprint [TZ3], which will not be further submitted for publication.

2. A proof of Theorem 0.1

This section consists of two parts. In a), we state a system of holomorphic
Morse inequalities valid for general vector bundles, which follows immediately
from the arguments in [TZ2]. In b), we combine the result in a) and Proposition
1.2 to complete the proof of Theorem 0.1.

In this section, we assume (M, ω, J) is a closed Kähler manifold and that the
Hamiltonian G action acts holomorphically on it.

a) Holomorphic Morse inequalities for general coefficients. In this sub-
section, we assume that 0 ∈ g∗ is a regular value of µ and, for simplicity, that G
acts on µ−1(0) freely. Then one can construct the canonical Marsden-Weinstein
reduction (MG = µ−1(0)/G, ωG) which is still Kähler (cf. [GS]).

Let now E be a holomorphic Hermitian vector bundle, with the holomorphic
connection denoted by ∇E , over M . We make the assumption that the G ac-
tion on M lifts to a holomorphic G action on E which preserves the Hermitian
metric and also the holomorphic Hermitian connection ∇E . Then E descends
canonically to a holomorphic Hermitian vector bundle EG over MG.

Let hi, 1 ≤ i ≤ dimG, be an orthonormal base of g∗. Let Vi, 1 ≤ i ≤ dimG,
be the dual base of hi, 1 ≤ i ≤ dimG. Then the moment map µ can be written
as

(2.1) µ =
dim G∑

i=1

µihi,

with each µi a real function on M . For any V ∈ g, we use the same notation to
denote the vector field it generates on M .

Now take V ∈ g. Set

(2.2) rE
V = LE

V −∇E
V ,

where LE
V denotes the infinitesimal action of V on E.

By using the arguments in [TZ2, Sect. 4d)], one gets immediately the follow-
ing holomorphic refinement of [TZ2, Theorem 4.2].

Theorem 2.1. If µ−1(0) is nonempty and if at each critical point x ∈ M\µ−1(0)
of H,

(2.3)
√−1

dim G∑

i=1

µi(x)rE
Vi

(x) ≥ 0,
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then the following Morse type inequality for Dolbeault cohomologies holds for any
integer p,

(2.4)

dimH0,p(M, E)G − dimH0,p−1(M, E)G

+ · · · + (−1)p dimH0,0(M, E)G

≤ dimH0,p(MG, EG) − dimH0,p−1(MG, EG)

+ · · · + (−1)p dimH0,0(MG, EG).

b) A proof of Theorem 0.1. In this subsection, we no longer assume that
0 ∈ g∗ is a regular value of µ.

Take a regular value a ∈ O of µ as defined in Section 1b). For simplicity,
we assume G acts on µ−1(Oa) freely. Then 0 ∈ g∗ is a regular value of µa.
Furthermore, one has the standard identification of the symplectic quotients

(2.5) µ−1
a (0)/G ≡ µ−1(Oa)/G = MG,a,

which carries a canonically induced symplectic form ωG,a (cf. [McS, Chap.
5]). Furthermore, since G acts on M , Oa and thus M × Oa holomorphically,
(MG,a, ωG,a) is again Kähler.

Let π denote the projection from M×Oa to its first factor M . Let L = π∗L be
the pull-back holomorphic Hermitian line bundle over M×Oa with the pull-back
holomorphic Hermitian connection ∇L on L verifying that

(2.6)
√−1
2π

(∇L)2
= π∗ω.

Furthermore, the G action on L lifts canonically to a holomorphic action on L.
In particular, for any V ∈ g, its induced infinitesimal action on L is, via the
Kostant formula [Ko] (cf. [TZ2, (1.13)]) for the g-action on L, given by

(2.7) LL
V = ∇L

V − 2π
√−1〈µπ, V 〉,

from which one has, in using the notation in (2.2), that

(2.8) rLVi
= −2π

√−1µi(x)

at any point (x, b) ∈ M ×Oa. By (2.8) and Proposition 1.2, one verifies that at
any critical point (x, b) ∈ M ×Oa of Ha,

(2.9)
dim G∑

i=1

√−1µa,i(x, b)rLVi
(x, b) = 2π〈µ(x) − b, µ(x)〉 ≥ 0.

One the other hand, one verifies directly that the induced line bundle LG over
µ−1

a (0)/G is exactly the line bundle LG,a over MG,a = µ−1(Oa)/G.
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One can then apply Theorem 2.1 to M ×Oa, µa and L to get

(2.10)

dimH0,p(M ×Oa,L)G − dimH0,p−1(M ×Oa,L)G

+ · · · + (−1)p dimH0,0(M ×Oa,L)G

≤ dimH0,p(MG,a, LG,a) − dimH0,p−1(MG,a, LG,a)

+ · · · + (−1)p dimH0,0(MG,a, LG,a)

for any integer p. Furthermore, by the definition of L, one verifies that

(2.11)
dimH0,p(M ×Oa,L)G =

∑

i+j=p

dim
(
H0,i(M, L) ⊗ H0,j(Oa, C)

)G

= dimH0,p(M, L)G,

which follows easily from the standard facts that

(2.12)
dimH0,0(Oa, C) = dimH0,0(Oa, C)G = 1,

dimH0,j(Oa, C) = 0 for j ≥ 1.

(0.4) follows from (2.10)-(2.12). The proof of Theorem 0.1 is completed.
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