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To generalize the Hopf index theorem and the Atiyah–Dupont vector fields theory, one
is interested in the following problem: for a real vector bundle E over a closed manifold
M with rankE = dimM , whether there exist two linearly independent cross sections of
E? We provide, among others, a complete answer to this problem when both E and M

are orientable. It extends the corresponding results for E = TM of Thomas, Atiyah, and
Atiyah–Dupont. Moreover we prove a vanishing result of a certain mod 2 index when
the bundle E admits a complex structure. This vanishing result implies many known
famous results as consequences. Ideas and methods from obstruction theory, K-theory
and index theory are used in getting our results.
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1. Introduction

On an n-dimensional closed differentiable manifold M , there is a well known theo-

rem of H. Hopf which asserts that the number of zeros of a smooth tangent vector

field v depends only on the manifold M and is equal to the Euler characteristic

χ(M). Moreover, the vanishing of the Euler characteristic χ(M) is the necessary

and sufficient condition for the existence of a smooth tangent vector field without

zeros. Here one assumes of course that the number of zeros of v is finite and that

each is counted with an appropriate multiplicity which is called the index of v at that

point. Instead of a single vector field one considers r vector fields V = {v1, . . . , vr}
and is interested in their singular set A, that is, the set of points on the manifold

where they become linearly dependent. In general this singular set A has dimension

r−1. The standard primary obstruction theory provides one way of generalizing the
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classical Hopf Theorem. However the general theory of characteristic classes does

not give complete topological information about the singular set. For instance, this

theory tells nothing about the singularities if the dimension of A is less than r− 1.

Atiyah and Dupont [1, 3] generalized the Hopf theorem by considering the

opposite extreme case in which the singular set A is assumed to be finite. At each

singular point p, one has a local obstruction

IndV (p) ∈ πn−1Vn,r ,

where Vn,r is the Stiefel manifold of orthonormal r-frames in Rn. For r = 1, one has

Vn,r = Sn−1, πn−1Vn,1 ∼= Z which give the multiplicity used in the Hopf theory. In

the general case r > 1, one can form the global obstruction Ind(V ) and ask how

far it is independent of M . Clearly the vanishing of Ind(V ) is the necessary and

sufficient condition that we can deform v1, . . . , vr near A so that these singularities

disappear. In general, Ind(V ) depends not only on the special choice of V , but

also on the orientation of the manifold. One fundamental task is to identify this

global obstruction (when it is independent of the choice of V ) with certain global

invariants of the manifold.

There are many results in this direction and the invariants of M which appear in

these results are the Euler characteristic, the Signature and so on. For r = 2, note

that πn−1Vn,2 ∼= Z2 for odd n and πn−1Vn,2 ∼= Z⊕Z2 for even n. Briefly speaking,

Atiyah [1] used the index of an elliptic operator and also used the mod 2 index of

a real skew-adjoint elliptic operator to represent the obstruction defined above by

index theory. For instance, he gave an interesting result that if M is oriented and of

dimension 4q + 1, then this Ind(V ) coincides with the Kervaire semi-characteristic

k(M) which is defined to be

k(M) =
∑
j

dimRH
2j(M ; R) mod 2 .

For other dimensions, see [1, Theorem 5.1] and [3, Theorem 1.1 or Theorem 2.20]

for more details.

Throughout this paper, for a real vector bundle E, we denote by Wi(E) and

wi(E) the ith unreduced and the ith reduced Stiefel–Whitney classes, respectively.

For the sake of simplicity, let Wi(M) = Wi(TM), wi(M) = wi(TM).

In this paper we present some generalizations of the Atiyah–Dupont vector fields

theory. Let E be a real vector bundle with rankE = dimM . We shall be interested

in the existence of r = 2 linearly independent cross sections of E over M . What

Atiyah and Dupont considered is the special case where E is the tangent bundle

of M . Similar to the situation of tangent bundle, for the vector bundle E, if the

Stiefel–Whitney class Wn−1(E) vanishes then we can get a continuous field of two-

frames of E with finite singularities which will be denoted by V. Again similar to the

situation of tangent bundle, we can define the local obstruction around each singular

point and then Ind(V ), the global obstruction. Clearly the vanishing of Ind(V ) is

the necessary and sufficient condition that we can remove the singularities of V .
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In Sec. 2, we investigate the condition under which Ind(V ) is independent of

the choice of V . We treat it separately for n is odd and n is even. In both cases,

we employ the formula of Boltyanski–Liao on second obstructions for cross sections

[6, 16]. The main results can be stated as follows.

Corollary 2.2. Suppose that n > 4 is an odd number and E is a vector bundle of

rank n over an n-dimensional, closed, connected manifold M with wn−1(E) = 0.

Then

(A) If w2(E)+w2
1(M)+w2(M) = 0, then Ind(V ) ∈ Z2 is independent of the choice

of V . In this case, this mod 2 integer will be called the generalized Kervaire

semi-characteristic of the bundle E, denoted by k(E); Hence E admits two

linearly independent cross sections if and only if k(E) vanishes.

(B) If w2(E) + w2
1(M) + w2(M) 6= 0, then both 0 and 1 can occur as Ind(V ). In

particular, E admits always two linearly independent cross sections.

Corollary 2.11. Suppose that n > 4 is an even number and E is an oriented

vector bundle of rank n over an n-dimensional, closed, connected, oriented manifold

M with Wn−1(E) = 0. Then

(A) If w2(E) = w2(M), then Ind(V ) is independent of the choice of V . In this

case, E admits two linearly independent cross sections if and only if both this

invariant and χ(E) vanish.

(B) If w2(E) 6= w2(M), then both (χ(E), 0) and (χ(E), 1) can occur as Ind(V ), the

index of a two-frames V of E with finite singularities. In particular, E admits

always two linearly independent cross sections if and only if χ(E) = 0.

For an embedding of M into R2n with normal bundle Nf , we try to compute

k(Nf ). If n is odd andM is orientable, we show in Proposition 2.5 that this invariant

can be expressed by a dual Stiefel–Whitney characteristic number of the manifold.

We also indicate, by a concrete example, that the relevant statement in [25, p. 679]

is incorrect.

In Sec. 3, we try to give Ind(V ) a K-theoretic and an analytic interpretation.

We generalize the result of Atiyah–Dupont [3, Theorem 2.20] as follows.

Theorem 3.1. Let M be a closed oriented connected manifold of dimension

n = 4k − s with 0 ≤ s ≤ 3, and let E be an oriented vector bundle over M of

rank n, verifying the conditions in Corollaries 2.2(A) and 2.11(A) above. We fix

a spin structure on TM ⊕ E. Let {v1, . . . , vr} be a set of r-cross sections of E,

linearly independent except at the finite set of points {A1, . . . , Al}. Then in the

group KRs(RP r+s−1,RP s−1), we have the formula for the global invariant

indαsE,r =
l∑
i=1

θsOAi(v1, . . . , vr) ,
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where OA(v1, . . . , vr) ∈ πn−1(Vn,r) is the local obstruction to extending the cross

sections at A. In particular, indαsE,r does not depend on the spin structure on

TM ⊕E.

To prove this theorem, one would have to excise small balls around the singu-

larities and set up a suitable boundary value problem. The basic idea is to pass

from elliptic operators to their symbols which lie in certain K-groups. The index

theorem in its various forms implies that some analytical index (Euler characteristic

number, generalized Kervaire semi-characteristic, etc.) can be computed purely in

terms of K-theory from these symbols. We then want to relate these elements with

Ind(V ). For r = 2, we make the corresponding table:

n > 4 πn−1Vn,2 Ind(V )

4q Z⊕ Z2

(
χ(E),

1

2
(χ(E)− (−1)q〈Â(TM)Ŝ(E), [M ]〉)

)
4q + 1 Z2 k(E) = Ind2PE
4q + 2 Z⊕ Z2 (χ(E), 0)
4q + 3 Z2 0

where Ŝ(E) is the multiplicative characteristic class of E associated to the function

2 cosh(x/2), and Ind2PE is the mod 2 index in the sense of Atiyah–Singer [5] of

some skew-adjoint Dirac type operator associated to the 8q + 2 dimensional spin

vector bundle TM ⊕E.

With these computations, we can get the corresponding sufficient and necessary

conditions for which E has two linearly independent cross sections. See Corollaries

3.2, 3.3, 3.5, and 3.7 for details.

The case s = 0 is particularly interesting. A byproduct is the vanishing of

Z2-Ind(V ) when E admits a complex structure, which implies many important

conclusions such as the well known results of Hopf, Ehresmann, Borel–Serre, Kahn,

Borel–Hirzebruch and Milnor on the non-existences of almost complex structures

on even dimensional oriented manifolds. Moreover, we prove an unexpected result

that every “negative” complex projective space of even complex dimension admits

no almost complex structures.

2. Obstruction Theory Method

Let M be a closed, connected, n-dimensional, differentiable manifold, and let E be

a real vector bundle of rank n over M . We shall be concerned with the problem of

the existence of two linearly independent cross sections of E.

Let Vn,2(E) denote the associated bundle of E with the fibre Vn,2, the

Stiefel manifold of orthonormal two-frames in Rn. As is well-known, Wn,2 =

GL(n,R)/GL(n − 2,R) has the same homotopy type with Vn,2 since every two-

frame can be naturally orthogonalized. In such way, there is a correspondence

between the cross sections of the fibre bundle Vn,2(E) and the continuous fields

of two-frames of E.
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In the first part of this section we will concentrate on the case that n > 4 is

an odd integer. Using the result that M is triangulable, the classical obstruction

theory asserts that a continuous field of two-frames of E can be defined over

the (n − 2)-dimensional skeleton M (n−2) of M . Moreover, there exists such a

field over M (n−1) if and only if the Stiefel–Whitney class (the first obstruction)

wn−1(E) ∈ Hn−1(M ;πn−2Vn,2) vanishes. Since πn−2Vn,2 ∼= Z2 for odd n, wn−1(E)

is the reduced Stiefel–Whitney class in Hn−1(M ; Z2).

Let V = {v1, v2} be such a field over M (n−2), and assume that the first obstruc-

tion wn−1(E) (independent of the choice of V ) vanishes so that V can be defined

over M (n−1). Clearly the sufficient and necessary condition for that V can be ex-

tended to M (n) = M is the vanishing of the second and the final obstruction which

we denote by Ind(V ).

Suppose now we are given a field V = {v1, v2} over M (n−1). The second ob-

struction Ind(V ) belongs to Hn(M ;πn−1Vn,2). Since πn−1Vn,2 ∼= Z2 for odd n > 4,

the second obstruction is a mod 2 integer:

Ind(V ) ∈ Z2 . (2.0)

In fact Ind(V ) has a geometric significance. Observe that M is compact and

dimM = n, the (n − 1)-skeleton of M has the homotopy type of the space ob-

tained by removing one point from the interior of each n-simplex of M . Thus a

field V = {v1, v2} over M (n−1) corresponds to a field V = {v1, v2} with finite sin-

gularities on M . Let p be one of the singularities, say, in the interior of a simplex σ.

The bundle E restricted to σ is isomorphic to the product bundle σ×Rn. For each

point q in σ − {p}, we regard (v1(q), v2(q)) as an ordered set of two linearly inde-

pendent vectors in Rn, that is, a point in the Stiefel manifold Vn,2 (Wn,2 ' Vn,2).

Since the field V is defined on the boundary of σ, we obtain in this way a map

Bd(σ) → Vn,2. But Bd(σ) is an (n − 1)-sphere, and so the homotopy class of this

map gives rise to an element of the homotopy group πn−1Vn,2. This class is defined

to be the index of V at the point p and is denoted by IndV (p). Finally, we define

Ind(V ) =
∑

IndV (p) , (2.1)

where the sum is taken over all singularities of V . Thus

Ind(V ) ∈ πn−1Vn,2 ∼= Z2 ,

as n is assumed to be odd and n > 4.

Thus the mod 2 integer Ind(V ) measures whether or not one can alter a field

so as to remove its singularities.

The following result shows that Ind(V ), the (total) index of a field V , is not

necessarily independent of the choice of V .

Theorem 2.1. Let n > 4 be an odd number and V = {v1, v2}, U = {u1, u2} be

two cross sections of Vn,2(E) over M (n−1). Then their second obstructions can be

related by

Ind(V )− Ind(U) = (w2(E) + w2
1(M) + w2(M))Ω(V,U) , (2.2)
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where w2(E) ∈ H2(M ; Z2) and wj(M) = wj(TM) ∈ Hj(M ; Z2), j = 1 or 2, are

the mod 2 Stiefel–Whitney classes of the vector bundle E and the tangent bundle

TM, respectively, and Ω(V,U) is the first difference of V and U,

Ω(V,U) ∈ Hn−2(M ;πn−2Vn,2) ∼= Hn−2(M ; Z2) .

Proof. Observe first that

w2(E) ∈ H2(M ;π1Vn,n−1) ,

Ω(V,U) ∈ Hn−2(M ;πn−2Vn,2) ,

Ind(V ), Ind(U) ∈ Hn(M ;πn−1Vn,2) .

Since n > 4 is odd, the homomorphism πn−1S
n−2 → πn−1Vn,2 induced by the

inclusion Sn−2 = Vn−1,1 → Vn,2 is an isomorphism. The formula of Boltyanski–

Liao ([6, p.66], [16]) then gives for n > 4 that

Ind(V ) = Ind(U) + Sq2Ω(V,U) + w2(E) · Ω(V,U) , (2.3)

in which the cup product is determined by the pairing of groups G1 · G2 ⊂ G3

with α1 · α2 = α3 where G1 = π1Vn,n−1
∼= Z2 (n ≥ 3), G2 = πn−2Vn,2 ∼= Z2 (n >

4 is odd), G3 = πn−1Vn,2 ∼= πn−1S
n−2 ∼= Z2(n > 4 is odd) with generators α1, α2

and α3, respectively.

Note that Sq2Ω(V,U) = u2(M) · Ω(V,U), the cup product of Ω(V,U) with the

second Wu class u2(M) [21]. By using the Wu formula [21] that

u2(M) = w2
1(M) + w2(M) ,

one completes the proof of the theorem.

Corollary 2.2. Suppose that n > 4 is an odd number and wn−1(E) = 0. Then

(A) If w2(E) + w2
1(M) + w2(M) = 0, then Ind(V ) is independent of the choice

of V. In this case, this mod 2 integer will be called the generalized Kervaire semi-

characteristic of the bundle E, denoted by k(E); Hence E admits two linearly in-

dependent cross sections if and only if k(E) vanishes.

(B) If w2(E) +w2
1(M) +w2(M) 6= 0, then both 0 and 1 can occur as Ind(V ). In

particular, E admits always two linearly independent cross sections.

Proof. Claim (A) is clear. For claim (B), since w2(E) + w2
1(M) + w2(M) 6= 0,

Poincaré duality implies that

(w2(E) + w2
1(M) + w2(M)) · y = 1 ∈ Hn(M ; Z2) ∼= Z2

for some cohomology class y ∈ Hn−2(M ; Z2). Furthermore, with a fixed field V ,

the class y ∈ Hn−2(M ; Z2) can be realized as the first difference Ω(V,U) for some

field U (cf. [24, 36.7 and 37.5]).

It is interesting to apply this corollary to several important cases. We first

consider the case of E = TM , the tangent bundle of the closed connected
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n-dimensional differentiable manifold M . Corollary 2.2 implies immediately the

following result of Thomas [25].

Corollary 2.3. Let M be a closed connected n-dimensional differentiable manifold

with wn−1(M) = 0. Assume that n > 4 is an odd number. Then

(A) If w2
1(M) = 0, then Ind(V ) is independent of the choice of V, and hence M

admits two linearly independent vector fields if and only if k(TM) vanishes;

(B) If w2
1(M) 6= 0, then both 0 and 1 occur as Ind(V ). In particular, M admits

always two linearly independent vector fields.

Remark 2.4. It should be remarked that, the preceding corollary was stated by

E. Thomas in [25, Theorem 6] without proof. When n ≡ 1 mod 4 and M is ori-

entable, k(TM) was shown to be the original Kervaire semi-characteristic defined

by (cf. [1, Theorem 5.1])

k(TM) =
∑
j

dimRH2j(M ; R) mod 2 . (2.4)

If M is a nonorientable manifold of dimension 4q + 1 with w2
1(M) = 0, Atiyah

and Dupont (cf. [3, Theorem 7.6]) established an analogue of (2.4) involving a

semi-characteristic based on cohomology with coefficients in a local system.

We next turn to the normal bundle in the theory of embedding. As before, let

M be a closed connected n-dimensional differentiable manifold (n > 4 is odd). The

famous Whitney theorem asserts that M can be immersed (even embedded) into

R2n, the 2n-dimensional Euclidean space. Let f : M → R2n be an immersion and

Nf be the normal bundle of rank n over M . Since w2(Nf ) = w̄2(M) = w2
1(M) +

w2(M), wn−1(Nf ) = w̄n−1(M) = 0 (cf. [19, Corollary 1]), one has

w2(Nf ) + w2
1(M) + w2(M) = 0 .

Therefore in virtue of Corollary 2.2 (A) we have a well-defined generalized Kervaire

semi-characteristic, k(Nf ) ∈ Z2.

The computation of k(Nf ) seems to be very difficult. However we can do it if

the immersion is assumed to be an embedding.

Proposition 2.5. Let n > 4 be odd, and let f : M → R2n be an embedding of an

orientable manifold M. Then

k(Nf ) = w̄2(M) · w̄n−2(M) . (2.5)

In particular k(Nf ) is independent of the choice of the embedding f.

Proof. The idea is to combine Theorem 3.5.1 with 4.1.1 of Mahowald and Peterson

[18], as well as results in [19]. The details will be omitted.

We conjecture that (2.5) still holds even when M is non-orientable.
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Remark 2.6. It is worth emphasizing that in the preceding proposition the as-

sumption that f is an embedding is necessary. The relevant statement in [25, p. 679]

is incorrect. In other words, the assumption that f is an embedding cannot be weak-

ened to that f is an immersion. We give an example to illustrate the difference.

Following Ucci [26], let Sm ⊂ Rm+1 be the usual m-sphere and CP t the usual

complex projective t-space. Let P (m, t) be the Dold manifold of dimension m+ 2t

obtained from Sm ×CP t by identifying (x, z) with (−x, z̄) for (x, z) ∈ Sm ×CP t.

Clearly P (m, 0) and P (0, t) are RPm and CP t, respectively. The ring structure of

H∗(P (m, t); Z2) is given by

H∗(P (m, t); Z2) = Z2[c]/cm+1 ⊗ Z2[d]/dt+1 .

Moreover there is a bundle equivalence

TP (m, t)⊕ ξ ⊕ 2 ∼= (m+ 1)ξ ⊕ (t+ 1)η

where ξ and η are vector bundles of rank one and rank two over P (m, t) with the

total Stiefel–Whitney classes w(ξ) = 1 + c and w(η) = 1 + c+ d, respectively.

We take m = 1, t = 2. Then P (1, 2) is an orientable manifold with the total

dual Stiefel–Whitney class w̄(P (1, 2)) = 1 + c+d+ cd, thus w̄2 · w̄3 = cd2 6= 0. This

observation is due to [27].

Let h : P (1, 2)→ R10 be an embedding with normal bundle Nh. It follows from

Proposition 2.5 that k(Nh), the generalized Kervaire semi-characteristic of Nh, is

equal to w̄2 · w̄3 = 1. On the other hand, P (1, 2) is readily seen to be immersed

into R8. Composing with the obvious inclusion R8 → R10, we get an immersion

g : P (1, 2) → R10 which has two linearly independent normal vector fields, thus

k(Ng) = 0.

The above arguments tell us that k(Nf ) for an immersion f : M → R2n depends

not only on the manifold M , but also on the map f . Here we wish to pose a problem:

Compute the mod 2 integer which is the index for any normal two-frame on

M with finite singularities for an immersion Mn → R2n (n > 4 is odd).

Remark 2.7. When n 6= 1 mod 4, M is orientable, Li [27] has obtained some

results. In fact, to generalize the work of Mahowald [17], Li considered the problem

when is a map Mn → N2n−2 between two manifolds homotopic to an immersion

and established some interesting explicit results.

To understand well the generalized Kervaire semi-characteristic, we give now an

interesting computation of k(E) for vector bundles over spheres. Let M = Sn be

the n-sphere with n = 4q + 1, q ≥ 2, and let E be a vector bundle of rank n over

Sn. In virtue of [21, (8-B)], w(E) = w(TSn) = 1.

By Corollary 2.2 (A), we have the well-defined generalized Kervaire semi-

characteristic k(E) ∈ Z2. Notice that since n is odd and E is orientable, E has

always a nowhere zero cross section. Furthermore, E has two linearly independent

cross sections if and only if k(E) = 0.



October 22, 2002 11:36 WSPC/152-CCM 00084

A Generalization of the Atiyah–Dupont Vector Fields Theory 785

We shall use Vectn(Sn) to denote the set of isomorphism classes of rank n

vector bundles over Sn. According to [24, 18.5], there is a one-to-one correspondence

between the elements of Vectn(Sn) and that of πn−1SO(n) which is isomorphic to

Z2 ⊕Z2 for n = 4q + 1 with even q, and isomorphic to Z2 for n = 4q + 1 with odd

q (cf. [15]).

Example 2.8. Let fE : Sn−1 → SO(n) be the characteristic map of the bundle

E. Consider the exact homotopy sequence

πn−1SO(n− 2)
j∗→ πn−1SO(n)

π∗→ πn−1Vn,2 → πn−2SO(n− 2)

induced by the fibration SO(n−2)
j→ SO(n)

π→ Vn,2. Clearly we see π∗(fE) = k(E).

Since πn−2SO(n−2) ∼= Z for n ≡ 1 mod 4 [15] and πn−1Vn,2 is finite, it follows that

π∗ is surjective. By the exactness, k(E) = 0 if and only if fE belongs to the image

of the homomorphism j∗. We consider separately the two cases. Case (1), q is odd.

In this case, πn−1SO(n) ∼= Z2 is generated by the tangent bundle TSn of Sn. As

is well known, k(TSn) = 1. Case (2), q is even. In this case, πn−1SO(n) ∼= Z2 ⊕Z2

and TSn is a generator whose Kervaire semi-characteristic is equal to 1. Another

generator η can be chosen as the generator of K̃O(Sn) ∼= Z2 (n ≡ 1 mod 8). In

other words, fη is mapped to the generator of πn−1SO(N) ∼= Z2 for N ≥ n+ 1, by

the homomorphism πn−1SO(n)→ πn−1SO(N). Next consider the exact homotopy

sequence

πnVN,N−(n−2) → πn−1SO(n− 2)
i∗→ πn−1SO(N)→ πn−1VN,N−(n−2)

induced by the fibration SO(n− 2)
i→ SO(N)→ VN,N−(n−2).

Fortunately we have πn−1VN,N−(n−2)
∼= 0 [22], thus i∗ : πn−1SO(n − 2) →

πn−1SO(N) is surjective. Therefore we deduce that k(η) = π∗(fη) = 0.

The second part of this section will be devoted to the case of even dimensions.

From now on we assume always that n > 4 is an even number. As mentioned before,

the classical obstruction theory asserts that a continuous field of two-frames of E

can be defined over the (n− 2)-dimensional skeleton M (n−2) of M , moreover there

exists such a field over M (n−1) if and only if the Stiefel–Whitney class (the first

obstruction) Wn−1(E) in Hn−1(M ; (πn−2Vn,2)E) vanishes. Since πn−2Vn,2 ∼= Z for

even n, Wn−1(E) is the unreduced Stiefel–Whitney class in Hn−1(M ; ZE) where

ZE denotes the local coefficient system determined by E.

Let V = {v1, v2} be such a field over M (n−2), and assume that the first ob-

struction Wn−1(E) (independent of the choice of V ) vanishes so that V can be

defined over M (n−1). Clearly the sufficient and necessary condition for that V can

be extended to M (n) = M is the vanishing of the second and the final obstruction,

say again Ind(V ).

Suppose now we are given a field V = {v1, v2} over M (n−1). The second obstruc-

tion Ind(V ) belongs to Hn(M ; (πn−1Vn,2)E). If M is nonorientable, it was proved

(cf. [23, Theorem 3.1]) that E adimits two linearly independent cross sections if
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and only if Wn−1(E) = 0 and e(E) = 0, where e(E) is the Euler class of the bundle

E. It remains to deal with the case that M is orientable. For simplicity, we assume

that both E and TM are oriented. Since πn−1Vn,2 ∼= Z ⊕ Z2 for even n > 4, the

second obstruction

Ind(V ) = (Z-Ind(V ),Z2-Ind(V )) ∈ Z⊕ Z2 .

Similar to the case of odd dimension, Ind(V ) has a geometric significance. As

we shall see, Ind(V ), the index of a field V , is not necessarily independent of the

choice of a particular field. Furthermore, in contrast with the odd dimension case,

this index depends on the choice of the orientations of E and M .

We first determine Z-Ind(V ). Let e(E) ∈ Hn(M ; Z) be the Euler class of the

oriented bundle E. Define χ(E) = 〈e(E), [M ]〉 ∈ Z to be the Euler characteristic

number corresponding to [M ], the fundamental class of M . Note that χ(E) changes

sign if the orientation of one of either E or M is reversed.

Lemma 2.9. Let n > 4 be an even number and V = {v1, v2} be a cross section

of Vn,2(E) over M (n−1). Then p∗(Z-Ind(V )) = χ(E), where p∗ is induced by the

bundle projection p : Vn,2 → Vn,1 = Sn−1. In particular, Z-Ind(V ) is independent

of the choice of a particular V.

Proof. The fiber bundle

Sn−2 → Vn,2
p→ Sn−1

induces an exact homotopy sequence:

πn−1S
n−2 → πn−1Vn,2 → πn−1S

n−1 → πn−2S
n−2 → πn−2Vn,2 → πn−2S

n−1 .

Note that πn−2Vn,2 ∼= Z (n > 4 is even) and πn−2S
n−1 ∼= 0, the above exact

sequence gives

πn−1S
n−2 ∼= Z2 → πn−1Vn,2 ∼= Z⊕ Z2 → πn−1S

n−1 ∼= Z→ 0 ,

from which the proof is complete.

The next theorem is an analogue of Theorem 2.1.

Theorem 2.10. Let n > 4 be an even number and let E be an oriented vector

bundle of rank n over an n-dimensional, closed, connected, oriented manidold M.

Suppose that V = {v1, v2}, U = {u1, u2} are two cross sections of Vn,2(E) over

M (n−1). Then their second obstructions can be related by

Ind(V )− Ind(U) = (w2(E) + w2(M))ρ(Ω(V,U))

where w2(E) ∈ H2(M ; Z2) and w2(M) = w2(TM) ∈ H2(M ; Z2) are the mod 2

Stiefel–Whitney classes of the vector bundle E and the tangent bundle TM,

respectively; Ω(V,U) is the first difference of V and U,

Ω(V,U) ∈ Hn−2(M ;πn−2Vn,2) ∼= Hn−2(M ; Z) ,

and ρ : Hn−2(M ; Z)→ Hn−2(M ; Z2) is the mod 2 reduction.
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Proof. The proof is similar to that of Theorem 2.1. Observe first that

w2(E) ∈ H2(M ;π1Vn,n−1) ,

Ω(V,U) ∈ Hn−2(M ;πn−2Vn,2) ,

Ind(V ), Ind(U) ∈ Hn(M ;πn−1Vn,2) .

Since n > 4 is even, the homomorphism πn−1S
n−2 → πn−1Vn,2 induced by the

inclusion Sn−2 = Vn−1,1 → Vn,2 is injective. In other words, the generator of

πn−1S
n−2 is mapped to the generator of the cyclic group of order two of πn−1Vn,2.

The formula of Boltyanski–Liao gives for n > 4,

Ind(V ) = Ind(U) + Sq2(ρ(Ω(V,U)) + w2(E) · ρΩ(V,U) ,

in which the cup product is determined by the pairing of groups G1 · G2 ⊂ G3

with α1 · α2 = α3 where G1 = π1Vn,n−1
∼= Z2 (n ≥ 3), G2 = πn−2Vn,2 ∼= Z (n >

4 is even), G3 = πn−1Vn,2 ∼= Z ⊕ Z2 (n > 4 is even) with generators α1, α2 and

(β3, α3), respectively. The proof is now complete.

Corollary 2.11. Let n, E and M be as in Theorem 2.10, and suppose that

Wn−1(E) = 0. Then

(A) If w2(E) = w2(M), then Ind(V ) = (χ(E),Z2-Ind(V )) is independent of the

choice of V. In this case, E admits two linearly independent cross sections if

and only if both χ(E) and Z2-Ind(V ) vanish.

(B) If w2(E) 6= w2(M), then both (χ(E), 0) and (χ(E), 1) can occur as Ind(V ).

In particular, E admits two linearly independent cross sections if and only if

χ(E) = 0.

Proof. Using Lemma 2.9 and the similar arguments in the proof of Corollary 2.2.

We omit the details.

It should be remarked that in the next section, by making use of K-theory and

index theory, we will be able to show that in case (A) of the preceding corollary,

the invariant Ind(V ) can be represented by some well-known characteristic classes.

These generalize the theory of Atiyah–Dupont on the existence of two linearly

independent tangent fields on M .

3. K-Theory and Index Theory Methods

We still assume that M is a closed, connected, n-dimensional, differentiable mani-

fold with n > 4. Let E be a vector bundle of rank n over M verifying that

Wn−1(E) = 0 if n is even ,

wn−1(E) = 0 if n is odd .
(3.0)
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In this section, for simplicity, we further assume that both M and E are oriented.

We also make the assumption that

w2(E) = w2(M) . (3.1)

Then by Corollary 2.2 and Corollary 2.11, the mod 2 invariants k(E) (for odd n)

and Z2-Ind(V ) (for even n) are well-defined.

This section has two purposes. The first is to give k(E) (for odd n) and Z2-

Ind(V ) (for even n) global K-theoretic, as well as analytic interpretations, respec-

tively. The second is to establish two vanishing results: k(E) = 0 for n ≡ 3 mod 4

and Z2-Ind(V ) = 0 for n ≡ 2 mod 4.

We will apply the method developed by Atiyah and Dupont in [3] to our situation

with suitable modifications. The key observation is that under the orientibility

assumption and also the assumption (3.1), the vector bundle TM ⊕ E is oriented

and spin over M .

Following [3], let s be the integer such that 0 ≤ s < 4 and that n+s ≡ 0 mod 4.

We equip TM and E with Euclidean metrics respectively. Let Rs → M be the

trivial Euclidean vector bundle of rank s over M .

Set T̃M = TM ⊕Rs, Ẽ = E ⊕Rs Then T̃M ⊕ Ẽ is an oriented Euclidean spin

vector bundle over M . We equip it with a spin structure and denote by S(T̃M⊕ Ẽ)

the corresponding bundle of spinors.

Let e1, . . . , en+s be an oriented orthonormal basis of T̃M such that

en+1, . . . , en+s is an oriented orthonormal basis of Rs ⊂ T̃M , and let f1, . . . , fn+s

be an oriented orthonormal basis of Ẽ such that fn+1, . . . , fn+s is an oriented

orthonormal basis of Rs ⊂ Ẽ.

For any X ∈ T̃M ⊕ Ẽ, let c(X) denote the Clifford action of X on S(T̃M ⊕ Ẽ).

Set

τ1 = c(e1) · · · c(en+s)c(f1) · · · c(fn+s) .

Since n+ s ≡ 0 mod 4, one verifies that τ2
1 = Id. Define

Seven/odd(T̃M ⊕ Ẽ) = {s ∈ S(T̃M ⊕ Ẽ) : τ1s = ±s} .

Then one has the Z2-splitting

S(T̃M ⊕ Ẽ) = Seven(T̃M ⊕ Ẽ)⊕ Sodd(T̃M ⊕ Ẽ) .

For any X ∈ T̃M ⊕ Ẽ, c(X) exchanges Seven(T̃M ⊕ Ẽ) and Sodd(T̃M ⊕ Ẽ). Thus,

τ2 = c(e1) · · · c(en+s)

preserves each of Seven/odd(T̃M ⊕ Ẽ).

Now again, since n+ s ≡ 0 mod 4, it is easy to check that τ2
2 = Id. Define

Seven
± (T̃M ⊕ Ẽ) = {s ∈ Seven(T̃M ⊕ Ẽ) : τ2s = ±s} ,

Sodd
± (T̃M ⊕ Ẽ) = {s ∈ Sodd(T̃M ⊕ Ẽ) : τ2s = ±s} .
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Let iT̃M denote the Real vector bundle T̃M in the sense of [2], with the canonical

involution given by X ∈ T̃M → −X ∈ T̃M . One can verify easily that the lifts of

Seven
± (T̃M ⊕ Ẽ) and Sodd

± (T̃M ⊕ Ẽ) are Real vector bundles over iT̃M in the sense

of [2] and [3].

We will use the same notation S
even/odd
± (T̃M ⊕ Ẽ) for their lifts over T̃M , etc.,

when there will be no confusion.

Now let v1, . . . , vr be r-cross sections of E overM which are linearly independent

over a closed subset Y ⊂M . Clearly, we can and we will assume that v1, . . . , vr are

orthogonal to each other over Y .

Following [3], consider a point (v, x) ∈ T̃M × Sr+s−1, where v is in the fiber

over y ∈M and put

x(y) =
r∑
i=1

xivi(y) +
s∑
j=1

xn+jfn+j .

Then consider the following square over T̃M × Sr+s−1 which is analogous to

[3, (2.7)],

Seven
+ (T̃M ⊕ Ẽ)

ic(v)−→ Sodd
− (T̃M ⊕ Ẽ)

↓c(x(y)) ↓−c(x(y))

Sodd
+ (T̃M ⊕ Ẽ)

ic(v)−→ Seven
− (T̃M ⊕ Ẽ) .

This defines a square of Real vector bundles and homomorphisms over T̃M×Sr+s−1.

Clearly, the maps are Z2-equivariant with respect to the anti-podal involution on

Sr+s−1 and the action on the bundles defined by the trivial action on the upper

row and multiplication by −1 on the lower row.

Hence over T̃M ×RP r+s−1 we have the square

Seven
+ (T̃M ⊕ Ẽ)

ic(v)−→ Sodd
− (T̃M ⊕ Ẽ)

↓c(x(y)) ↓−c(x(y))

Sodd
+ (T̃M ⊕ Ẽ)⊗H ic(v)−→ Seven

− (T̃M ⊕ Ẽ)⊗H ,

where H denotes the Hopf line bundle over RP r+s−1.

Now since fn+1, . . . , fn+s are linearly independent over the whole ofM , it follows

easily that the vertical maps in the above square are isomorphisms over (T̃M ×
RP s−1) ∪ (Y ×RP r+s−1), and thus the square defines an element αsE(v1, . . . , vr)

in

KR((iT̃M |M\Y × (RP r+s−1 \RP s−1))=KRs((iTM |M\Y × (RP r+s−1 \RP s−1)) ,

where KR is the KR-group in the sense of [2].

By composing with the index map defined in [3, (2.12)], one then gets at last

an element

IndαsE(v1, . . . , vr) ∈ KRs(RP r+s−1 \RP s−1) . (3.2)
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In particular, if Y = ∅, we get a global invariant for E:

IndαsE,r ∈ KRs(RP r+s−1,RP s−1) . (3.3)

We pass now to the case where M = Bn, the unit ball in Rn, and Y = Sn−1

the unit sphere. Let E be the trivial vector bundle of rank n over Bn. Then the

construction in (3.2) induces a map

θs : πn−1(Vn,r) −→ KRs(RP r+s−1,RP s−1) . (3.4)

Clearly, on M = Bn, TM is also a trivial vector bundle. Moreover, as n+ s ≡
0 mod 4, one has the canonical identification that

S(Rn+s ⊕Rn+s) ' Λ∗(Rn+s) ,

from which one sees easily that the homomorphism θs in (2.4) is exactly the same

as the homomorphism defined in [3, (2.15)].

By proceeding in exactly the same way as in proof of [3, Theorem 2.20], one

obtains the following generalization of [3, Theorem 2.20].

Theorem 3.1. Let M be a closed oriented connected manifold of dimension

n = 4k − s with 0 ≤ s ≤ 3, and let E be an oriented vector bundle over M of rank

n, verifying (3.0) and (3.1). We fix a spin structure on TM⊕E. Let {v1, . . . , vr} be

a set of r-cross sections of E, linearly independent except at the finite set of points

{A1, . . . , Al}. Then in the group KRs(RP r+s−1,RP s−1), we have the formula for

the global invariant

indαsE,r =
l∑
i=1

θsOAi(v1, . . . , vr) , (3.5)

where OA(v1, . . . , vr) ∈ πn−1(Vn,r) is the local obstruction to extending the cross

sections at A. In particular, indαsE,r does not depend on the spin structure on

TM ⊕E.

In the rest of this section, we restrict to the case r = 2.

We first recall from [3, Sec. 3] that KR1(RP∞,RP s−1) = 0. Thus, when s = 1,

the left hand side of (3.5) vanishes as we can set Y = ∅ and r =∞. As a consequence,

the right hand side of (3.5) vanishes identically when s = 1.

Also recall from [3, Sec. 5] that the homomophism θs in (3.4) is an isomorphism

when r ≤ 3 and n ≥ r + 3.

The following corollary is now clear.

Corollary 3.2. Let M, E be as in Theorem 3.1 and assume n ≡ 3 mod 4, n > 4.

Then the invariant k(E) defined in Corollary 2.2(A) vanishes. In particular, there

exist two linearly independent cross sections of E.

We turn next to the remaining cases of s = 0, 2, 3, separately. Clearly, it suffices

to discuss the global invariant IndαsE,∞.



October 22, 2002 11:36 WSPC/152-CCM 00084

A Generalization of the Atiyah–Dupont Vector Fields Theory 791

(1). The case s = 0.

Let ∇TM be the Levi–Civita connection on TM associated to gTM , and let ∇E be

a Euclidean connection on E. The induced Hermitian connection on S(TM ⊕ E)

will be denoted by ∇S(TM⊕E). Then ∇S(TM⊕E) preserves each S
even/odd
± (TM ⊕E).

Define a Dirac type operator D : Γ(S(TM ⊕E))→ Γ(S(TM ⊕E)) by

D =
n∑
i=1

c(ei)∇S(TM⊕E)
ei

.

Let D± : Γ(S
even/odd
+ (TM ⊕ E))→ Γ(S

odd/even
− (TM ⊕E)) be the restriction of D

on S
even/odd
+ (TM ⊕E) respectively. By proceeding as in [3], one gets in an obvious

way the following analogue of [3, (4.2)]:

Indα0
E,∞ = (IndD+ − IndD−)− (IndD−)(H − 1) . (3.6)

There are two ways to identify IndD±. The first is to apply the Atiyah–Singer

index theorem [4]. The second is that in view of local index theory, to compute

IndD±, one may assume that both TM and E are spin. Then one has the splitting

of bundles of spinors S(TM) = S+(TM)⊕ S−(TM) and S(E) = S+(E)⊕ S−(E).

Moreover, D± are the canonical Dirac operators

D± : Γ(S+(TM)⊗ S±(E)) −→ Γ(S−(TM)⊗ S±(E))

respectively. Thus, one deduces directly that, as rankE = dimM ,

IndD+ − IndD− = 〈Â(TM)ch(S+(E)− S−(E)), [M ]〉 = χ(E) (3.7)

and

IndD+ + IndD− = (−1)n/4〈Â(TM)ch(S(E)), [M ]〉

= (−1)n/4〈Â(TM)Ŝ(E), [M ]〉 , (3.8)

where Ŝ(E) is the multiplicative characteristic class of E associated to the function

2 cosh(x/2).

From (3.6), (3.7) and (3.8), we obtain

Indα0
E,∞ = χ(E) +

1

2
(χ(E)− (−1)n/4〈Â(TM)Ŝ(E), [M ]〉)(H − 1) . (3.9)

Combining with Theorem 3.1, we deduce finally

Corollary 3.3. Let M,E be as in Theorem 3.1 and assume n ≡ 0 mod 4, n > 4.

Then E admits two linearly independent cross sections if and only if χ(E) = 0 and

χ(E) ≡ (−1)n/4〈Â(TM)Ŝ(E), [M ]〉 mod 4.

Remark 3.4. Note that the Dirac type operators D± and the characteristic num-

ber (−1)n/4〈Â(TM)Ŝ(E), [M ]〉 have appeared before in [20]. It is remarkable that

they also appear in the current context (compare also with [9]).
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(2). The case s = 2.

By proceeding as in [3], one verifies that in this case

Indα2
E,∞ = χ(E) . (3.10)

We leave the details to the interested reader.

Corollary 3.5. Let M, E be as in Theorem 3.1 and assume n ≡ 2 mod 4, n > 4.

Then E admits two linearly independent cross sections if and only if χ(E) = 0.

(3). The case s = 3.

By Corollary 2.2, for M , E as in Theorem 3.1, the mod 2 invariant k(E) is well-

defined. By Theorem 3.1 one has a K-theoretic interpretation of k(E). Here we give

an analytic interpretation of k(E) which generalizes the analytic interpretation (3.4)

for the case of E = TM .

We write n = 4q + 1. Then TM ⊕ E is an oriented spin vector bundle of rank

8q + 2 over M . Set

I = c(e1) · · · c(e4q+1) ,

J = c(e1) · · · c(e4q+1)c(f1) · · · c(f4q+1) ,

K = IJ .

Then one verifies directly that S(TM ⊕E) carries a natural quaternionic struc-

ture associated to 1, I, J, K.

Observe that for any X ∈ TM , c(X) commutes with I and anti-commutes with

J, K.

Setting S0(TM ⊕E) = (1− J)S(TM ⊕E), then one has the natural splitting

S(TM ⊕E) = S0(TM ⊕E)⊕ JS0(TM ⊕E) .

Now since for any 1 ≤ i ≤ n, c(ei) anti-commutes with J , the Dirac operator D

maps Γ(S0(TM ⊕E)) to Γ(JS0(TM ⊕E)). Thus,

PE = ID (3.11)

maps Γ(S0(TM ⊕E)) to itself. Moreover, one verifies clearly that PE is Hermitian

skew-adjoint: P ∗E = −PE . Let

Ind2PE = dimC kerPE mod 2

be the corresponding mod 2 index in the sense of Atiyah and Singer [5].

Recalling from [3, Sec. 3] that KR3(RP∞,RP 2) = Z2, we may view Indα3
E,∞

as an element in Z2. Then by proceeding as in [3], one gets easily the following

analogue of [3, Lemma 4.3],

Ind2PE = Indα3
E,∞ , (3.12)
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from which one gets the following analytic interpretation of k(E), when dimM =

4q + 1 and E verifies the conditions in Theorem 3.1,

k(E) = Ind2PE . (3.13)

Remark 3.6. If E = TM , then S0(TM ⊕ E) ' Λeven(T ∗M), and one recovers

(2.4).

As a consequence, one deduces at once the following result.

Corollary 3.7. If E is an oriented vector bundle of rank 4q + 1 over a 4q + 1

dimensional closed oriented connected manifold M verifying that w2(E) = w2(M)

and w4q(E) = 0, then E admits two linearly independent cross sections if and only

if Ind2PE = 0.

Now we go back to the case of s = 0.

Here we are going to prove an interesting and strong result that Z2-Ind(V )

vanishes when the bundle E admits a complex structure. More precisely we have

Corollary 3.8. Let E and M be given as in Theorem 3.1, and assume that n =

4q (q > 1). If E admits a complex structure, then

χ(E) ≡ (−1)q〈Â(TM)Ŝ(E), [M ]〉 mod 4 .

Proof. Let v : M → E be a cross section of E over M with finite singularities.

Using the complex structure J of E, we get two (real) linearly independent cross

sections v and Jv with finite singularities. We hope to show that the Z2-Ind(V ) of

V = {v, Jv} vanishes. Observe that the fiber bundle

S4q−2 i→ V4q,2
π→ V4q,1 = S4q−1

has a canonical section f0 : S4q−1 → V4q,2 defined by f0(v) = (v, J0v), where

J0v = J0(v1, v2, . . . , v4q) = (−v2, v1, . . . ,−v4q, v4q−1). It follows that in the homo-

topy sequence

Z2
∼= π4q−1S

4q−2 i∗→ π4q−1V4q,2
π∗→ π4q−1S

4q−1 ∼= Z ,

π∗(f0)∗(a) = a, where a is a generator of π4q−1S
4q−1. Recall that π4q−1V4q,2

∼=
Z⊕Z2 has a natural decomposition, in other words, the generators of π4q−1V4q,2

∼=
Z⊕ Z2 have been selected so that (1, 0) = (f0)∗(a) and (0, 1) = i∗(1).

Let f : S4q−1 → V4q,2 be given by f(v) = (v, Jv). Clearly there exists an

element S of GL(4q,R) such that J = SJ0S
−1. Moreover, one can assume that

the determinant of S is positive. It follows that f(v) = (v, Jv) = (v, SJ0S
−1v) '

(v, J0v) = f0 : S4q−1 → V4q,2.

Therefore the mapping

H4q(M ;π4q−1S
4q−1)→ H4q(M ;π4q−1V4q,2)
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induced by (f0)∗ = f∗ : π4q−1S
4q−1 → π4q−1V4q,2 sends χ(E), the Euler number of

E, to (χ(E), 0) ∈ Z⊕ Z2. Thus it follows from (3.9) that

1

2
(χ(E)− (−1)q〈Â(TM)Ŝ(E), [M ]〉) ≡ 0 mod 2 ,

as desired.

Recall that an even dimensional differentiable manifold is said to admit an

almost complex structure if its tangent bundle admits a complex structure. As

we noted before, an almost complex structure induces a canonical orientation on

the manifold. As pointed out by Hopf [Ho], the study and construction of almost

complex manifolds have revealed some interesting phenomena. For instance, the

property of admitting an almost complex structure in not a homotopy invariant.

This property depends on the given orientation of the manifold. There are many

applications of Corollary 3.8, for instance, we have immediately

Corollary 3.9. The following manifolds admit no almost complex structures

(1) The spheres S4k (k > 1);

(2) The “negative” complex projective space CP
2k

which has opposite orientation

with the standard one of CP 2k (k > 1);

(3) The quaternionic projective spaces HP 4k+1 (k > 0) and HP 4k+2 (k ≥ 0);

(4) The Cayley projective plane CaP 2.

Proof. These assertions follow from simple cohomological arguments if one uses

Corollary 3.8. For an illustration, we indicate a proof of (2). If we assume that

CP
2k

admits an almost complex structure, then since χ(CP
2k

) = 2k + 1 and

Sign(CP
2k

) = −1, by Corollary 3.8 one should have

2k + 1− (−1)k〈Â(TCP
2k

)Ŝ(TCP
2k

), [CP
2k

]〉 ≡ 0 mod 4 ,

which is in contradiction with the fact that

〈Â(TCP
2k

)Ŝ(TCP
2k

), [CP
2k

]〉 = Sign(CP
2k

) = −1 .

Thus CP
2k

does not admit an almost complex structure.

We conclude this section with the following remarks.

Remark 3.10. (1) It was shown by Hopf [13] and Ehresmann [10] that S4 cannot

be given a complex structure. Borel and Serre [8] established a well known result

that Sn admits almost complex structures if and only if n = 2 or 6.

(2) The complex projective space CPn has a natural complex structure, thus

it admits an almost complex structure. It is clear to see that CP
2k+1

admits an

almost complex structure by complex conjugation. It was Kahn [14] who first found

an unexpected phenomenon that CP
2

admits no almost complex structures. We

extend this conclusion.
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(3) Hirzebruch proved that HPn does not admit any almost complex structures

if n ≥ 4. In Problem 15 in [11], Hirzebruch asked the problem of existence of almost

complex structures on HP 2 and HP 3. It was Milnor who proved the nonexistence

(cf. [12]).

(4) Borel and Hirzebruch [7, 19.6] showed that CaP 2 does not admit any almost

complex structures.
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