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Abstract We recall the Chernoff-Marsden definition of weak symplectic structure and give
a rigorous treatment of the functional analysis and geometry of weak symplectic Banach
spaces. We define the Maslov index of a continuous path of Fredholm pairs of Lagrangian
subspaces in continuously varying symplectic Banach spaces. We derive basic properties of
this Maslov index and emphasize the new features appearing.
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1 Introduction

1.1 Our setting and goals

First, we recall the main features of finite-dimensional and infinite-dimensional strong sym-
plectic analysis and geometry and argue for the need to generalize from strong to weak
assumptions.

1.1.1 The finite-dimensional case

The study of dynamical systems and the variational calculus of N -particle classical mechanics
automatically lead to a symplectic structure in the phase space X = R

6N of position and
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impulse variables: when we trace the motion of N particles in 3-dimensional space, we deal
with a bilinear (in the complex case sesquilinear) anti-symmetric (in the complex case skew-
symmetric) and non-degenerate form ω : X × X → R. The reason for the skew-symmetry
is the asymmetry between position and impulse variables corresponding to the asymmetry
of differentiation. To carry out the often quite delicate calculations of mechanics, the usual
trick is to replace the skew-symmetric form ω by a skew-symmetric matrix J with J 2 = −I
such that

ω(x, y) = 〈J x, y〉 for all x, y ∈ X, (1)

where 〈·, ·〉 denotes the inner product in X .
For geometric investigations, the key concept is a Lagrangian subspace of the phase space.

For two continuous paths of Lagrangian subspaces, an intersection index, the Maslov index is
well-defined. It can be considered as a re-formulation or generalization of counting conjugate
points on a geodesic. In Morse theory, this number equals the classical Morse index, i.e., the
number of negative eigenvalues of the Hessian (the second variation of the action/energy
functional). This Morse index theorem (cf. Morse [30]) for geodesics on Riemannian mani-
folds was extended by Ambrose [1], Duistermaat [22], Piccione and Tausk [34,35], and the
second author [43,44]. See also the work of Musso, Pejsachowicz, and Portaluri on a Morse
index theorem for perturbed geodesics on semi-Riemannian manifolds in [31] which has in
particular lead Waterstraat to a K-theoretic proof of the Morse index theorem in [39].

For a systematic review of the basic vector analysis and geometry and for the physics
background, we refer to Arnold [2] and de Gosson [25].

1.1.2 The strong symplectic infinite-dimensional case

As shown by Furutani and the first author in [7], the finite-dimensional approach of the Morse
index theorem can be generalized to a separable Hilbert space when we assume that the form
ω is bounded and can be expressed as in (1) with a bounded operator J , which is skew-self-
adjoint (i.e., J ∗ = −J ) and not only injective but also invertible. The invertibility of J is the
whole point of a strong symplectic structure. Then, without loss of generality, one can assume
J 2 = −I like in the finite-dimensional case (see Lemma 1 below), and many calculations of
the finite-dimensional case can be preserved with only slight modifications. The model space
for strong symplectic Hilbert spaces is the von Neumann space β(A) := dom(A∗)/dom(A)

of natural boundary values of a closed symmetric operator A in a Hilbert space X with
symplectic form given by Green’s form

ω(γ (u), γ (v)) : = 〈A∗u, v〉 − 〈u, A∗v〉 for all u, v ∈ dom(A∗), (2)

where 〈·, ·〉 denotes the inner product in X and γ : dom(A∗) → β(A) is the trace map. A
typical example is provided by a linear symmetric differential operator A of first order over
a manifold M with boundary �. Here we have the minimal domain dom(A) = H1

0 (M) and
the maximal domain dom(A∗)⊃ H1(M). Note that the inclusion is strict for dim M > 1.
Recall that H1

0 (M) denotes the closure of C∞
0 (M \ �) in H1(M). For better reading we do

not mention the corresponding vector bundles in the notation of the Sobolev spaces of vector
bundle sections.

As in the finite-dimensional case, the basic geometric concept in infinite-dimensional
strong symplectic analysis is the Lagrangian subspace, i.e., a subspace which is isotropic and
co-isotropic at the same time. Contrary to the finite-dimensional case, however, the common
definition of a Lagrangian as a maximal isotropic space or an isotropic space of half dimension
becomes inappropriate.
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In order to define the Maslov index in the infinite-dimensional case as intersection number
of two continuous paths of Lagrangian subspaces, one has to make the additional assumption
that corresponding Lagrangians make a Fredholm pair so that, in particular, we have finite
intersection dimensions.

In [23], Floer suggested to express the spectral flow of a curve of self-adjoint operators
by the Maslov index of corresponding curves of Lagrangians. Following his suggestion, a
multitude of formulae was achieved by Yoshida [41], Nicolaescu [32], Cappell, Lee, and
Miller [18], the first author, jointly with Furutani and Otsuki [8,9] and Kirk and Lesch
[27]. The formulae are of varying generality: some deal with a fixed (elliptic) differential
operator with varying self-adjoint extensions (i.e., varying boundary conditions); others keep
the boundary condition fixed and let the operator vary. An example for a path of operators
is a curve of Dirac operators on a manifold with fixed Riemannian metric and Clifford
multiplication but varying defining connection (background field). See also the results by
the present authors in [13] for varying operator and varying boundary conditions but fixed
maximal domain and in [14] (in preparation) also for varying maximal domain. Recently,
Prokhorova [36] considered a path of Dirac operators on a two-dimensional disk with a finite
number of holes subjected to local elliptic boundary conditions and obtained a beautiful
explicit formula for the spectral flow (respectively, the Maslov index).

1.1.3 Beyond the limits of the strong symplectic assumption

Weak (i.e., not necessarily strong) symplectic structures arise on the way to a spectral flow
formula in the full generality wanted: for continuous curves of, say linear formally self-
adjoint elliptic differential operators of first order over a compact manifold of dimension
≥ 2 with boundary and with varying maximal domain (i.e., admitting arbitrary continuous
variation of the coefficients of first order) and with continuously varying regular (elliptic)
boundary conditions, see [14].

An interesting new feature for the comprehensive generalization is the following “tech-
nical” problem: For regular (elliptic) boundary value problems (say for a linear formally
self-adjoint elliptic differential operator A of first order on a compact smooth manifold M
with boundary �), there are three canonical spaces of boundary values: the above-mentioned
von Neumann space β(A) = dom(A∗)/dom(A), which is a subspace of the distributional
Sobolev space H−1/2(�); the space of boundary values H1/2(�) 
 H1(M)/H1

0 (M) of the
operator domain H1(M); and the most familiar and basic L2(�).1 As in (2), Green’s form
induces symplectic forms on all three section spaces which are mutually compatible.

More precisely, Green’s form yields a strong symplectic structure not only on β(A), but
also on L2(�) by

ω(x, y) : = −〈J x, y〉L2(�).

Here J denotes the principal symbol of the operator A over the boundary in inner normal
direction. The multiplicative operator induced by J is invertible (= injective and surjective,
i.e., with bounded inverse) since A is elliptic. For the induced symplectic structure on the
Sobolev space H1/2(�) the corresponding operator J ′ is not invertible for dim � ≥ 1, see
Remark 2b in Sect. 2.1 below. So, for dim � ≥ 1 the space H1/2(�) becomes only a weak

1 In the tradition of geometrically inspired analysis, we think mostly of homogeneous systems when talking
of elliptic boundary value problems. Our key reference is the monograph [11] by Wojciechowski and the first
author and the supplementary elaborations by Brüning and Lesch in [16]. For a more comprehensive treatment,
emphasizing non-homogeneous boundary value problems and assembling all relevant section spaces in a huge
algebra, we refer to the more recent article [38] by Schulze.
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symplectic Hilbert space, to use a notion introduced by Chernoff and Marsden [19, Sect. 1.2,
pp. 4–5].

An additional incitement to investigate weak symplectic structures comes from a stunning
observation of Witten (explained by Atiyah in [3] in a heuristic way). He considered a weak
(and degenerate) symplectic form on the loop space Map(S1, M) of a finite-dimensional
closed orientable Riemannian manifold M and noticed that a (future) thorough understanding
of the infinite-dimensional symplectic geometry of that loop space “should lead rather directly
to the index theorem for Dirac operators” (l.c., p. 43). Of course, restricting ourselves to the
linear case, i.e., to the geometry of Lagrangian subspaces instead of Lagrangian manifolds,
we can only marginally contribute to that program in this paper.

1.2 Main results and plan of the paper

In this paper we shall deal with the preceding technical problem. To do that, we generalize
the results of Robbin and Salamon [37], Cappell, Lee, and Miller [17], Furutani, Otsuki and
the first author in [8,9] and of Kirk and Lesch in [27]. We give a rigorous definition of the
Maslov index for continuous curves of Fredholm pairs of Lagrangian subspaces in a fixed
Banach space with varying weak symplectic structures and continuously varying symplectic
splittings and derive its basic properties. Part of our results will be formulated and proved
for relations instead of operators to admit wider application.

Throughout, we aim for a clean presentation in the sense that results are proved in
suitable generality. We wish to show clearly the minimal assumptions needed in order to
prove the various properties. We shall, e.g., prove purely algebraic results algebraically
in symplectic vector spaces and purely topological results in Banach spaces whenever
possible—in spite of the fact that we shall deal with symplectic Hilbert spaces in most
applications.

The routes of [8,9] and [27] are barred to us because they rely on the concept of strong
symplectic Hilbert space. Consequently, we have to replace some of the familiar reasoning
of symplectic analysis by new arguments. A few of the most elegant lemmata of strong
symplectic analysis cannot be retained, but, luckily, the new weak symplectic set-up will
show a considerable strength that is illustrative and applicable also in the conventional strong
case.

In Sect. 2, we give a thorough presentation of weak symplectic functional analysis. Basic
concepts are defined in Subsect. 2.1. A new feature of weak symplectic analysis is the lack of a
canonical symplectic splitting: for strong symplectic Hilbert space, we can assume J 2 = −I
by smooth deformation of the metric, and obtain the canonical splitting X = X+ ⊕ X− into
mutually orthogonal closed subspaces X± := ker(J ∓ i I ) which are both invariant under J .
That permits the representation of all Lagrangian subspaces as graphs of unitary operators
from X+ to X− (see Lemma 2), which yields a transfer of contractibility from the unitary
group to the space of Lagrangian subspaces. Moreover, that representation is the basis for a
functional analytical definition of the Maslov index. For weak symplectic Hilbert or Banach
spaces, the preceding construction does not work any longer and we must assume that a
symplectic splitting is given and fixed (its existence follows, however, from Zorn’s Lemma).
Given an elliptic differential operator A of first order over a manifold M with boundary �,
however, we have a natural symplectic splitting of the symplectic spaces of sections over �,
both in the strong and weak symplectic case, see Remark 3a, Eq. (11).

In Subsect. 2.2, we turn to Fredholm pairs of Lagrangian subspaces to prepare for the
counting of intersection dimensions in the definition of the Maslov index. Here another
new feature of weak symplectic analysis is that the Fredholm index of a Fredholm pair of
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Lagrangian subspaces does not need to vanish. On the one hand, this opens the gate to new
interesting theorems. On the other hand, the re-formulation of well-known definitions and
lemmata in the weak symplectic setting becomes rather heavy since we have to add the
vanishing of the Fredholm index as an explicit assumption.

As a side effect of our weak symplectic investigation, we hope to enrich the classical litera-
ture with our new purely algebraic conditions for isotropic subspaces becoming Lagrangians,
in Lemma 4 and Propositions 1 and 2.

At present, the homotopy types of the full Lagrangian Grassmannian and of the Fredholm
Lagrangian Grassmannian remain unknown for weak symplectic structures. We give a list
of related open problems in Subsect. 2.3 below. To us, however, it seems remarkable that a
wide range of familiar geometric features can be re-gained in weak symplectic functional
analysis—in spite of the incomprehensibility of the basic topology.

In Subsect. 2.4, we lay the next foundation for a rigorous definition of the Maslov index
by investigating continuous curves of operators and relations that generate Lagrangians in
the new wider setting. Referring to the concepts of our Appendix, we define the spectral flow
of such curves.

In Sect. 3 we finally come to the intersection geometry. In Subsect. 3.1, we show how to
treat varying weak symplectic structures in a fixed Banach space with continuously varying
symplectic splittings and define the Maslov index for continuous curves of Fredholm pairs of
Lagrangian subspaces in this setting. We obtain the full list of basic properties of the Maslov
index as listed by Cappell, Lee, and Miller in [17]. We cannot claim that this new Maslov index
is always independent of the splitting projections. However, for strong symplectic Banach
space the independence will be proved in Proposition 6. That establishes the coincidence
with the common definition of the Maslov index.

In Subsect. 3.2, in our general context, we establish the relation between real symplectic
analysis (in the tradition of classical mechanics) on the one side, and the more elegant complex
symplectic analysis (as founded by Leray in [28]) on the other side.

In Subsect. 3.3, we pay special attention to questions related to the embedding of symplec-
tic spaces, Lagrangian subspaces and curves into larger symplectic spaces. Our investigations
are inspired by the extremely delicate embedding questions between the two strong symplec-
tic Hilbert spaces β(A) and L2(�) as studied by Furutani, Otsuki and the first author in [9].
One additional reason for our interest in embedding problems is our observation of Remark
2c, that each weak symplectic Hilbert space can naturally be embedded in a strong symplectic
Hilbert space, imitating the embedding of H1/2(�) into L2(�).

In Appendix A.1 and A.2, we recall the basic knowledge and fix our notations regard-
ing gaps between closed subspaces in Banach space, uniform properties, closed linear
relations and their spectral projections. Then, in Appendix A.3, we give a rigorous def-
inition of the spectral flow for admissible families of closed relations. Our discussion of
continuous operator families in Subsect. 2.4 and the whole of Sect. 3 is based on that
definition.

The main results of this paper were achieved many years ago by the authors and infor-
mally disseminated in [12]. Through all the years, our goal was to establish a truly general
spectral flow formula by applying the weak symplectic functional analysis. But here we met
a technical gap in the argumentation: only recently we found the correct sufficient conditions
for continuous variation of the Cauchy data spaces (or, alternatively stated, the continuous
variation of the pseudo-differential Calderón projection) for curves of elliptic operators in
joint work with Chen and Lesch [6]. Now that gap is bridged, a full general spectral flow
formula is obtained in [14] and the relevance of weak symplectic functional analysis has
become sufficiently clear for a regular publication of our results.
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2 Weak symplectic functional analysis

2.1 Basic symplectic functional analysis

We fix our notation. To keep track of the required assumptions, we shall not always assume that
the underlying space is a Hilbert space but permit Banach spaces and—for some concepts—
even just vector spaces. For easier presentation and greater generality, we begin with complex
symplectic spaces.

Definition 1 Let X be a complex Banach space. A mapping

ω : X × X −→ C

is called a (weak) symplectic form on X , if it is sesquilinear, bounded, skew-symmetric, and
non-degenerate, i.e.,

(i) ω(x, y) is linear in x and conjugate linear in y;
(ii) |ω(x, y)| ≤ C‖x‖‖y‖ for all x, y ∈ X ;

(iii) ω(y, x) = −ω(x, y);
(iv) Xω := {x ∈ X | ω(x, y) = 0 for all y ∈ X } = {0}.

Then we call (X, ω) a (weak) symplectic Banach space.

There is a purely algebraic concept, as well.

Definition 2 Let X be a complex vector space andω a form which satisfies all the assumptions
of Definition 1 except (ii). Then we call (X, ω) a complex symplectic vector space.

Definition 3 Let (X, ω) be a complex symplectic vector space.

(a) The annihilator of a subspace λ of X is defined by

λω := {y ∈ X | ω(x, y) = 0 for all x ∈ λ}.
(b) A subspace λ is called symplectic, isotropic, co-isotropic, or Lagrangian if

λ ∩ λω = {0}, λ ⊂ λω, λ ⊃ λω, λ = λω,

respectively.
(c) The Lagrangian Grassmannian L (X, ω) consists of all Lagrangian subspaces of (X, ω).

Definition 4 Let (X, ω) be a symplectic vector space and X+, X− be linear subspaces. We
call (X, X+, X−) a symplectic splitting of X , if X = X+ ⊕ X−, the quadratic form −iω is
positive definite on X+ and negative definite on X−, and

ω(x, y) = 0 for all x ∈ X+ and y ∈ X−. (3)

Remark 1 (a) By definition, each one-dimensional subspace in real symplectic space is
isotropic, and there always exists a Lagrangian subspace. However, there are complex
symplectic Hilbert spaces without any Lagrangian subspace. That is, in particular, the
case if dim X+ �= dim X− in N ∪ {∞} for a single (and hence for all) symplectic
splittings.

(b) If dim X is finite, a subspace λ is Lagrangian if and only if it is isotropic with dim λ =
1
2 dim X .

(c) In symplectic Banach spaces, the annihilator λω is closed for any subspace λ. In partic-
ular, all Lagrangian subspaces are closed, and we have for any subspace λ the inclusion

λωω ⊃ λ. (4)
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(d) Let X be a vector space and denote its (algebraic) dual space by X ′. Then each symplectic
form ω induces a uniquely defined injective mapping J : X → X ′ such that

ω(x, y) = (J x, y) for all x, y ∈ X, (5)

where we set (J x, y) := (J x)(y).
If (X, ω) is a symplectic Banach space, then the induced mapping J is a bounded, injective

mapping J : X → X∗ where X∗ denotes the (topological) dual space. If J is also surjective
(so, invertible), the pair (X, ω) is called a strong symplectic Banach space. As mentioned
in the Sect. 1, we have taken the distinction between weak and strong symplectic structures
from Chernoff and Marsden [19, Sect. 1.2, pp. 4–5].

If X is a Hilbert space with symplectic form ω, we identify X and X∗. Then the induced
mapping J is a bounded, skew-self-adjoint operator (i.e., J ∗ = −J ) on X with ker J = {0}
and can be written in the form J =

(
i A+ 0

0 −i A−

)
with A± > 0 bounded self-adjoint (but

not necessarily invertible, i.e., A−1± not necessarily bounded). As in the strong symplectic
case, we then have that λ ⊂ X is Lagrangian if and only if λ⊥ = Jλ.

The proof of the following lemma is straightforward and is omitted.

Lemma 1 Any strong symplectic Hilbert space (X, 〈·, ·〉, ω) (i.e., with invertible J ) can
be made into a strong symplectic Hilbert space (X, 〈·, ·〉′, ω) with J ′2 = −I by smooth
deformation of the inner product of X into

〈x, y〉′ :=
〈√

J ∗ J x, y
〉

without changing ω.

Remark 2 (a) In a strong symplectic Hilbert space many calculations become quite easy.
E.g., the inclusion (4) becomes an equality, and all Fredholm pairs of Lagrangian sub-
spaces have vanishing index, see below Definition 5, Eqs. (12)–(14).

(b) From the Sect. 1, we recall an important example of a weak symplectic Hilbert space:
Let A be a formally self-adjoint linear elliptic differential operators of first order over a
smooth compact Riemannian manifold M with boundary �. As mentioned in the Sect.
1, we have (we suppress mentioning the vector bundle)

H1/2(�) 
 H1(M)/H1
0 (M) (6)

with uniformly equivalent norms. Green’s form yields a strong symplectic structure on
L2(�) by

{x, y} := − 〈J x, y〉L2(�) . (7)

Here J denotes the principal symbol of the operator A over the boundary in inner
normal direction. It is invertible since A is elliptic. For the induced symplectic structure
on H1/2(�) we define J ′ by

{x, y} = − 〈
J ′x, y

〉
H1/2(�)

for x, y ∈ H1/2(�).

Let B be a formally self-adjoint elliptic operator B of first order on �. By Gårding’s
inequality, the H1/2 norm is equivalent to the induced graph norm. This yields J ′ =
(I + |B|)−1 J . Since B is elliptic, it has compact resolvent. So, (I + |B|)−1 is compact
in L2(�); and so is J ′. Hence J ′ is not invertible. In the same way, any dense subspace
of L2(�) inherits a weak symplectic structure from L2(�).
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(c) Each weak symplectic Hilbert space (X, 〈·, ·〉, ω) with induced injective skew-self-
adjoint J can naturally be embedded in a strong symplectic Hilbert space

(
X ′, 〈·, ·〉′, ω′)

with invertible induced J ′ by setting 〈x, y〉′ := 〈|J |x, y〉 as in Lemma 1 and then com-
pleting the space. This imitates the situation of the embedding of H1/2(�) into L2(�). It
shows that the weak symplectic Hilbert space H1/2(�) with its embedding into L2(�)

yields a model for all weak symplectic Hilbert spaces. In Sect. 3.3, we shall elaborate
on the embedding weak ↪→ strong a little further.

The following lemma is a key result in symplectic analysis. The representation of
Lagrangian subspaces as graphs of unitary mappings from one component X+ to the comple-
mentary component X− of the underlying symplectic vector space (to be considered as the
induced complex space in classical real symplectic analysis, see, e.g., Furutani and the first
author [7, Sect. 1.1]) goes back to Leray [28]. We give a simplification for complex vector
spaces, first announced in [43]. Of course, the main ideas were already contained in the real
case. The Lemma is essentially well-known and will be obtained in the more general setting
below: (i) is clear; (ii) will follow from Lemma 3; and (iii) from Proposition 2.

Lemma 2 Let (X, ω) be a strong symplectic Hilbert space with J 2 = −I . Then

(i) the space X splits into the direct sum of mutually orthogonal closed subspaces

X = ker(J − i I ) ⊕ ker(J + i I ),

which are both invariant under J ;
(ii) there is a 1-1 correspondence between the space U J of unitary operators from ker(J −

i I ) to ker(J + i I ) and L (X, ω) under the mapping U �→ λ := G(U ) (= graph of U);
(iii) if U, V ∈ U J and λ := G(U ), μ := G(V ), then (λ, μ) is a Fredholm pair (see

Definition 5b) if and only if U − V , or, equivalently, U V−1 − Iker(J+i I ) is Fredholm.
Moreover, we have a natural isomorphism

ker
(
U V−1 − Iker(J+i I )

) 
 λ ∩ μ. (8)

The preceding method to characterize Lagrangian subspaces and to determine the dimen-
sion of the intersection of a Fredholm pair of Lagrangian subspaces provides the basis for
defining the Maslov index in strong symplectic spaces of infinite dimensions (see, in differ-
ent formulations and different settings, the quoted references [7,9,24,27], and Zhu and Long
[45]).

Surprisingly, it can be generalized to weak symplectic Banach spaces in the following
way.

Lemma 3 Let (X, ω) be a symplectic vector space with a symplectic splitting (X, X+, X−).

(a) Each isotropic subspace λ can be written as the graph

λ = G(U )

of a uniquely determined injective operator

U : dom(U ) −→ X−

with dom(U ) ⊂ X+. Moreover, we have

ω(x, y) = −ω(U x, U y) for all x, y ∈ dom(U ). (9)

(b) If X is a Banach space, then X± are always closed and the operator U defined by a
Lagrangian subspace λ is closed as an operator from X+ to X− (not necessarily densely
defined).
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(c) For a closed isotropic subspace λ in a strong symplectic Banach space X, we have
dom(U ) and imU are closed. Moreover, if λ is Lagrangian, then dom(U ) = X+ and
imU = X−; i.e., the generating U is bounded and surjective with bounded inverse.

Proof (a) Let λ ⊂ X be isotropic and v+ + v−, w+ + w− ∈ λ with v±, w± ∈ X±. By the
isotropic property of λ and our assumption about the splitting X = X+ ⊕ X− we have

0 = ω(v+ + v−, w+ + w−) = ω(v+, w+) + ω(v−, w−). (10)

In particular, we have

ω(v+ + v−, v+ + v−) = ω(v+, v+) + ω(v−, v−) = 0

and so v− = 0 if and only if v+ = 0. So, if the first (respectively the second) components
of two points v+ + v−, w+ + w− ∈ λ coincide, then also the second (respectively the first)
components must coincide.

Now we set

dom(U ) := {
x ∈ X+ | ∃y ∈ X− such that x + y ∈ λ

}
.

By the preceding argument, y is uniquely determined, and we can define U x := y. By
construction, the operator U is an injective linear mapping, and property (9) follows from
(10).
(b) By Definition 4 of a symplectic splitting, Eq. (3) we have X− ⊂ (X+)ω. Now let
x+ + x− ∈ (X+)ω with x± ∈ X±. Then ω(x+ + x−, x+) = ω(x+, x+) = 0 ⇐⇒ x+ = 0
since −iω is positive definite on X+. That proves X− = (X+)ω, and correspondingly
X+ = (X−)ω. As noticed in Remark 1c, annihilators are always closed. This proves the
first part of (b). Now let λ be a Lagrangian subspace and let U be the uniquely determined
injective operator U : dom(U ) → X− with dom(U ) ⊂ X+ and G(U ) = λ. By Definition
3b we have λ = λω, hence λ is closed as an annihilator and so is the graph of U , i.e., U is
closed.
(c) Let λ = G(U ). Let {xn} be a sequence in dom(U ) convergent to x ∈ X+. Since X is
strong, we see from (9) that the sequence {U xn} is a Cauchy sequence and therefore is also
convergent. Denote by y the limit of {U xn}. Since λ is closed, we have x ∈ domU and
y = U x . Thus dom(U ) is closed. We apply the same argument to dom(U−1) ⊂ X−, relative
to the inner product iω and obtain that imU is closed. This proves the first part of (c). Now
assume that λ is a Lagrangian subspace. Firstly we show that U is densely defined in X+.
Indeed, if dom(U ) �= X+, there would be a v ∈ V, v �= 0, where V denotes the orthogonal
complement of dom(U ) in X+ with respect to the inner product on X+ defined by −iω.
Clearly (dom(U ))ω = V + X−. So, V = (dom(U ))ω ∩ X+. Then v + 0 ∈ λω \ λ. That
contradicts the Lagrangian property of λ. So, we have dom(U ) = X+.

We have shown that dom(U ) is closed and dense. Hence dom(U ) = X+. Now the
boundedness of U follows from the closedness of G(U ). Applying the same arguments
to dom(U−1) ⊂ X− relative to the inner product iω yields imU = dom(U−1) = X− and
U−1 is bounded. ��
Remark 3 (a) Note that the symplectic splitting is not unique. Its existence can be proved by

Zorn’s Lemma. In our applications, the geometric background provides natural splittings.
Let A be an elliptic differential operator of first order, acting on sections of a Hermitian
vector bundle E over the Riemannian manifold M with boundary �. Then the symplectic
Hilbert space structures of L2(�; E |�) and H1/2(�; E |�) of (7) and (6) are compatible
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and their symplectic splitting is defined by the bundle endomorphism (the principal
symbol of A in inner normal direction) J : E |� → E |� in the following way:

H± := H1/2(�; E±|�
)

and L± := L2(�; E±|�
)

with E±|� := lin. span of

{
positive
negative

}
eigenspaces of i J. (11)

Note that L+, L− change continuously if J changes continuously. For varying splittings
see also the discussion below in Sect. 3.

(b) The symplectic splitting and the corresponding graph representation of isotropic and
Lagrangian subspaces must be distinguished from the splitting in complementary
Lagrangian subspaces which yields the common representation of Lagrangian subspaces
as images in the real category (see Lemma 11 below).

2.2 Fredholm pairs of Lagrangian subspaces

A main feature of symplectic analysis is the study of the Maslov index. It is an intersection
index between a path of Lagrangian subspaces with the Maslov cycle, or, more generally,
with another path of Lagrangian subspaces.

Before giving a rigorous definition of the Maslov index in weak symplectic functional
analysis (see below Sect. 3) we fix the terminology and give several simple criteria for a pair
of isotropic subspaces to be Lagrangian.

We recall:

Definition 5 (a) The space of (algebraic) Fredholm pairs of linear subspaces of a vector
space X is defined by

F 2
alg(X) := {

(λ, μ) | dim λ ∩ μ < +∞ and dim X/(λ + μ) < +∞}
(12)

with

index(λ, μ) := dim λ ∩ μ − dim X/(λ + μ). (13)

(b) In a Banach space X , the space of (topological) Fredholm pairs is defined by

F 2(X) := {
(λ, μ) ∈ F 2

alg(X) | λ,μ and λ + μ ⊂ X closed
}
. (14)

Remark 4 Actually, in Banach spaces the closedness of λ + μ follows from its finite codi-
mension in X in combination with the closedness of λ,μ (see [8, Remark A.1] and [26,
Problem 4.4.7]). So, the set of algebraic Fredholm pairs of Lagrangian subspaces of a sym-
plectic Banach space X coincides with the set FL 2(X) of topological Fredholm pairs of
Lagrangian subspaces of X .

We begin with a simple algebraic observation.

Lemma 4 Let (X, ω) be a symplectic vector space with transversal subspaces λ,μ. If λ,μ

are isotropic subspaces, then they are Lagrangian subspaces.

Proof From linear algebra we have

λω ∩ μω = (λ + μ)ω = {0},
since λ + μ = X . From

λ ⊂ λω, μ ⊂ μω (15)
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we get

X = λω ⊕ μω. (16)

To prove λω = λ (and similarly for μ), we consider an x ∈ λω. It can be written in the form
x = y + z with y ∈ λ and z ∈ μ because of the splitting X = λ⊕ μ. Applying (15) and the
splitting (16) we get y = x and so z = 0, hence x ∈ λ. ��

With a little work, the preceding lemma can be generalized from direct sum decomposi-
tions to (algebraic) Fredholm pairs. At first we have

Lemma 5 Let V, W be two vector spaces and f : V × W → C be a sesquilinear mapping.
Assume that dim W < +∞. If for each v ∈ V , the condition f (v,w) = 0 for all w ∈ W
implies v = 0, then we have dim V ≤ dim W .

Proof Let W̃ be the space of conjugate linear functionals on W . Let f̃ : V → W̃ be the
induced map of f defined by ( f̃ (v))(w) := f (v,w). Then f̃ is linear. Our condition implies
that f̃ is injective. Thus we have dim V ≤ dim W̃ = dim W . ��
Corollary 1 Let (X, ω) denote a symplectic vector space.

(a) For any finite-codimensional linear subspace λ, we have dim λω ≤ dim X/λ.
(b) For any finite-dimensional linear subspace μ, we have μωω = μ and dim μ =

dim X/μω.

Proof (a) Define f : λω × (X/λ) → C by f (x, y +λ) := ω(x, y) for all x ∈ λω and y ∈ X .
Then f satisfies the condition in Lemma 5. So our result follows.
(b) Define g : (X/μω) × μ → C by g(x + μω, y) := ω(x, y) for all x, y ∈ μ. Then
g satisfies the condition in Lemma 5. So we have dim X/μω ≤ dim μ. By (a) we have
dim μωω ≤ dim X/μω. Since μ ⊂ μωω, our result follows. ��
Proposition 1 Let (X, ω) be a symplectic vector space and (λ, μ) ∈ F 2

alg(X). If λ,μ are
isotropic subspaces with index(λ, μ) ≥ 0, then λ and μ are Lagrangian subspaces of X,

index(λ, μ)
(i)= 0, (λ + μ)ω

(i i)= λ ∩ μ, and (λ + μ)ωω (i i i)= λ + μ.

Proof Set X̃ := (λ + μ)/(λ ∩ μ) with the induced form

ω̃([x + y], [ξ + η]) := ω(x + y, ξ + η) for x, ξ ∈ λ and y, η ∈ μ,

where [x + y] := x + y + λ ∩ μ denotes the class of x + y in λ+μ
λ∩μ

. The aim is to show that

X̃ is a symplectic vector space. During the proof of this fact the claimed equalities (i)–(iii)
will be obtained.

Since λ,μ are isotropic, we have ω(x + y + z, ξ + η + ζ ) = ω(x + y, ξ + η) for any
z, ζ ∈ λ ∩ μ. So ω̃ is well-defined and inherits the algebraic properties from ω.

To show that (X̃)ω̃ = {0}, we observe

(λ + μ)ω = λω ∩ μω ⊃ λ ∩ μ. (17)

By Corollary 1a, we have

dim(λ + μ)ω ≤ dim X/(λ + μ) ≤ dim(λ ∩ μ).

Here the last inequality is just the non-negativity of the Fredholm index as defined in (13).
This proves (i), namely

dim(λ + μ)ω = dim X/(λ + μ) = dim(λ ∩ μ). (18)
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Combining (18) with (17) yields (ii), namely

λ ∩ μ = λω ∩ μω = (λ + μ)ω. (19)

By Corollary 1b, we have

dim X/(λ + μ) = dim λ ∩ μ = dim X/(λ ∩ μ)ω = dim X/(λ + μ)ωω.

Thus we have proved (iii), namely λ + μ = (λ + μ)ωω.
To finish our proof that ω̃ is non-degenerate, one checks that

(λ + μ

λ ∩ μ

)ω̃ = (λ + μ)ω

λ ∩ μ
. (20)

With (19) that proves that
(λ + μ

λ ∩ μ

)ω = {0}, hence X̃ = λ + μ

λ ∩ μ
is a true symplectic vector

space for the induced form ω̃. It is spanned by the transversal isotropic subspaces

λ + μ

λ ∩ μ
= λ

λ ∩ μ
⊕ μ

λ ∩ μ
.

By Lemma 4, the spaces
λ

λ ∩ μ
,

μ

λ ∩ μ
are Lagrangian subspaces.

It remains to prove that λ,μ itself is Lagrangian subspaces of X . Clearly λ ⊂ λω∩(λ+μ).
Now consider x ∈ λ and y ∈ μ with x + y ∈ λω. Then

[x + y] ∈
( λ

λ ∩ μ

)ω̃ = λ

λ ∩ μ

by the Lagrangian property of λ
λ∩μ

. It follows that x + y ∈ λ, hence

λω ∩ (λ + μ) = λ and similarly μω ∩ (λ + μ) = μ. (21)

Combined with the fact that

λω ⊂ (λ ∩ μ)ω = (λ + μ)ωω = λ + μ,

the inclusion λ ⊃ λω follows and so the Lagrangian property of λ (and similarly of μ). ��
Remark 5 For related topological (unsolved) questions see below Subsect. 2.3.

We close this subsection with the following characterization of Fredholm pairs.

Proposition 2 Let (X, ω) be a symplectic Banach space and let (X, X+, X−) be a symplectic
splitting. Let λ,μ be isotropic subspaces. Let U, V denote the generating operators for λ,μ

in the sense of Lemma 3. We assume that

V : X+ → X− is bounded and bounded invertible. (22)

Then

(a) The space μ is a Lagrangian subspace of X.
(b) Moreover,

(λ, μ) ∈ F 2(X) ⇐⇒ U V−1 − IX− is a Fredholm operator with domain V (dom U ).

(c) In this case, U − V is a (closed, not necessarily bounded) Fredholm operator with
domain dom U and

index(λ, μ) = index(U V−1 − IX−).
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(d) In particular, U − V (and thus U V−1 − IX− ) is closed if λ is closed and V is bounded
(as assumed above).

Note 1 Our assumption (22) is needed for (a). For (b) and (c) (in (23) below) it is only
required that dom(U ) ⊂ dom(V ). For (d) we need only that V is bounded.

For (b), (c) and (d) recall from Definition 5b that we require of a pair in F 2(X) to consist
of closed subspaces.

Proof (a) Since μ = G(V ) is an isotropic subspace of X , the space μ′ := G(−V ) is
also isotropic. We show that μ,μ′ are transversal in X . Then by Lemma 4, μ (and μ′) are
Lagrangian subspaces. First, from the injectivity of V , we have μ∩μ′ = {0}. Next, let x + y,

or, more suggestively,

(
x
y

)
denote an arbitrary point in X with x ∈ X+ and y ∈ X−. Since

V is bounded with bounded inverse, we have y ∈ imV and z, w ∈ domV , where

z := x + V−1 y

2
and w := x − V−1 y

2
.

Then z + w = x and z − w = V−1 y, so
(

x
y

)
=

(
z

V z

)
+

(
w

−V w

)
.

This proves X = μ ⊕ μ′.
(b and c) Let λ = G(U ) and μ = G(V ) with V bounded and bounded invertible. Let P±
denote the projections of X = X+ ⊕ X− onto X±. Then

λ ∩ μ =
{(

x
V x

)
| x ∈ dom(U ) and U x = V x

}
.

So, P− induces an algebraic and topological isomorphism between λ ∩ μ and ker
(
U V−1 −

IX−
)
.

Now we determine

λ + μ =
{(

x
U x

)
+

(
y

V y

)
| x ∈ dom(U ), y ∈ X+}

=
{(

x ′
V x ′

)
+

(
0
z

)
| x ′ ∈ X+ and z ∈ im

(
U V−1 − IX−

)}

= μ ⊕ im
(
U V−1 − IX−

)
. (23)

The last direct sum sign comes from the invertibility of V : It induces μ ∩ X− = {0} and,
similarly, μ+X− = X . From that we obtain the direct sum decomposition X = μ⊕X− with
projections �μ and �− onto the components. So, �− yields an algebraic and topological
isomorphism of λ + μ onto im(U V−1 − IX−). In particular, we have λ + μ closed in X if
and only if im(U V−1 − IX−) is closed in X− and

X/(λ + μ) 
 X−/im
(
U V−1 − IX−

)
with coincidence of the codimensions. (d) Let xn → x and yn → y be such that (U−V )xn →
y. Since V is bounded, V xn → V x . Then U xn → V x + y. Since λ is closed, U is closed.
Thus x ∈ dom(U ) and U x = V x + y. Hence (U − V )x = y. ��
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2.3 Open topological problems

2.3.1 Fredholm pairs of Lagrangian subspaces with negative index?

Proposition 1 shows that Fredholm pairs of Lagrangian subspaces in symplectic vector spaces
cannot have positive index. In contrast to the strong case, one may expect that we have pairs
with negative index in weak symplectic Hilbert space. By now, however, this is an open
problem.

2.3.2 Characterization of Lagrangian subspaces by the canonical symmetry property
of the projections?

The delicacy of Lagrangian analysis in weak symplectic Hilbert space may also be illuminated
by addressing the orthogonal projection onto a Lagrangian subspace. In a strong symplectic
Hilbert space with unitary J , the range of an orthogonal projection is Lagrangian if and only
if the projections P and I − P are conjugated by the operator J in the way

I − P = J P J ∗,

which is familiar from characterizing elliptic self-adjoint pseudo-differential boundary con-
ditions for elliptic differential of first order, see [11, Proposition 20.3]. In weak symplectic
analysis, J maps the range imP onto a dense subset of ker P , but there the argument stops.

2.3.3 Contractibility of the space of Lagrangian subspaces?

There are two further differences between the weak and the strong case, namely regarding
the topology: while the Lagrangian Grassmannian L (X, ω) inherits contractibility from the
space of unitary operators in separable Hilbert spaces by Lemma 2(ii), more refined arguments
will be needed to prove the contractibility in the weak case, if it is true at all.

2.3.4 Bott periodicity of the homotopy groups of the space of Fredholm pairs of Lagrangian
subspaces?

Next, consider the space FLλ(X) of all Lagrangian subspaces which form a Fredholm pair
with a given Lagrangian subspace λ. Its topology is presently also unknown in the weak case,
whereas we have

π1
(
FLλ(X)

) ∼= Z

in strong symplectic Hilbert spaces X (see [8, Corollary 4.3] and the generalization to Bott
periodicity in [27, Eq. (6.2) with Lemma 6.1 and Proposition 6.5]).

2.4 Curves of unitary operators that are admissible with respect to the positive half-line

We begin with some observations on inner product spaces and refer to the Appendix A.2 for
a rigorous definition of the basic concepts of linear relations.

Lemma 6 Let (X, h X ), (Y, hY ), (Z , hZ ) denote three inner product spaces, A, B linear
relations between X and Y , and C a linear relation between X and Z.

(a) Assume that C is a linear operator, dom(A) ⊂ dom(C), and hY (y, y) ≤ hZ (Cx, Cx)

for all (x, y) ∈ A. Then A is a linear operator.
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(b) Assume that B is a linear operator, dom(A) = dom(C) ⊂ dom(B), and

hY (y, y) + hZ (z, z) ≤ hY (Bx, Bx) (24)

for all (x, y) ∈ A and (x, z) ∈ C. Then A and C are linear operators and ker(B − A) ⊂
ker C.

Proof Let y ∈ A(0), i.e., (0, y) ∈ A. By our assumption we have hY (y, y)≤ hZ (C0, C0)= 0.
Since hY is positive definite, we have y = 0.
(b) By (a) A and C are linear operators. Let x ∈ ker(B − A). Then Bx = Ax . By (24) we
have hZ (Cx, Cx) ≤ 0. Since hZ is positive definite, we have Cx = 0, i.e., x ∈ ker C . ��

Let X be a complex Banach space. We apply the following notations:

C (X) : = closed operators on X with dense domain,

B(X) : = bounded linear operators X → X, and

C F (X) : = closed (not necessarily bounded) Fredholm operators on X.

The topology on C F (X) is defined in the Appendix.
We assume that X is an inner product space with a fixed inner product (i.e., a sesquilinear,

symmetric positive definite form) h : X × X → C which is bounded

|h(x, y)| ≤ c‖x‖‖y‖ for all x, y ∈ X.

Definition 6 An operator A ∈ C (X) will be called unitary with respect to h, if

h(Ax, Ay) = h(x, y) for all x, y ∈ dom(A).

Remark 6 (a) Note that h induces a uniformly smaller norm than ‖·‖ on X which makes X
into a Hilbert space if and only if X becomes complete for this h-induced norm.

(b) The concept of h-unitary extends trivially to closed operators with dense domain in one
Banach space equipped with an inner product, and range in a second Banach space,
possibly with a different inner product. In this sense, for any Lagrangian subspace the
generating operator U ∈ C (X+, X−) (established in Lemma 3) is (h+, h−)-unitary with
h± = ∓iω|X± .

Like for unitary operators in Hilbert spaces, the following lemma shows that a unitary
operator with respect to h has no eigenvalues outside the unit circle.

Lemma 7 Let A ∈ C (X) be unitary with respect to h and λ ∈ C, |λ| �= 1. Then ker(A −
λI ) = {0}.
Proof Let x ∈ ker(A − λI ), so Ax = λx and

h(x, x) = h(Ax, Ax) = |λ|2h(x, x).

Since |λ| �= 1, we get h(x, x) = 0 and so x = 0 since h is positive definite. ��
For a certain subclass of unitary operators with respect to h we show that they have discrete

spectrum close to one. Consequently, they are admissible with respect to the positive half-line
 (in the sense of Definition 12 of Appendix A.3) and so permit the definition of spectral flow
through  for continuous families (Appendix A.3). Here the co-orientation of  is upward.

Proposition 3 (a) Let X be a Banach space with bounded inner product h. Let A ∈ C (X)

be h-bounded, i.e., an operator satisfying

h(Ax, Ay) ≤ h(x, y) for all x, y ∈ dom(A).
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We assume A − I ∈ C F (X) of index 0. If either A is h-unitary or A is bounded, then
there is a bounded neighborhood N ⊂ C of 1 with closure N̄ such that

σ(A) ∩ N̄ ⊂ {1}, dim PN (A) = dim ker(A − I ).

(b) Let m be an open submanifold of  := (0,+∞) and A be unitary with respect to h. If A
is admissible with respect to m in the sense of Definition 12a of the Appendix A.3, then
σ(A) ∩ m ⊂ {1}.

(c) Let {hs}0≤s≤1 be a family of inner products on X. Let As ∈ C (X) be unitary with respect
to hs . We assume that the family {As} is continuous. We denote h0 =: h and A0 =: A
and choose N like in (a). Then for s � 1 the spectrum part σ(As) ∩ N consists of
eigenvalues of finite algebraic multiplicity and we have

σ(As) ∩ N ⊂ S1.

(d) Let {hs} and As be as in (c). Then there exists ε ∈ (0, 1) such that the family {As} is a
family of admissible operators that is spectral-continuous near mε := (1 − ε, 1 + ε) in
the sense of Definitions 12a and 13a.

(e) Let {hs} and As be as in (c). Let m � 1 be an open submanifold of  = (0,+∞). If the
family {As} is a family of admissible operators that is spectral-continuous near m, we
can define the spectral flow

sf{As} := sfm{As}.
Proof (a) Since ker(A − I ) is finite-dimensional, we have an h-orthogonal splitting

X = ker(A − I ) ⊕ X1

with closed X1. (Take X1 := �(X) with �(x) := x − ∑n
j=1 h(x, e j )e j , where {e j } is an

h-orthonormal basis of ker(A − I )). We notice that ker(A − I ) ⊂ dom(A), so

dom(A) = ker(A − I ) ⊕ (dom(A) ∩ X1). (25)

Then the operator A can be written in block form

A =
(

I0 A01

0 A11

)
, (26)

where I0 denotes the identity operator on ker(A − I ).
Since A is h-bounded, by Lemma 6b we have ker(A11 − I1) ⊂ ker A01. Here I1 denotes

the identity operator on X1. So we have

ker(A11 − I1) ⊂ ker(A11 − I1) ∩ ker A01 ∩ X1 = ker(A − I ) ∩ X1 = {0}.
Now we distinguish two cases. If A is h-unitary, let y ∈ dom(A)∩X1 and x ∈ ker(A− I ).

Then

h(x, Ay) = h(Ax, Ay) = h(x, y) = 0

by (25). So, the range im(A|dom(A)∩X1) is h-orthogonal to ker(A − I ) and, hence, contained
in X1. Hence A01 = 0. We observe that A− I is closed as bounded perturbation of the closed
operator A; it follows that the component A11 and the operator A11 − I1 are closed in X1.
That proves that A11 − I1 has a bounded inverse. If, on the other side, A is bounded, then
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both A01 and A11 are bounded and we have

index(A11 − I1) = index
(
diag(I0, A11 − I1)

)
= index

(
(A − I )diag(I0, I1)

)
= index(A − I ) + index

(
diag(I0, I1)

) = 0.

By ker(A11− I1) = {0}we have A11− I1 surjective. By the Closed Graph Theorem, it follows
that (A11− I1)

−1 is bounded and so A11− I1 has a bounded inverse. We conclude that in both
cases A1 has no spectrum near 1. From the decomposition (26) we get σ(A) = σ(I0)∪σ(A1)

withσ(I0) = {1}. So, if 1 ∈ σ(A) it is an isolated point ofσ(A)of multiplicity dim ker(A−I ).
(b) Since A is admissible with respect to m, there exists a bounded open subset N of C such
that σ(A)∩m = σ(A)∩ N and dim imPN (A) < +∞. Then PN (A)APN (A) defined on the
finite dimensional vector space imPN (A) is unitary with respect to h|imPN (A). Thus we have
σ(PN (A)APN (A)) ⊂ S1 and

σ(A) ∩ m = σ(A) ∩ N = σ(PN (A)APN (A)) ⊂ S1 ∩ m ⊂ S1 ∩  = {1}.
(c) From our assumption it follows that σ(A) ∩ ∂ N = ∅ and, actually, σ(As) ∩ ∂ N = ∅ for
s sufficiently small. Then⎧⎨

⎩PN (As) := − 1

2π i

∫
∂ N

(A − λI )−1dλ

⎫⎬
⎭

is a continuous family of projections. From [26, Lemma I.4.10] we obtain

dim imPN (As) = dim imPN (A) < +∞ and PN (As)As ⊂ As PN (As),

and from [26, Lemma III.6.17] we get σ(As) ∩ N = σ(PN (As)As PN (As)). Since all
operators PN (As)As PN (As) are unitary with respect to hs |imPN (As ), it follows
σ(PN (As)As PN (As)) ⊂ S1.
(d) By (c) and Lemma 18 of Appendix A.3, for any t ∈ [0, 1], there exists ε(t) ∈ (0, 1) and
δ(t) > 0 such that {As}, s ∈ (t−δ(t), t+δ(t))∩[0, 1] is a family of admissible operators that
is spectral-continuous near mε(t). The open cover {(t −δ(t), t +δ(t))}, t ∈ [0, 1] of [0, 1] has
a finite subcover {(tk − δ(tk), tk + δ(tk))}, k = 1, . . . , n. Set ε = min{ε(tk); k = 1, . . . , n}.
Then {As}, s ∈ (tk − δ(tk), tk + δ(tk)) ∩ [0, 1] is a family of admissible operators that is
spectral-continuous near mε, and {As}, s ∈ [0, 1] is a family of admissible operators that is
spectral-continuous near mε.
(e) By (d), such m do exist. By (b), sfm{As} does not depend on the choice of m. Thus our
concept of the spectral flow relative  = (0,+∞) is well-defined. ��

Thus, it follows that any h-unitary operator A with A − I Fredholm of index 0 has the
same spectral properties near |λ| = 1 as unitary operators in Hilbert space with the additional
property that one is an isolated point of the spectrum of finite multiplicity.

This now permits us to define the Maslov index in weak symplectic analysis.

3 Maslov index in weak symplectic analysis

Now we turn to the geometry of curves of Fredholm pairs of Lagrangian subspaces in weak
symplectic Banach spaces. We show how the usual definition of the Maslov index can be
suitably extended and derive basic and more intricate properties.
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3.1 Definition and basic properties of the Maslov index

Our data for defining the Maslov index are a continuous family {(X, ωs, X+
s , X−

s )} of weak
symplectic Banach spaces with continuous splitting and a continuous family {(λs, μs)} of
Fredholm pairs of Lagrangian subspaces of {(X, ωs)} of index 0. Our first task is defining
the involved “continuity”.

Definition 7 Let X be a fixed complex Banach space and {ωs} a family of weak symplectic
forms for X . Let (X, ωs, X+

s , X−
s ) be a family of symplectic splittings of (X, ωs) in the sense

of Definition 4.

(a) The family {(X, ωs, X+
s , X−

s )} will be called continuous if the family of forms {ωs} is
continuous, and the families {X±

s } are continuous as closed subspaces of X in the gap
topology. Equivalently, we may demand that the family {Ps} of projections

Ps : x + y �→ x, for x ∈ X+
s and y ∈ X−

s ,

is continuous.
(b) Let {(X, ωs, X+

s , X−
s )}, s ∈ [a, b] be a continuous family of symplectic splittings

with induced inner products h±
s = ∓ω|X± . Let {(λs, μs)} be a continuous curve of

Fredholm pairs of Lagrangian subspaces of index 0. Let Us : dom(Us) → X−
s , resp.

Vs : dom(Vs) → X−
s be closed (h+

s , h−
s )-unitary operators with G(Us) = λs and

G(Vs) = μs . We define the Maslov index of the curve {λs, μs} with respect to Ps

by

Mas{λs, μs; Ps} := sf

{(
0 Us

V−1
s 0

)}
, (27)

where V−1 denotes the algebraic inverse of the closed injective operator V and  :=
(0,+∞) and with upward co-orientation. The spectral flow sf is defined in the sense
of Proposition 3e.

Remark 7 Let {(X, ωs, X+
s , X−

s )} be a continuous family. A curve {λs} of Lagrangian sub-
spaces is continuous (i.e., {λs = G(Us)} is continuous as a curve of closed subspaces of
X ), if and only if the family {Ss,s0 ◦ Us ◦ S−1

s,s0
} is continuous as a family of closed, gen-

erally unbounded operators in the space imPs0 . Here Us denotes the generating operator
Us : domUs → X−

s with G(Us) = λs (see Lemma 3); s0 ∈ [0, 1] is chosen arbitrarily to fix
the domain of the family; and

Ss,s0 : imPs −→ imPs0

is a bounded operator with bounded inverse which is defined in the following way (see also
[26, Sect. I.4.6, pp. 33–34]):

Ss,s0 := S′
s,s0

(I − R)−1/2 = (I − R)−1/2S′
s,s0

,

where

R := (Ps − Ps0)
2 and S′

s,s0
:= Ps0 Ps + (I − Ps0)(I − Ps).

The main result of our paper is

Theorem 1 The Maslov index of Definition 7b is well-defined.
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Proof By a series of lemmas below, we check that the family of block matrices on the right
side of (27) satisfies the condition of Proposition 3e. Then our theorem follows. Note that
we do not need the continuity of ωs for our chain of arguments. ��
Lemma 8 Let (X, ω) be a weak symplectic Banach space. Let � denote the diagonal (i.e.,
the canonical Lagrangian) in the product symplectic space X � X := (X, ω) ⊕ (X,−ω),
and λ,μ Lagrangian subspaces of (X, ω). Then

(λ, μ) ∈ FL 2(X) ⇐⇒ (λ � μ,�) ∈ FL 2(X � X
)

and

index(λ, μ) = index(λ � μ,�),

where λ � μ := {(x, y) | x ∈ λ, y ∈ μ}.
Proof Clearly λ � μ and � are Lagrangian subspaces of X � X . Since

(λ � μ) ∩ � = {
(x, x)|x ∈ λ ∩ μ

} 
 λ ∩ μ,

these spaces have the same dimension. Set

�′ := {
(x,−x)|x ∈ X

}
and �′

λ+μ := {
(x,−x)|x ∈ λ + μ

}
.

Then we have

λ � μ + � = {
(x, y) + (ξ, ξ)|x ∈ λ, y ∈ μ, ξ ∈ X

}
=

{( x − y

2
,

y − x

2

)
+

( x + y

2
+ ξ,

x + y

2
+ ξ

)∣∣∣x ∈ λ, y ∈ μ, ξ ∈ X
}

= � + �′
λ+μ.

So the following holds:

X � X

λ � μ + �
= � ⊕ �′

� ⊕ �′
λ+μ


 �′

�′
λ+μ


 X

λ + μ
,

and they have the same dimension. Lemma 8 is proved. ��
Lemma 9 Let (X, ω, X+, X−) be a weak symplectic Banach space with symplectic splitting.
Set h± := ∓iω|X± . Let � denote the diagonal in the symplectic space X � X. Let λ and μ

be two Lagrangian subspaces of X with generator U, V respectively. Then we have:

(a) The pair (λ, μ) is Fredholm of index 0 if and only if

(
0 U

V−1 0

)
− I is of index 0.

(b) The matrix

(
0 U

V−1 0

)
is (h− ⊕ h+)-unitary.

Proof (a) Let P : X → X+ denote the projection corresponding to the splitting. Let (λ, μ) ∈
FL 2(X). Then we have(

0 U
V−1 0

)
=

(
U 0
0 V−1

)(
0 IX+

IX− 0

)
,

and

G̃

(
U 0
0 V−1

)
= λ � μ, and G̃

(
0 IX−

IX+ 0

)
= �, (28)
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where G̃ denotes the graph of closed operators from imP to im(I − P) with P := P �

(I − P). Consequently,

(
0 U

V−1 0

)
− I is a Fredholm operator of index 0. Conversely, by

Eq. (28), we can derive that (λ, μ) is a Fredholm pair of index zero if

(
0 U

V−1 0

)
− I is a

Fredholm operator of index zero.
(b) For all x1, x2 ∈ X+ and y1, y2 ∈ X−, we have

(h− ⊕ h+)
((

0 U
V−1 0

) (
y1

x1

)
,

(
0 U

V−1 0

)(
y2

x2

))

= (h− ⊕ h+)

((
U x1

V−1 y1

)
,

(
U x2

V−1 y2

))

= h−(U x1, U x2) + h+(V−1 y1, V−1 y2)

= h+(x1, x2) + h−(y1, y2) = (h− ⊕ h+)

((
y1

x1

)
,

(
y2

x2

))
. ��

Lemma 10 The family

{(
0 Us

V−1
s 0

)}
in (27) is a continuous family of closed operators such

that

(
0 Us

V−1
s 0

)
− I is Fredholm of index 0 for each s ∈ [a, b].

Proof The proof of the above Lemma 9a shows that the graph of

{(
0 Us

V−1
s 0

)}
is a contin-

uous family of closed subspaces of X ⊕ X . Then the family

{(
0 Us

V−1
s 0

)}
is a continuous

family of closed operators. By Lemma 9a we have that

(
0 Us

V−1
s 0

)
− I is Fredholm of index

0 for each s ∈ [a, b].
That ends the proof of Theorem 1. ��
The proof of Lemma 9a leads to the following important result:

Proposition 4 Let {X, ωs}, s ∈ [a, b] be a continuous family of weak symplectic forms for X
with a continuous family of symplectic splittings (X, ωs, X+

s , X−
s ) in the sense of Definition

7a and a corresponding family of projections {Ps : X → X+
s }. Let {λs, μs}, s ∈ [a, b] be a

continuous curve in FL 2(X). We denote the generating operators by Us, respectively Vs.

(a) If Vs is bounded and has a bounded inverse for each s ∈ [0, 1], then we have

Mas
{
λs, μs; Ps

} = sf

{
Us V−1

s

}
, (29)

where  := (0,+∞) with upward co-orientation. The spectral flow is defined in the
sense of Proposition 3e.

(b) We have

Mas
{
λs � μs,�;Ps

} = Mas
{
λs, μs; Ps

}
(30)

= Mas
{
μs, λs; I − Ps

}
in (X,−ωs), (31)

= Mas
{
�,λs � μs; I − Ps

}
in (X,−ωs) � (X, ωs), (32)

where Ps := Ps � (I − Ps).
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Proof (a) By our assumption, we have

dim ker(z2 I − Us V−1
s ) = dim ker

(
z I −

(
0 Us

V−1
s 0

))

for all z ∈ C \ {0}. By Proposition 3 and Lemma 9, both the total algebraic multiplicities of

the spectrum of the matrices Us V−1
s and

(
0 Us

V−1
s 0

)
near 1 are dim ker(I − Us V−1

s ), and

each spectrum of them with finite algebraic multiplicity is on S1. Then (a) follows from the
definition of the Maslov index and Proposition 3.
(b) Let G̃ denote the graph of closed operators from imPs to im(I −Ps). By Eqs. (27), (28)
and (29) we have

Mas
{
λs � μs,�;Ps

} = Mas
{
G̃

(
Us 0
0 V−1

s

)
, G̃

(
0 IX−

s

IX+
s

0

)
;Ps

}

= sf

{(
Us 0
0 V−1

s

) (
0 IX+

s

IX−
s

0

)}

= sf

{(
0 Us

V−1
s 0

)}
= Mas{λs, μs; Ps}.

So (30) is proved. For the symplectic space (X,−ωs)with symplectic splitting (X,−ωs , X−
s , X+

s ),
the generating operators of λs, μs are U−1

s , V−1
s respectively. Note that

(
0 V−1

s
Us 0

)
=

(
0 IX+

s

IX−
s

0

)(
0 Us

V−1
s 0

) (
0 IX+

s

IX−
s

0

)
.

By the definition of the Maslov index we have

Mas
{
μs, λs; I − Ps

}
in (X,−ω)

=sf

{(
0 V−1

s
Us 0

)}
=sf

{(
Us 0
0 V−1

s

)}
=Mas

{
λs, μs; Ps

}
.

So (31) is proved. (32) follows from (31) and (30). ��
From the properties of our general spectral flow, as observed at the end of our Appendix,

we get all the basic properties of the Maslov index (see Cappell, Lee, and Miller [17, Sect.
1] for a more comprehensive list).

Proposition 5 (a) The Maslov index is invariant under homotopies of curves of Fredholm
pairs of Lagrangian subspaces with fixed endpoints. In particular, the Maslov index is
invariant under re-parametrization of paths.

(b) The Maslov index is additive under catenation, i.e.,

Mas
{
λ1∗λ2, μ1∗μ2; Ps∗Qs

} = Mas
{
λ1, μ1; Ps

} + Mas
{
λ2, μ2; Qs

}
,

where {λi (s)}, {μi (s)}, i = 1, 2 are continuous paths with λ1(1) = λ2(0), μ1(1) =
μ2(0) and

(λ1∗λ2)(s) :=
{

λ1(2s), 0 ≤ s ≤ 1
2 ,

λ2(2s − 1), 1
2 < s ≤ 1,

and similarly μ1∗μ2 and {Ps}∗{Qs}.
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(c) The Maslov index is natural under symplectic action: let {(X ′, ω′
s)} be a second family

of symplectic Banach spaces and let

Ls ∈Sp(X, ωs; X ′, ω′
s) := {L ∈ B(X, X ′) | L invertible and ω′

s(Lx, Ly) = ωs(x, y)},
such that {Ls} is a continuous family of bounded operators. Then {X ′ = Ls(X+

s ) ⊕
Ls(X−

s )} is a continuous family of symplectic splittings of {(X ′, ω′
s)} inducing projections

{Qs}, and we have

Mas
{
λs, μs; Ps

} = Mas
{

Lsλs, Lsμs; Qs
}
.

(d) The Maslov index vanishes, if dim(λs ∩ μs) is constant for all s ∈ [0, 1].
(e) Flipping. We have

Mas
{
λs, μs; Ps

} + Mas
{
μs, λs; Ps

} = dim λ0 ∩ μ0 − dim λ1 ∩ μ1.

We cannot claim that the Maslov index, Mas{λs, μs; Ps} is always independent of the
splitting projection Ps in general Banach spaces. However, we have the following result.

Proposition 6 Let {(X, ωs)} be a continuous family of strong symplectic Banach spaces and
let {X = X+

s,ρ ⊕ X−
s,ρ} be two continuous families of symplectic splittings in the sense of

Definition 7a with projections Ps,ρ : X → X+
s,ρ for s ∈ [0, 1] and ρ = 0, 1. Let {(λs, μs)}

be a continuous curve of Fredholm pairs of Lagrangian subspaces of {(X, ωs)}. Then

(a) index(λs, μs) = 0 for all s ∈ [0, 1]; and
(b) Mas

{
λs, μs; Ps,0

} = Mas
{
λs, μs; Ps,1

}
.

Note 2 Commonly, one assumes J 2 = −I in strong symplectic analysis and defines the
Maslov index with respect to the induced decomposition. In view of Lemma 1, the point of
the preceding proposition is that the Maslov index is independent of the choice of the metrics.

Proof (a) Using−iωs , we make (X, ωs) into a symplectic Hilbert space and deform the metric
such that J 2

s = −I . Clearly, the dimensions entering into the definition of the Fredholm index
do not change under the deformation. So, we are in the well-studied standard case.
(b) We recall that our two families of symplectic splittings define two families of Hilbert
structures for X defined by〈

x+s,ρ + x−s,ρ, y+s,ρ + y−s,ρ
〉
s,ρ

:= −iωs
(
x+s,ρ, y+s,ρ

) + iωs
(
x−s,ρ, y−s,ρ

)

for x+s,ρ, y+s,ρ ∈ H+
s,ρ, x−s,ρ, y−s,ρ ∈ H−

s,ρ , and ρ = 0, 1. For any ρ ∈ [0, 1] we define
〈
x, y

〉
s,ρ := (1 − ρ)

〈
x, y

〉
s,0 + ρ

〈
x, y

〉
s,1.

Then all (X, 〈·, ·〉s,ρ) are Hilbert spaces.
Define Js,ρ by ωs(x, y) = 〈Js,ρx, y〉s,ρ and let X±

s,ρ denote the positive (negative) space
of −i Js,ρ and Ps,ρ the orthogonal projection of X onto X+

s,ρ . Then the two-parameter family
{Js,ρ} is a continuous family of invertible operators, {Ps,ρ} is continuous, and {H+

s,ρ} is
continuous. So Mas{λs, μs; Ps,ρ} is well-defined. By Proposition 5a and b, we have

Mas
{
λ0, μ0; P0,ρ; 0 ≤ ρ ≤ 1

} + Mas
{
λs, μs; Ps,0; 0 ≤ s ≤ 1

}
= Mas

{
λs, μs; Ps,1; 0 ≤ s ≤ 1

} + Mas
{
λ1, μ1; P1,ρ; 0 ≤ ρ ≤ 1

}
.

By Proposition 5d, we have

Mas
{
λ0, μ0; P0,ρ; 0 ≤ ρ ≤ 1

} = Mas
{
λ1, μ1; P1,ρ; 0 ≤ ρ ≤ 1

} = 0.
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So we obtain

Mas
{
λs, μs; Ps,0; 0 ≤ s ≤ 1

} = Mas
{
λs, μs; Ps,1; 0 ≤ s ≤ 1

}
. ��

3.2 Comparison with the real (and strong) category

For a fixed strong symplectic Hilbert space X , choosing one single Lagrangian subspace λ

yields a decomposition X = λ ⊕ Jλ. This decomposition was used in [7, Definition 1.5]
(see also [9, Theorem 3.1] and [24, Proposition 2.14]) to give the first functional analytic
definition of the Maslov index, though under the somewhat restrictive (and notationally quite
demanding) assumption of real symplectic structure. Up to the sign, our Definition 7b is a
true generalization of that previous definition. More precisely:

Let (H, ω) be a real symplectic Hilbert space with

ω(x, y) = 〈
J x, y

〉
, J 2 = −I, J t = −J.

Clearly, we obtain a symplectic decomposition H+⊕H− = H⊗C with the induced complex
strong symplectic form ωC by

H± := {
(I ∓ i J )ζ | ζ ∈ H

}
.

Definition 8 We fix one (real) Lagrangian subspace λ ⊂ H .

(a) Then there is a real linear isomorphism ϕ : H ∼= λ⊗C defined by ϕ(x + J y) := x + iy
for all x, y ∈ λ.

(b) For A = X + JY : H → H with X, Y : H → H real linear and

X (λ) ⊂ λ, Y (λ) ⊂ λ, and X J = J X, Y J = JY, (33)

we define

ϕ∗(A) := ϕ ◦ A ◦ ϕ−1 = X + iY, Aλ := X − JY, Atλ := Xt + JY t ,

where Xt , Y t denote the real transposed operators.
(c) Let μ be a second Lagrangian subspace of H and let Ṽ : H → H with Ṽ J = J Ṽ be a

real generating operator for μ with respect to the orthogonal splitting H = λ⊕ Jλ, i.e.,
μ = Ṽ (Jλ) and ϕ∗(Ṽ ) is unitary. Then we define the complex generating operator for
μ ⊗ C with respect to λ by Sλ(Ṽ ) := ϕ∗(Ṽ )ϕ∗

(
Ṽ tλ

)
.

Note 3 The complex generating operator for μ ⊗ C with respect to λ was defined by Leray
in [28, Sect. I.2.2, Lemma 2.1] and elaborated in the references given at the beginning of this
subsection.

Lemma 11 Let (λ, μ) be any pair of Lagrangian subspaces of H (in the real category).
Let Ṽ : H → H with Ṽ J = J Ṽ be a real generating operator for μ with respect to the
orthogonal splitting H = λ ⊕ Jλ. Let U, V : H+ → H− denote the unitary generating
operators for λ ⊗ C and μ ⊗ C, i.e., we have

λ ⊗ C = G(U ) and μ ⊗ C = G(V ).

Then we have V U−1 = −Sλ(Ṽ ), where Sλ(Ṽ ) denotes the complex generating operator for
μ ⊗ C with respect to λ, as introduced in the preceding Definition.

Proof At first we give some notations used later. For ζ = x+J y ∈ H with x, y ∈ λ, we define
ζ λ := ϕ−1

(
ϕ(ζ )

) = x − J y. Moreover, for A = X + JY : H → H with X, Y : H → H
real linear with (33), we define S̃λ(A) := AAtλ . Then we have Sλ(A) = ϕ∗

(
S̃λ(A)

)
.
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Now we give explicit descriptions of U and V . It is immediate that U takes the form

U : H+ −→ H−

(I − i J )ζ �→ (I + i J )ζ λ.

By the definition of Ṽ , we have

μ = Ṽ (Jλ) = {
2Ṽ J x + 2i Ṽ J y | x, y ∈ λ

}
.

We shall find V : (I − i J )ζ �→ (I + i J )ζ1 with ζ, ζ1 ∈ H such that G(V ) = μ⊗C, i.e., we
shall find ζ1 to ζ = x + J y such that

(I − i J )ζ + (I + i J )ζ1 = 2Ṽ J x + 2i Ṽ J y for all x, y ∈ λ. (34)

Comparing real and imaginary part of (34) yields ζ+ζ1 = 2Ṽ J x and−i J (ζ−ζ1) = −i Ṽ J y,
so

ζ = Ṽ (J x − y) and ζ1 = Ṽ (J x + y).

From the left equation we obtain ζ λ = −Ṽ λ(J x + y). Since ϕ∗(Ṽ ) is unitary, we obtain
from the right side

ζ1 = Ṽ (J x + y) = −Ṽ Ṽ
−1

λ ζ λ = −Ṽ Ṽ tζ λ = −S̃λ(Ṽ )ζ λ.

This gives

V : H+ −→ H−

(I − i J )ζ �→ −(I + i J )S̃λ(Ṽ )ζ λ.

So for all z1 := (I + i J )ζ1 with ζ1 ∈ H , we have

V U−1z1 = −(I + i J )S̃λ

(
Ṽ

)
ζ1

= −S̃λ

(
Ṽ

)
(I + i J )ζ1

= −S̃λ

(
Ṽ

)
(I − i J )ϕ(ζ )

= −ϕ∗
(
S̃λ(Ṽ )

)
(I − i J )ϕ(ζ )

= −Sλ

(
Ṽ

)
(I + i J )ζ1

= −Sλ

(
Ṽ

)
z1.

That is, V U−1 = −Sλ(Ṽ ). ��
With the preceding notation, we recall from [7, Definition 1.5] the definition of the Maslov

index

MasBF
{
μs, λ

} := sf′
{

Sλ(Ṽs)
}

(35)

of a continuous curve {μs} of Lagrangian subspaces in real symplectic Hilbert space H which
build Fredholm pairs with one fixed Lagrangian subspace λ. Here ′ := (−1 − ε,−1 + ε)

with downward orientation.

Corollary 2

Mas
{
λ ⊗ C, μs ⊗ C

} = −MasBF
{
μs, λ

}
.
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Proof Let , ′ denote small intervals on the real line close to 1, respectively -1 and give  the
co-orientation from −i to +i and ′ vice versa. We denote by − the interval  with reversed
co-orientation. Then by our definition in (27), Proposition 4a, elementary transformations,
the preceding lemma, and the definition recalled in (35):

Mas
{
λ ⊗ C, μs ⊗ C

} = −sf

{
U V−1

s

} = −sf−
{

VsU−1}
= −sf−

{ − Sλ(Ṽs)
} = −sf

{ − Sλ(Ṽs)
}

= −sf′
{

Sλ(Ṽs)
} = −MasBF

{
μs, λ

}
.

��
3.3 Invariance of the Maslov index under embedding

We close this section by discussing the invariance of the Maslov index under embedding in
a larger symplectic space, assuming a simple regularity condition.

Lemma 12 Let {(X, ωs, X+
s , X−

s )} be a continuous family of symplectic splittings for a
(complex) Banach space X and let {(λs, μs) ∈ FL 2(X, ωs)} be a continuous curve with
index(λs, μs) = 0 for all s ∈ [0, 1]. Let Y be a second Banach space with a linear embedding
Y ↪→ X (in general neither continuous nor dense). We assume that

ω̃s := ωs |Y×Y and Y±
s := X±

s ∩ Y

yields also a continuous family {(Y, ω̃s, Y+
s , Y−

s )} of symplectic splittings. Moreover, we
assume that dim(λs∩μs)−dim(λs∩μs∩Y ) is constant and (λs∩Y, μs∩Y ) ∈ FL 2(Y, ω̃s)

of index 0 for all s, and that the pairs define also a continuous curve in Y . Then we have

Mas
{
λs, μs; Ps

} = Mas
{
λs ∩ Y, μs ∩ Y ; P̃s

}
,

where Ps and P̃s denote the projections of X onto X+
s along X−

s and the projections of Y
onto Y+

s along Y−
s respectively.

The lemma is an immediate consequence of Lemma 19 of the Appendix.
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Appendix: A Spectral flow

The spectral flow for a one parameter family of linear self-adjoint Fredholm operators was
introduced by Atiyah, Patodi, and Singer [4] in their study of index theory on manifolds with
boundary. Since then other significant applications have been found. Later this notion was
made rigorous for curves of bounded self-adjoint Fredholm operators in Phillips [33] and for
gap–continuous curves of self-adjoint (generally unbounded) Fredholm operators in Hilbert
spaces in [10] by the Cayley transform. The notion was generalized to the higher dimensional
case in Dai and Zhang [21] for Riesz-continuous families, and to more general operators in
[40,43,45].
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For manifolds with singular metrics, there may appear linear relations (cf. Bennewitz [5]
and Lesch and Malamud [29]). It is well known that many statements on relations can be
translated into those on the resolvents in the realm of operator theory, see, e.g., Brown et al.
[15]. It seems to us, however, that this translation cannot always be made globally, i.e., not
for a whole curve of relations.

In this Appendix we shall provide a rigorous definition of the spectral flow of spectral-
continuous curves of admissible closed linear relations in Banach spaces relative to a co-
oriented real curve  ⊂ C. (All the preceding terms will be explained).

A. 1 Gap between subspaces

Let S (X) denote the set of all closed subspaces of a Banach space X .

The gap topology

The gap between subspaces M, N ∈ S (X) is defined by

δ̂(M, N ) := max{δ(M, N ), δ(N , M)}, (36)

where δ(M, N ) := sup{dist(x, N ) | x ∈ M, ‖x‖ = 1}, δ(M, {0}) := 1 for M �= {0}, and
δ({0}, N ) := 0. The sets U (M, ε) = {N ∈ S (X) | δ(M, N ) < ε}, where M ∈ S (X) and
ε > 0, form a basis for the so-called gap topology on S (X). This is a complete metrizable
topology on S (X) [26, Sect. IV.2.1].

Let X be a Hilbert space. Then the gap between closed subspace M, N is a metric for
S (X) and can be calculated by

δ̂(M, N ) = ‖PM − PN‖, (37)

where PM , PN denote the orthogonal projections of X onto M, N respectively, [26, Theorem
I.6.34].

We have the following lemma.

Lemma 13 Let X be a Hilbert space, and Y be a closed linear subspace of X. Then the
mapping M �→ M+Y induces a bijection from the space S (X, Y ) of closed linear subspaces
of X containing Y onto the space S (X/Y ) = S (Y⊥) of closed linear subspaces of X/Y ,
which preserves the metric.

Proof We view X/Y as Y⊥. Let M, N ⊂ Y⊥ be two closed subspaces and PM , PN be the
orthogonal projections onto M, N respectively. Then we have

δ̂(M + Y, N + Y ) = ‖PM+Y − PN+Y ‖ = ‖PM − PN‖ = δ̂(M, N ). ��

Uniform properties

In general, the distances δ(M, N ) and δ(N , M) can be very different and, even worse, behave
very differently under small perturbations. However, for finite-dimensional subspaces of the
same dimension in a Hilbert space we can estimate δ(M, N ) by δ(N , M) in a uniform way.

Lemma 14 Let X be a Hilbert space and M, N be two subspaces with dim M = dim N =
n ∈ N. If δ(N , M) < 1√

n
, then we have

δ(M, N ) ≤
√

n δ(N , M)

1 −√
n δ(N , M)

. (38)
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Proof Let y1, . . . , yn be an orthonormal basis of N . Let xk ∈ M denote the vectors with
‖xk − yk‖ = dist(yk, M). Then ‖xk − yk‖ ≤ δ(N , M).

For any a1, . . . , an ∈ C, set x = ∑n
k=1 ak xk . Then we have

‖x‖ = ‖
n∑

k=1

ak yk +
n∑

k=1

ak(xk − yk)‖ ≥ ‖
n∑

k=1

ak yk‖ −
n∑

k=1

|ak |‖xk − yk‖

≥ (

n∑
k=1

a2
k )

1
2 −

n∑
k=1

|ak | δ(N , M) ≥ (1 −√
n δ(N , M))(

n∑
k=1

a2
k )

1
2 . (39)

If x = 0, by (39) we have ak = 0. Thus x1, . . . , xn are linearly independent and therefore
they form a basis of M .

For any x = ∑n
k=1 ak xk ∈ M with ‖x‖ = 1, let y = ∑n

k=1 ak yk . By (39) we have

‖x − y‖ = ‖
n∑

k=1

ak(xk − yk)‖ ≤
n∑

k=1

|ak | δ(N , M) ≤
√

n δ(N , M)

1 −√
n δ(N , M)

.

Hence we have (38). ��
Clearly, taking the sum of two closed subspaces is not a continuous operation in general,

but becomes continuous when fixing the dimension of the intersection and keeping the sum
closed.

The following Lemma is well-known and the proof is omitted.

Lemma 15 Let X, Y be two Hilbert space and As ∈ B(X, Y ) be a norm-continuous family
of semi-Fredholm bounded operators. If dim ker As is constant, then ker As ∈ S (X) and
im As ∈ S (Y ) are continuous families of closed subspaces (continuous in the gap topology).

We recall the notion of semi–Fredholm pairs: Let M, N ∈ S (X). The pair M, N is called
(semi-)Fredholm if M + N is closed in X , and both of (one of) the spaces M ∩ N and
dim X/(M + N ) are (is) finite dimensional. In this case, the index of (M, N ) is defined by

index(M, N ) := dim M ∩ N − dim X/(M + N ) ∈ Z ∪ {−∞,∞}. (40)

Note that by [8, Remark A.1] (see also [26, Problem 4.4.7]), X/(M + N ) of finite dimension
implies M + N ∈ S (X).

Proposition 7 Let X be a Hilbert space and n ∈ N. Denote by S F 2
1,n(X) (respectively

S F 2
2,n(X)) the set of semi-Fredholm pairs (M, N ) of closed subspaces with dim M ∩

N = n (respectively dim X/(M + N ) = n). Then the following four natural mappings
ϕk,l : S F 2

l,n(X) → S (X), k, l = 1, 2 are continuous:

ϕ1,l(M, N ) := M ∩ N , ϕ2,l(M, N ) := M + N .

Proof (Communicated by R. Nest) Let (M, N ) ∈ S (X) × S (X). Let PM and PN denote
the orthogonal projections of X onto M and N respectively. Then we have

imPM + imPN = im((I − PN )PM ) + imPN .

So M+N is closed if and only if im((I −PN )PM ) is closed, and the kernel of (I −PN )PM ∈
B(imPM , ker PN ) is M ∩ N . By Lemma 15, the maps ϕk,1, k = 1, 2 are continuous. Recall
that taking orthogonal complements is continuous. Then ϕk,2 is continuous by the fact that

ϕk,2(M, N ) = (
ϕ3−k,1(M⊥, N⊥)

)⊥
, k = 1, 2. ��
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A.2 Closed linear relations

This subsection discusses some general properties of closed linear relations. For additional
details, see Cross [20].

Basic concepts of closed linear relations

Let X, Y be two vector spaces. A linear relation A between X and Y is a linear subspace
of X × Y . As usual, the domain, the range, the kernel and the indeterminant part of A are
defined by

dom(A) := {x ∈ X | there exists y ∈ Y such that (x, y) ∈ A},
im A := {y ∈ Y | there exists x ∈ X such that (x, y) ∈ A},

ker A := {x ∈ X | (x, 0) ∈ A},
A(0) := {y ∈ Y | (0, y) ∈ A},

respectively.
Let X, Y, Z be three vector spaces. Let A, B be linear relations between X and Y , and C

a linear relation between Y and Z . We define A + B and C A by

A + B : = {(x, y + z) ∈ X × Y | (x, y) ∈ A, (x, z) ∈ B}, (41)

C A : = {(x, z) ∈ X × Z | ∃y ∈ Y such that (x, y) ∈ A, (y, z) ∈ C}. (42)

Definition 9 Let X, Y be two Banach spaces. A closed linear relation between X, Y is a
closed linear subspace of X ×Y . We denote by C L R(X, Y ) = S (X ×Y ) and C L R(X) =
S (X × X).

Note that a linear relation A between X, Y is a graph of a linear operator if and only
if A(0) = {0}. In this case we shall still denote the corresponding operator by A. After
identifying an operator and its graph, we have the inclusions

B(X, Y ) ⊂ C (X, Y ) ⊂ C L R(X, Y )

with the notations of Sect. 2.4.
Let A be a linear relation between X, Y . The inverse A−1 of A is a always defined. It is

the linear relation between Y, X defined by

A−1 = {(y, x) ∈ Y × X; (x, y) ∈ A}. (43)

Definition 10 Let X, Y be two Banach spaces and A ∈ C L R(X, Y ).

(i) A is called Fredholm, if dim ker A < +∞, im A is closed in Y and dim(Y/im A) < +∞.
In this case, we define the index of A to be

indexA = dim ker A − dim(Y/im A). (44)

(ii) A is called bounded invertible, if A−1 ∈ B(Y, X).

Lemma 16 (a) A is Fredholm, if and only if the pair (A, X × {0}) is a Fredholm pair of
closed subspaces of X × Y . In this case, indexA = index(A, X × {0}).

(b) A is bounded invertible, if and only if X × X is the direct sum of A and X × {0}.
Proof Our results follow from the fact that

A ∩ (X × {0}) = ker A × {0}, and A + (X × {0}) = ({0} × im A) + (X × {0}) . ��
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Spectral projections of closed linear relations

Definition 11 Let X be a Banach space and A ∈ C L R(X). Let ζ be a complex number. ζ

is called a regular point of A if A− ζ I is bounded invertible. Otherwise ζ is called a spectral
point of A. We denote the set of all spectral points of A by σ(A) and the set of all regular
points of A by ρ(A). The resolvent of A is defined by

R(ζ, A) = (A − ζ I )−1, ζ ∈ ρ(A). (45)

Let X be a Banach space, and A ∈ C L R(X). Let N ⊂ C be a bounded open subset.
Assume that σ(A) ∩ ∂ N does not contain an accumulation point of σ(A) ∩ N . Then there
exists an open subset N1 ⊂ N such that

N1 ⊂ N , ∂ N1 ∈ C1, σ (A) ∩ N1 = σ(A) ∩ N , and σ(A) ∩ ∂ N1 = ∅, (46)

and the spectral projection

PN (A) := − 1

2π i

∫
∂ N1

(A − ζ I )−1dζ (47)

is well-defined and does not depend on the choice of N1. We have the following lemma (cf.
[26, Theorem III.6.17]):

Lemma 17 (a) We have

PN (A)A ⊂ APN (A) = PN (A)APN (A) + {0} × A(0), (48)

where the composition is taken in the sense of (42).
(b) We have

PN (A)APN (A) = − 1

2π i

∫
∂ N1

ζ(A − ζ I )−1dζ. (49)

(c) If we view PN (A)APN (A) as a linear relation on im(PN (A)), then we have
PN (A)APN (A) ∈ B

(
im(PN (A))

)
, and

σ(A) ∩ N = σ
(
PN (A)APN (A)

)
. (50)

Proof Let z ∈ N \ N1 be a regular point. Then we have

PN (A)R(z, A) = R(z, A)PN (A) = − 1

2π i

∫
∂ N1

(z − ζ )−1(A − ζ I )−1dζ.

Since R(z, A) is bounded and 0 �= (z − ζ )−1 for all ζ ∈ σ(A)∩ N1, we have ker R(z, A) =
A(0) ⊂ ker(PN (A)). Then our results follow form the corresponding results for R(z, A). ��
A.3 Spectral flow for closed linear relations

��
At first we give the definition of admissible relations.

Definition 12 (Cf. Zhu [42, Definition 1.3.6], [43, Definition 2.1], and [45, Definition 2.6]).
Let  ⊂ C be a C1 real 1-dimensional submanifold which has no boundary and is co-oriented
(i.e., with oriented normal bundle). Let X be a Banach space and A ∈ C L R(X) be a closed
linear relation.
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a b

c

Fig. 1 Upper left closed linear relation with admissible spectrum with respect to . Upper right admissible
spectrum with λ0 ∈  \ . Bottom non-admissible spectrum since σ(A)∩ N �= σ(A)∩  and dim imPN (A) =
+∞, each contradicting (51) (i) and (ii)

(a) We call A admissible with respect to , if there exists a bounded open subset N of C

(called test domain) such that (see also Fig. 1)

(i) σ(A) ∩ N = σ(A) ∩  and (ii) dim imPN (A) < +∞. (51)

Then PN (A) does not depend on the choice of such a test domain N . We set

P(A) := PN (A) and ν(A) := dim imPN (A). (52)

For fixed  and X we shall denote the space of all -admissible closed linear relations in
X by A(X).

(b) Let A ⊂ A(X). Let N ⊂ C be open and bounded with C1 boundary. We set N 0 := N∩

and assume

N 0 ⊂ , σ (A) ∩  ⊂ N , σ (A) ∩ ∂ N = ∅, and dim imPN (A) < +∞. (53)

Moreover, we require that ∂ N intersects  transversely and that each connected component
of N has connected intersection with . Then

– N 0 = N ∩ ,
– the positive and negative parts N± of N with respect to the co-orientation of  are well-

defined, and
– we have a disjoint union N = N+ ∪ N 0 ∪ N−.

We shall call the resulting triple (N ; N+, N−) admissible with respect to  and A, and write
(N ; N+, N−) ∈ A,A. Clearly the set A,A is non-empty. See also Fig. 2.

Note 4 To prove N 0 = N ∩ , we notice N 0 ⊂ . So we have N 0 ⊂ N ∩ . Since ∂ N
intersects  transversely, we have ∂ N ∩ ⊂ N 0. Then N ∩ ⊂ N 0. That yields N 0 = N ∩.

Now we are able to define spectral-continuity and the spectral flow. Our data are a co-
oriented curve  ⊂ C, a family of Banach spaces {Xs}s∈[a,b] and a family {As}s∈[a,b] of
closed linear relations on Xs .

Definition 13 (a) We shall call the family {As ∈ A(Xs)} , s ∈ [a, b] spectral-continuous
near  at s0 ∈ [a, b], if

(i) there is an ε(s0) > 0 and a triple (N ; N+, N−) such that

(N ; N+, N−) ∈ A,As for all |s − s0| < ε(s0),
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a

b c

d e

Fig. 2 Top Admissible test domain triple (N , N+, N−). Middle and bottom Non-admissible test domain

triples. Middle left σ(A) ∩ ∂ N �= ∅. Middle right dim PN (A) = +∞. Bottom left N 0 = N ∩  not satisfied.
Bottom right N ∩  not connected while N connected

(ii) for all triple (N ′; N ′+, N ′−) ∈ A,As0
with N ′ ⊂ N and N ′± ⊂ N±, we have

(N ′; N ′+, N ′−) ∈ A,As for all |s − s0| � 1,

(iii) for all triple (N ′; N ′+, N ′−) and subinterval K of (s0 − ε(s0), s0 + ε(s0)) with N ′ ⊂
N , N ′± ⊂ N±, and (N ′; N ′+, N ′−) ∈ A,As for all s ∈ K , we have dim imPN ′(As)

and dim imPN±\N ′±(As) do not depend on s ∈ K . See also Figs. 3 and 4.

We shall call the family {As} ∈ A(Xs), s ∈ [a, b] spectral-continuous near , if it is
spectral-continuous near  at s0 for all s0 ∈ [a, b].

(b) Let {As} ∈ A, s ∈ [a, b] be a family of admissible operators that is spectral-continuous
near . Then there exists a partition

a = s0 ≤ t1 ≤ s1 ≤ · · · sn−1 ≤ tn ≤ sn = b (54)

of the interval [a, b], such that sk−1, sk ∈ (tk − ε(tk), tk + ε(tk)), k = 1, . . . , n. Let
(Nk; N+

k , N−
k ) be like a (N ; N+, N−) in (a) for tk such that sk−1, sk ∈ (tk − ε(tk),

tk + ε(tk)), k = 1, . . . , n. Then we define the spectral flow of {As}a≤s≤b through  by

sf

{
As; a ≤ s ≤ b

} :=
n∑

k=1

(
dim im

(
PN−

k
(Ask−1)

) − dim im
(
PN−

k
(Ask )

))
. (55)

When  is a bounded open submanifold of iR containing 0 with co-orientation from left
to right, we set

sf
{

As; a ≤ s ≤ b
} := sf

{
As; a ≤ s ≤ b

}
.
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a

b c

Fig. 3 Neighborhoods of the spectra of a spectral-continuous family near  at s0 : The same test domain triple
(N , N+, N−) (solid line) works at s0 in the upper figure, at s0 − ε in bottom left, and at s0 + ε in bottom
right. The sub-triple (N ′, N ′+, N ′−) (encircled by the broken line) will also work at s0 and for s0 − ε, but
only for s0 + ε′ with ε′ � ε

a b

Fig. 4 A curve of closed linear relations with admissible spectra may fail to become spectral-continuous near
 due to a spectral point λ0 ∈  \  for s0 (left), which moves inward on  for s = s0 ± ε (right)

From our assumptions it follows that the spectral flow is independent of the choice of the
partition (54) and admissible (Nk; N+

k , N−
k ), hence it is well-defined. From the definition

it follows that the spectral flow through  is path additive under catenation and homotopy
invariant. For details of the proof, see [33] and [45].

Lemma 18 Let  ⊂ C be as in Definition 12a and X be a Banach space. Let {As ∈
C L R(X)}, a ≤ s ≤ b be a continuous family and A := As0 ∈ A(X) with s0 ∈ [a, b]. Let
m be a bounded open submanifold of  such that m ⊂ . If σ(As)∩  ⊂ m for all s ∈ [a, b],
we have:

(a) There exists an ε > 0 such that As ∈ A(X) for all s ∈ (s0 − ε, s0 + ε).
(b) The family {As} is spectral continuous near  at s0.

Proof (a) Since  is co-oriented and A ∈ A(X), there exists a bounded open subset N of
C such that σ(A) ∩ N = σ(A) ∩  and dim imPN (A) < +∞. Since m is a bounded open
submanifold of , m ⊂  and σ(A)∩ ⊂ m, we can choose N such that ∂ N is C1, N ∩ = m

and σ(A) ∩ ∂ N = ∅. Since {As ∈ C L R(X)}, a ≤ s ≤ b is a continuous family and ∂ N
is compact, there exists an ε > 0 such that for all s ∈ (s0 − ε, s0 + ε), σ (As) ∩ N = ∅.
Then {PN (As)}, |s − s0| < ε is a well-defined continuous family of projections on X and
dim imPN (As) ≤ dim imPN (A) < +∞. We also have σ(As) ∩  ⊂ m ⊂ N . So there
exists an open subset Ns of N such that σ(As) ∩  = σ(As) ∩ Ns , and dim imPNs (As) ≤
dim imPN (As) < +∞. (a) is proved.
(b) Since A ∈ A(X), there exists a triple (N ; N+, N−) ∈ A,A. As in the proof of (a), we
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can choose N such that N ∩  = m and σ(A)∩ N = σ(A)∩ . Let ε be as in the proof of (a).
If |s − s0| < ε, we have σ(As)∩  ⊂ m ⊂ N , σ (As)∩ ∂ N = ∅ and dim imPN (As) < +∞.
So (N ; N+, N−) ∈ A,As for |s − s0| < ε.
Given a triple (N ′; N ′+, N ′−) ∈ A,A with N ′ ⊂ N and N ′± ⊂ N±, we have N ′ ∩  =
N ∩  ⊂ m ⊂  and σ(A) ∩ ∂ N ′ = ∅. Since ∂ N ′ is compact, for |s − s0| � 1, we
have σ(As) ∩ ∂ N ′ = ∅. Then dim imPN ′(As) does not depend on s and is finite. Since
σ(A) ∩ N = σ(A) ∩  ⊂ σ(A) ∩ N ′, we have σ(A) ∩ N = σ(A) ∩ N ′. By

dim imPN ′(As) = dim imPN ′(A) = dim imPN (A) = dim imPN (As),

we get PN ′(As) = PN (As). So we have σ(As) ∩  ⊂ σ(As) ∩ N = σ(As) ∩ N ′ ⊂ N ′ and
(N ′; N ′+, N ′−) ∈ A,As .

Given an interval K ⊂ (s0 − ε(s0), s0 + ε(s0)) and a triple (N ′; N ′+, N ′−) ∈ A,As

with N ′ ⊂ N , N ′± ⊂ N± and s ∈ K , we have σ(As) ∩ ∂ N = σ(As) ∩ ∂ N ′ = ∅ for all
s ∈ K . Since σ(As) ∩  ⊂ N and σ(As) ∩  ⊂ N ′, we have σ(As) ∩

(
 \ N ′) = ∅ and

σ(As) ∩
(
m \ N ′) = ∅. Define the closed curve

C± := (∂ N ∩ N±) ∪ (m \ N ′) ∪ (∂ N ∩ N ′±)

with the orientation of ∂ N ∩ N± and opposite orientation of ∂ N ∩ N ′±. Then we have

PN±\N ′±(As) = − 1

2π i

∫
C±

(As − ζ I )−1ζ.

The families of projections {PN ′(As)} and {PN±\N ′±(As)}, s ∈ K are continuous. So we
have dim imPN ′(As) and dim imPN±\N ′±(As) do not depend on s ∈ K . (b) is proved. ��

We close the appendix by discussing the invariance of the spectral flow under embeddings
in larger spaces, assuming a simple regularity condition.

Lemma 19 Let {Ys; s ∈ [a, b]} and {Xs; s ∈ [a, b]} be two families of (complex) Banach
spaces with Xs ⊂ Ys (no density or continuity of the embeddings are assumed). Let {As ∈
C L R(Ys); s ∈ [a, b]} be a spectral-continuous curve near a fixed co-oriented curve  ⊂ C.
We assume that As(Xs) ⊂ Xs for all s and that the curve{

As |Xs ∈ C L R(Xs); s ∈ [a, b]}
is also spectral-continuous near . Then we have

sf

{
As; s ∈ [a, b]} = sf

{
As |Xs ; s ∈ [a, b]}

if the difference dim ν(As)−dim ν(As |Xs ), s ∈ [a, b], is a constant m. In this case, m ≥ 0.

Proof We go back to the local definition of sf and reduce to the finite-dimensional case.
Let s0 ∈ [a, b]. Choose a triple (

N1; N+
1 , N−

1

) ∈ A,As0

such that N1 satisfies (51) for As0 and As0 |Xs0
. By (51) we have

PN1(As0) = ν(As0) and PN1

(
As0 |Xs0

) = ν

(
As0 |Xs0

)
.

Then by spectral continuity, there exists a triple (N ; N+, N−) with N ⊂ N1 with(
N ; N+, N−) ∈ A,As ∩ A,As |Xs

for |s − s0| � 1.
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Then we have

PN1(As0) = ν(As0) = PN (As0) and PN1

(
As0 |Xs0

) = ν

(
As0 |Xs0

) = PN
(

As0 |Xs0

)
,

and for |s − s0| � 1

dim imPN (As) = ν(As0) = ν

(
As0 |Xs0

) + m = dim imPN
(

As |Xs

) + m (56)

by spectral-continuity and our assumption. Now we consider for each λ ∈ C∩N the algebraic
multiplicities and find

dim ker
(

As |Xs − λI |Xs

)k ≤ dim ker
(

As − λI
)k (57)

for each k ∈ N. By our assumption, we have ν(As) = ν(As |Xs ) + m. Comparing

dim imPN (As) =
∑

λ∈σ(As )∩N

∑
k∈N

dim ker(As − λI )k,

dim imPN
(

As |Xs

) =
∑

λ∈σ
(

As |Xs

)
∩N

∑
k∈N

dim ker(As |Xs − λI |Xs )
k,

ν(As) =
∑

λ∈σ(As )∩

∑
k∈N

dim ker(As − λI )k, and

ν(As |Xs ) =
∑

λ∈σ(As |Xs )∩

∑
k∈N

dim ker(As |Xs − λI |Xs )
k,

we obtain from equation (56) and the inequalities (57) that m ≥ 0 and

dim ker(As |Xs − λI |Xs )
k = dim ker(As − λI )k

for each λ ∈ N \  and k ∈ N. So

σ(As) ∩ (N \ ) = σ(As |Xs ) ∩ (N \ );
and the algebraic multiplicities with respect to As and As |Xs coincide in each point. By the
definition of the spectral flow, the two spectral flows must coincide. ��
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