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Nonnegative scalar curvature and
area decreasing maps on
complete foliated manifolds

By Guangxiang Su at Tianjin, Xiangsheng Wang at Jinan and Weiping Zhang at Tianjin

Abstract. Let (M, gT™) be a noncompact complete Riemannian manifold of dimen-
sionn,and let F € TM be an integrable subbundle of TM . Let g = g7™ | be the restricted
metric on F and let k¥ be the associated leafwise scalar curvature. Let f : M — S"(1) be
a smooth area decreasing map along F', which is locally constant near infinity and of non-zero
degree. We show that if k¥ > rk(F)(rk(F) — 1) on the support of d f, and either TM or F
is spin, then inf(k¥) < 0. As a consequence, we prove Gromov’s sharp foliated ®,-twisting
conjecture. Using the same method, we also extend two famous non-existence results due to
Gromov and Lawson about A2-enlargeable metrics (and/or manifolds) to the foliated case.

1. Introduction

In this paper, we always assume that M is a smooth connected oriented manifold without
boundary. We call a pair (M, F) a foliated manifold if F is a foliation of M, or equivalently,
an integrable subbundle of TM .

1.1. An extension of Llarull’s theorem. It is well known that starting with the famous
Lichnerowicz vanishing theorem [10], Dirac operators have played important roles in the study
of Riemannian metrics of positive scalar curvature on spin manifolds (cf. [8, 9]). A notable
example is Llarull’s rigidity theorem [12] which states that for a compact spin Riemannian
manifold (M, gT™) of dimension n such that the associated scalar curvature k7™ verifies
that k7™ > n(n — 1), then any (non-strictly) area decreasing smooth map f : M — S™(1) of
non-zero degree is an isometry.

In answering a question of Gromov in an earlier version of [7], Zhang in [16] proves
that for an even-dimensional noncompact complete spin Riemannian manifold (M, g7™) and
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a smooth (non-strictly) area decreasing map f : M — SY™M (1) which is locally constant
near infinity and of non-zero degree, if the associated scalar curvature k7™ verifies

k™ > (dim M)(dim M — 1) on Supp(d f).
then inf(kT™) < 0.

The main idea in [16], which goes back to [17, (1.11)], is to deform the involved twisted
Dirac operator on M by a suitable endomorphism of the twisted vector bundle. Since the
deformed Dirac operator is invertible near infinity, one can apply the relative index theorem
to obtain a contradiction.

In this paper, we generalize [16] to the foliated case. For this purpose, inspired by [8, Def-
inition 6.1] and [17, Definition 0.1], we define the following class of maps.

Definition 1.1. Let (X, £) be a foliated manifold. A C'-map ¢ : X — Y between
Riemannian manifolds is said to be (e, A%)-contracting along &£, if for all x € X, the map
@x : A2(Tx X) — A%(Ty(x)Y) satisfies

| (Ve A Wx)| < €|V A Wx|
forany Vy, Wy € £x C Ty X.

If £ = TX, the above definition coincides with the usual definition of the (¢, A?)-con-
tracting map in [8, Definition 6.1]. Moreover, similar to the definition of the area decreasing
map, if a map ¢ is (1, A?)-contracting along &£, we call ¢ area decreasing along £.

Let (M, F') be a noncompact foliated manifold of dimension n. Let g™ be a com-
plete Riemannian metric of M, let gf = ¢"M | be the restricted metric on F and let k¥
be the associated leafwise scalar curvature. Let f : M — S”(1) be a smooth map, which is
area decreasing along F', and is locally constant near infinity and of non-zero degree. Let
df : TM — TS"(1) be the differential of f. The support of d f is defined to be

Supp(df) = {x € M :df(x) # 0}.

The main result of this paper can be stated as follows.

Theorem 1.2. Under the above assumptions, if either TM or F is spin and

(1.1) kT > tk(F)(tk(F) — 1)  on Supp(df).
then one has
(1.2) inf(kF) < 0.

As an application of Theorem 1.2, we resolve the following conjecture due to Gromov,
appeared in the fourth version of his four lectures, [7, p. 61].

Sharp Foliated ® .-Twisting Conjecture. Let X be a complete oriented n-dimensional
Riemannian manifold with a smooth m-dimensional, 2 < m < n, spin foliation £, such that
the induced Riemannian metrics on the leaves of £ have their scalar curvatures > m(m — 1).
Then X admits no smooth area decreasing locally constant at infinity map f : X — S™ with

deg(f) # 0.

Proof. Since an area decreasing map on X is area decreasing along £ automatically, as
a consequence of Theorem 1.2, Gromov’s above conjecture holds. O
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Note that Theorem 1.2 also implies that if the £ spin condition is replaced by the X spin
condition, the above conjecture still holds.

On the other direction, in [13], Su proves a generalization of Llarull’s theorem for the foli-
ated compact manifolds. Therefore, Theorem 1.2 can also be viewed as a noncompact extension
of [13]. Figure 1 gives an illustration about the relation between several results.

—[Llarull’s theorem, compact M, TM ]—

[7,16], noncompact M, TMJ ([13], compact M, F}

—{Theorem 1.2, noncompact M, F }7

Figure 1. The relation between several results.

To compare Theorem 1.2 with the related results in the literature further, we recall that
for the enlargeable foliated noncompact manifold, in [14], Su and Zhang also show a similar
estimate on the leafwise scalar curvature. More precisely, let (M, F') be a foliated manifold
carrying a (not necessarily complete) Riemannian metric g7 . Let k¥ be the leafwise scalar
curvature associated to g = gTM | If either TM or F is spin and g7 is enlargeable, then
inf(k ") < 0. In fact, the argument in [14] motivates our proof of Theorem 1.2 partially.

We will put the different kinds of deformations of Dirac operators appeared in [14], [15]
and [16] together (cf. (2.11)) to prove Theorem 1.2. Still, the sub-Dirac operators constructed
in [11] and [15], as well as the Connes fibration introduced in [5] (cf. [7], [15, Section 2.1]),
will play essential roles in our proof. But the new difficulty in the current case is that the map f
is area decreasing along F, i.e., f only contracts on two forms in some sense!). Such a weaker
assumption on f forces us to construct new cut-off functions to replace ¢g g1 and ¢g R 2
in [14, (1.23)].

Recall that in [8, Theorem 1.17], Gromov and Lawson use a small perturbation of the
distance function to prove their relative index theorem. We will adapt this perturbed distance
function to construct the cut-off functions needed in the current case. As a result, unlike [14],
the completeness of the manifold is necessary in our proof. As in [15], we only give the proof
of Theorem 1.2 for the TM spin case in detail. The F spin case can be proved similarly as
in [15, Section 2.5].

1.2. Two non-existence results. It turns out that our method to prove Theorem 1.2 can
also be used to generalize several classical results about scalar curvature to the foliated case.

In [8], Gromov and Lawson introduce the concept of A2-enlargeability. In the foliated
case, we use the following variant of [8, Definition 7.1].

Definition 1.3. A Riemannian metric on a connected foliated manifold (M, F') is called
A?-enlargeable along F if given any € > 0, there exist a covering manifold M¢ — M such that
either M, or F, (the lifted foliation of F in M) is spin and a smooth map f; : M — S4m™M (1)

' As a contrast, f contracts on one forms in [14].
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which is (e, A?)-contracting along F, (with respect to the lifted metric), constant near infinity
and of non-zero degree.

Gromov and Lawson use the A2-enlargeable metrics to define the AZ-enlargeable mani-
folds. We adapt their definition [8, Definition 6.4] to our situation as follows.

Definition 1.4. A connected (not necessarily compact) foliated manifold (M, F) is said
to be A2-enlargeable along F if any Riemannian metric (not necessarily complete!) on M is
A?-enlargeable along F.

As before, if F = T'M, the above two definitions coincide with the usual definition of
the A2-enlargeable metric or manifold.

In [8], Gromov and Lawson prove the following famous theorem about AZ-enlargeable
metrics. Recall that a function on a manifold is called uniformly positive if the infimum of this
function is strictly positive.

Theorem 1.5 (Gromov-Lawson, [8, Theorem 7.3]). No complete Riemannian metric
which is A*-enlargeable can have uniformly positive scalar curvature.

By the same argument in the proof of Theorem 1.2, we can extend Theorem 1.5 as
follows.

Theorem 1.6. Let (M, F) be a foliated manifold. For any complete Riemannian metric
g™ on M which is A%-enlargeable along F, k¥, the leafwise scalar curvature of g™

along F, cannot be uniformly positive.

If we further assume that M itself is A2-enlargeable, Gromov and Lawson in [8] prove
the following famous theorem,which strengthens the result of Theorem 1.5 in the following
way.

Theorem 1.7 (Gromov—Lawson, [8, Theorem 6.12]). A manifold M which is A*-en-
largeable, cannot carry a complete metric of positive scalar curvature.

The following result is a foliated extension of Theorem 1.7.

Theorem 1.8. Let (M, F) be a foliated manifold. If M is A*-enlargeable along F,
then M cannot carry a complete metric gT™ satisfying that k¥, the leafwise scalar curvature
of g™ along F, is positive everywhere.

Theorem 1.6 and Theorem 1.8 extend [2, Theorem 1.7] and [17, Theorem 0.2] to the
noncompact situation. We would like to mention that Benameur and Heitsch [3] have also
studied non-existence of positive scalar curvature metrics on noncompact foliated manifolds.

The rest of the paper is organized as follows. In Section 2, we prove Theorem 1.2 for the
even-dimensional case. In Section 3, we prove Theorem 1.2 for the odd-dimensional case. In
Section 4, we prove Theorem 1.6. In Section 5, we prove Theorem 1.8.
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2. Proof of Theorem 1.2: The even-dimensional case

In this section, we prove Theorem 1.2 for the even-dimensional case. In fact, we first
show this theorem under an additional assumption that f is constant near the infinity in Sec-
tions 2.1-2.4. We hope that in this case, the idea behind the proof is easier to understand. More
specifically, in Section 2.1, we recall the basic geometric setup. In Section 2.2, we review the
definition of the Connes fibration and explain how to lift the geometric data to the Connes
fibration. In Section 2.3, we study the deformed sub-Dirac operators on the Connes fibration.
In Section 2.4, we finish the proof of Theorem 1.2 for the even-dimensional case with the above
simplified assumption. In Section 2.5, we discuss the modifications needed for the general case.

2.1. The basic geometric setup. Let M be a noncompact even-dimensional Riemann-
ian manifold of dimension n carrying a complete Riemannian metric g7™ and F an integrable
subbundle of the tangent bundle 7M. Let S™(1) be the standard n-dimensional unit sphere
carrying its canonical metric. As explained in Introduction, we further assume that 7'M is spin.

We now assume that f : M — S”"(1) is a smooth map, which is area decreasing along F'.
Except in the last subsection of this section, we also assume that f is constant near infinity?
satisfying

2.1) deg(f) # 0.

Letdf : TM — TS"(1) be the differential of f. The support of d f is defined to be
Supp(df) = {x € M :df(x) # 0}.

Let gF = g™ |k be the induced Euclidean metric on F. Let k' € C%(M) be the
leafwise scalar curvature associated to gF (cf. [15, (0.1)]). To show Theorem 1.2, we argue by
contradiction. Assume that (1.2) does not hold, that is,

(2.2) inf(kF) > 0.
Let F1 be the orthogonal complement to F, i.e., we have the orthogonal splitting
(2.3) T™M =F @ FL, g™ —¢F ggF "

Following [8, Theorem 1.17], we choose a fixed point xo € M and letd : M — RT be
a regularization of the distance function dist(x, x¢) such that

(2.4) Vd|(x) < ;

forany x € M.
Set
Bn={xeM:d(x)<m}, meN.

Since the Riemannian metric g7 is complete, B,, is compact.”)

Let K € M be a compact subset such that f is constant outside K, that is,

J(M\K)=zo € S"().

2) Thatis, f is a constant map outside a compact subset of M.
3 1In fact, if there is a smooth function / on M satisfying properties similar to d, that is, |V/| is bounded
and /=1 ((—oo, m]), m € N, is compact, by [6], M must be a complete manifold.
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Since K is compact, we can choose a sufficiently large m such that K € B,,. This implies
(2.5) Supp(df) € K C Bn.

Following [8], we take a compact hypersurface H3z;,, € M \ B3y, cutting M into two
parts such that the compact part, denoted by My, , contains Bs,,. Then My, is a compact
smooth manifold with boundary H3,,.

To make the gluing process in due course easy to understand, we deform the metric
near Hs,, a little bit as follows. Let gTH3m be the induced metric on H3y,. On the product
manifold H3,, x [—1,2], we construct a metric as follows. Near the boundary Hs,, x {—1}
of Hz, x [—1,2], that is, H3, x [—1,—1 4 &), by using the geodesic normal coordinate of
H3m C My, we can identify H3p, x [—1,—1 + ¢’) with a neighborhood of H3,,, denoted
by U, in My, via a diffeomorphism ¢. Now, we require the metric on H3,, x [-1,—1 + ¢’)
to be the pull-back metric obtained from that of U by ¢. In the same way, we can construct
a metric near the boundary Hz,, X {2} of Hz, X [—1,2], i.e., H3m x (2 —&”,2]. Meanwhile,
on Hs,;, x [0, 1], we give the product metric constructed by g7#3 and the standard metric
on [0, 1]. Finally, the metric on H3,, x [—1,2] is a smooth extension of the metrics on the
above three pieces.

Let M ;13m be another copy of My, with the same metric and the opposite orientation.
Let ¢/ be the diffeomorphism, the isometry actually, from Hs,, x (2 — ¢”, 2] to a neighborhood
of 8M;I3m, U’,in M1/L13m' On the disjoint union, M;;Sm U Hapm x (—1,2) U MI/LIZm , we consider
the equivalent relation ~ given by x; ~ x5 if and only if x; € U®, x5 € H3py x (—1,—1 + &)
(resp. x; € U"°, xp € H3pm X (2—¢",2)) and x1 = t(x2) (resp. x; = /(x2)). As a set, we
define the gluing manifold M Hs,, tobe

My, = (M, U Hsp x (—=1.2) UM )/~
endowed with the differentiable structure associated with the open cover
(M, Ham x (=1,2), M, 3.
Moreover, since ¢ and (" are isometries with respect to the metrics on
M5y, Ham x (=1,2). Mf ).

M Hs,, also inherits a metric from this open cover. From now on, we view My, , M 1’13”1 and
H3p x [—1,2] as submanifolds of Mg, .
Figure 2 helps to explain this gluing procedure.

2.2. The Connes fibration. By following [5, Section 5] (cf. [15, Section 2.1]), we let
7 : M — M be the Connes fibration over M such that for any x € M, M, = 7~ (x) is the
space of Euclidean metrics on the linear space Ty M/ Fy. Let TV M denote the vertical tangent
bundle of the fibration 7 : M — M. Then it carries a natural metric gTV'M such that any two
points p, ¢ € M, with x € M can be joined by a unique geodesic along M. Let d™Mx(p, q)
denote the length of this geodesic.

By using the Bott connection on TM/ F (cf. [15, (1.2)]), which is leafwise flat, one lifts
F to an integrable subbundle ¥ of T.M. Then g lifts to a Euclidean metric g¥ = 7*g¥
on ¥ .
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E ( () Hap x [1,2]

Product
metric region

Figure 2.  Gluing three parts.

Let 371J- C T M be a subbundle, which is transversal to & @& TV M, such that we have
a splitting TM = (F @ TV M) & Fit. Then Fit can be identified with TM/(F & TV M)
and carries a canomcally induced metric g¥i . We denote 75 Ltobe TV M.
The metric g in (2.3) determines a canonical embedded section s : M < M. For any
p E M, set
p(p) = dM= (p,s(x(p))).

For any 8, y > 0, following [15, (2.15)], let gﬂ T'M pe the metric on T M defined by the
orthogonal splitting,

1

(2.6) TM=F&Fi-&F, gp)f=p2" o j @ g”?
For any R > 0, let M g be the smooth manifold with boundary defined by
Mr ={p € M:p(p) <R}
Set Hzm = 7~ (H3pm) and
Mes, R = (77 (M, ) VMR, Ham g = Ham N MR.

Consider another copy ‘M:%m, g Of My, g carrying the metric gTM/Bm.R defined by
equation (2.6) WithAﬁ =7y =1. We glue MJf3m,R;M:753m,R and H3,, g X [—1,%] together
to get a manifold Mg, r as we have done for Mpg,, . The difference is that Mg, g is
a smooth manifold with boundary. To write the boundary manifold explicitly, we note that the
boundary of M g,,, r consists of two smooth pieces of top dimension: one is 3., g, another
is denoted by . Note that

7(A) = My, \ Ham.

For er%, _R» We can find a similar boundary piece #4’. Then oM H3m,R 18 the closed manifold
glued together by A, A’ and 0H3, g X [—1,2]. Without loss of generality, we assume that
M 3, R 18 oriented.

Figure 3 is a heuristic illustration about the different pieces of d.M g,, g and how to glue
three truncated Connes fibrations together.

Let g7#3m.% be the induced metric on H3am, R by equation (2.6) with B =7y =1andlet
dz? be the standard metric on [0, 1]. By the construction of M J3,,R» WE can define a smooth
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Figure 3.  Gluing the truncated Connes fibration.

metric gTM}"3m~R on Mg, g in the following way:
Tﬂ]@ R TM3m R
@7 gl Mt Ry, = gy WOE,
T My, R| ., _ T M, 1
g OV
TM TH 2
g H3m- R|]€3m RX[O 1] - g . R @ dl ’

and then paste these metrics together.*)
Let OM g, g bound another oriented manifold 3, g so that

Niam,R = Myes,, R U N3m,R

is an oriented closed manifold. Let gT"v 3m.R be a smooth metric on Tﬂ3m, R so that

Te/V3m,R ~ — gT'//‘:{JQm.R

H3, . R

4

The existence of gT‘X[ 3m.R is clear.
We extend f : My,,, — S"(1)to f : My,, — S"(1) by setting

J(Hzm x [-1.2) UMy, ) = zo.
Let f;m,R : J\:{ggm,R — S™(1) be the smooth map defined by
fompr=fom onMg,, r

and fom R ((Fam & % [<1,2)) U M}y, ) = 0.

Let S(TS™"(1)) = S+(TS"(1)) 69 S (TS™(1)) be the spinor bundle of S”(1). Follow-
ing [16, (2.6)], we construct a suitable bundle endomorphism V of S(7'S"(1)). More precisely,
by taking any regular value ¢ € S™(1) \ f(M \ K) of f, we choose X to be a smooth vector
field on S”(1) such that | X| > 0 on S”(1) \ {q}. Let

v =c(X): Se(TS™(1)) — S_(TS"(1))

4 We would like to point out that on M R, the metric on J3,, g X [—1,0] also depends on B, y.
. Ham, o . P v
However, since we do not use the property of the metric on this part for the rest of the paper, we do not write it
down explicitly.
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be the Clifford action of X and
0 S_(TS™(1)) — S+(TS"(1))

be the adjoint of v with respect to the Hermitian metrics on S1(7'S”(1)). We define V' to be
the self-adjoint odd endomorphism

V=v+4+0v*:S(TS"(1)) — S(TS"(1)).
Then there exists 6 > 0 such that
(2.8) (Fan rV)> =8 on Mge,, r \ 7" (Supp(df)).
Let
(83m,R,i,g83m~R~i,V83m'R~i) — ]i},R(Si(TS”(I)),gSi(TS”(l)),VSi(TS"(l)))

be the induced Hermitian vector bundle with the Hermitian connection on Mg, g. Then
€3m,R = E3m,R,+ D E3m R, 18 a Z>-graded Hermitian vector bundle over Mg, r

2.3. Adiabatic limits and deformed sub-Dirac operators on M ¥, R- Recall that
we have assumed that TM is oriented and spin. Thus ¥ & TFIJ- = n*(TM) is spin. Without
loss of generality, as in [15, pp. 1062-1063], we can assume further that F' is oriented and
tk(F~) is divisible by 4. Then F= is also oriented and dim M is even.

It is clear that ¥ & fFIJ-, fFZJ— over Mg, g can be extended to

(Hzm,r X [-1,2]) U My,
such that we have the orthogonal splitting>
T Mty r = (F & FiH) & T3~ on Me,,,

Let Sg,, (¥ & F, J-) denote the spinor bundle over M H3m,R With respect to the metric
gT'M”%m R |$~€B$~L (thus with respect to f2g¥ @ gﬁl /y? on Mg, Rr).Let A*(¥. J-) be the
exterior algebra bundle of 7 *, with the Z,-grading given by the natural even/odd parity.

Let

Dyoripy : T(Spy(F & Fh) & A*(FH) — T(Sp,(F & FH) & A*(F5H)

be the sub-Dirac operator on M J3,,,R constructed as in [15, (2.16)]. It is clear that one can
define canonically the twisted sub-Dirac operator (twisted by €3,, ) on Mg, . R,

E3m ~ ol A
(2.9) Diairi g, T(Spy(F@F 5 ® A*(F55) ® E3m,R)
— T(Spy(F & Fi") ® A*(F5) & 83m,R)-

Let f [ 1] — [0, 1] be a smooth function such that f (t) =0 for 0 <t < %, while
f(t) = 1 for > <t <1. Leth:[0,1] — [0, 1] be a smooth function such that h(t) =1 for
0<r<3 whﬂeh(t)_Oforz <t<l.

5 F restricted to (Ham,r x [-1,2)) U ‘M!/7€3,,,,R needs no longer to be integrable.
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For any p € Mg, r, we connect p and s(7(p)) by the unique geodesic in M (). Let
o(p) € 372J- |, denote the unit vector tangent to this geodesic. Then

~_FP
2.10 0= — |o
@10 (%)
is a smooth section of 372J-| Maey, r- 1t extends to a smooth section of 372J- | M e, r» Which we
still denote by &. It is easy to see that we may and we will assume that & is transversal to
(and thus nowhere zero on) OM g, Rr.
The Clifford action ¢ (&) (cf. [15, (1.47)]) now acts on

Spy(F @ F15) ® A*(F57) ® E3m,r
over J‘:(J(fgm,R-
For ¢ > 0, we introduce the following deformation of p&am.r i

. . FeFi.By
put the deformations in [15, (2.21)] and [17, (1.11)] together,

on M H3,,R Which

(2 11) D€3m'R 6(5) Sf;;n,RV
: FeFtBy B 8

For this deformed sub-Dirac operator, we have the following analog of [15, Lemma 2.4].

Lemma 2.1. There exist co > 0, & > 0, m > 0 and R > 0 such that when B,y > 0 are
small enough (which may depend on m and R),

(i) forany sections € I'(Sg (¥ @ fFlJ') ® A*(.(FZJ') ® &3m,R) supported in the interior of
Mges,, R, ONE has®

e@)  EfsmrY

2.12) H(Di?’“L + + )s“ > s,
o7 pr T B B B

(ii) for any sections € I'(Sg (¥ @ fFlJ') ® A*(.(FZJ') ® &3m,R) supported in the interior of
Mgez,, R\ M(%,m’%, one has
co
= — sl

1Y &3m.R P c(o) Eﬁtn,RV
19 ”(h(E)Dmf%mh(E)'F g T8 )S =

Proof. Following [8, Theorem 1.17], let ¢ : [0, c0) — [0, 1] be a smooth function such
that ¢ =1 on [0,1], ¢ =0 on [2,00) and ¢’ ~ —1 on [1,2]. We define a smooth function

VYm : My, — [0, 1] by p
wmu)=¢(—%2)

where m € N. We extend ¥/, to (Hzm x [—1,2]) U M{%m by setting
1/fm((['13m x[-1,2) U M;I3m) = 0.
Following [4, p. 1151, let Y. 1. ¥m.2 : M, — [0, 1] be defined by
_ Wm _ 1_Wm
2 2y3" Yma2 = 2 214"
Vi + (1= ¥m)?)2 Wim + (1= ¥m)?)2

9 The norms below depend on S and y. In case of no confusion, we omit the subscripts for simplicity.

(2.14) Vm,1
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Using the above definition and (2.4), fori = 1,2, we have

3|

(2.15) [VYm.il(x) < for any x € MHM,

where C is a constant independent of g7™
We lift Y, Ym,1, Yim,2 t0 Mg, r and denote them by ¢y, @m,1, @m 2, respectively. By
definition, we have following properties about ¢y, 1 and ¢, 2:

(2.16) om1 = 1ifx e 77 Y (Bp), @m1=0ifx e ﬂ%m,R \ 771 (Bam),
Oma=0ifx € 17X (Bp), @ma =1ifx € Mg, g\ 7 (Bam).

We first show part (i) of Lemma 2.1, i.e., (2.12).
Forany s € I'(Sg,, (¥ & F, J-) RA* (372J-) ® &3m,R) supported in the interior of M g,, g,
by (2.14), one has

D83m'R + Z'\(6—) + sf;;n,RV s 2
FoFi.By B B
G B AW
me,l $®$1J_,ﬂ’y ﬁ IB

e 7k 2

83m,R C(U) gf3m,RV
+ ’wml (stee#,ﬁ,y + B * B -

from which one gets
o~ %
&3m.R c(0) 8f3m,RV
(2.17) «/5” (D“Wll’ﬂ’y + 5 + 3 s
N~ Tk
&3m.R c(0) 8f3m,RV
(pm,l (D?GB?]J‘J},V + 18 + IB S

A~ x

&3m.R c(©) 6‘f3m,RV
o~ 7k
&3m.R c(0) 8f3m,RV
e Tk
83,,, R C(U) 8f3m,RV
# (PPt + g+ e

- IICﬂ,y(d<pm,1)SII — e,y (dgm 2)sll.

where for each i € {1, 2}, we identify dgy,,; with the gradient of ¢p,,; and cg ,, (- ) means with
respect to the metric (2.6).

We are going to estimate the right-hand side of (2.17) term by term. We begin with
a pointwise estimate of cg , (dgm,i)s, i = 1,2. By (2.16), we only need to do it on Mg, R.

Here, as well as at several places in the following, we need to choose a local orthonormal
frame for T ;M g, r. Hence, we explain here our choice of this frame once and for all. Let
tk(F) = tk(¥) = q, tk(F5) = ¢1 and tk(F55) = ¢». Since on My, g, g7 = n*gF, for
a local orthonormal basis { f1, ..., f4} of (¥, gf ), we can choose it to be lifted from a local
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orthonormal basis of (F, gF). l\iloreover, we choosE hi,... hg, (resp.eq, ..., eq,)tobealocal
orthonormal basis of (371J-, g% (resp. (3272J-, g%32)). Then
(218) {fl,...,fq,hl,...,hql,el,...,eq2}

is a local orthonormal frame for 7'M g, R.
Back to the estimate of cg ), (dgm,i)s, i = 1,2. Using the local frame (2.18), by (2.15)
and the fact that

(pm,i :wm,l‘Ona l :1927

we have for any 1 < k < ¢ that

I
om0 = 0( ) Forany x € M.
and for any 1 < j < g, that

€j (¢m,i) = 0.

Therefore, by the properties of the Clifford action, for any x € Mg, g, we have

q
(2.19) I8,y ([Apm,i)s1(x) < Y (187" fileom)| - g, (B~ fi)s]) (x)
k=1

q1

+ Y (1vhi(om)l - leg,y (Yhy)s]) (x)

=1

_ (o(ﬁi) + om,R<y))|s|<x>,
m

where the subscripts in Oy, g(-) mean that the estimating constant may depend on m and R.
For the first two terms on the right-hand side of (2.17), by a direct computation, we have

o Tk 2
E3m.R c(o) 8f3m,RV
2.2 D
(2.20) ( FoFL.B.y + B + B
e 7 20 ¢ 2
_ D83m’R + C(O) 2 D83m’R gf;;n,RV € (f;;n,RV)
T \TreritBy T B Fori-By B B2 ‘
Of the three terms on the right-hand side of the above equality, we can control the last term
relatively easily.

Now we will deal with the second term on the right-hand side of the above equality.
By [15, (2.17)], using the local frame (2.18), one has

7 q 7
—8f3’"’RV] = Zﬁ_lcﬂ,y(ﬁ_lﬁ)[vﬁ?mﬁ’ —ng',';’RV]

i=1

83m,R
(2.21) [ij,ﬁﬂ’y, 5

q1 7%

. ef. ’RV
+3y J/C/s,y(yhs)[vhf ", 3’"T]
s=1

Q2 7%
gamr ESam RV
S ptefegme, P
j=1
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Since V&3m.% (resp. f;;n grV) is a pull-back connection (resp. bundle endomorphism)
via v, we have
(2.22) [VErmr, fr xV]=0,
[V?’"-R,fgm,RV] = 0(1),
[Vi?mR’jsztilz Ogr(1).

Putting (2.21) and (2.22) together, one has

Eam. 81;321,RV € 14 _
(2.23) [Dsjea;f]{ﬁ,y,—} 0( )+0R(ﬂ) on 7z~ (Supp(d f)).

p B>
Meanwhile, since f*V is a constant endomorphism outside the support of d ', we know
7
E3m.R 8f3m,RV _ ~ -1
(2.24) [Dfea’ﬂl,ﬁ,y’ Ti| =0 onMg,, r\7  (Supp(df)).

The first term on the right-hand side of (2.20) is nonnegative. But for our purpose, such
an estimate is not enough. We need analyze it more precisely, especially on Mg,,, g. In fact,
using the local frame (2.18), by [15, (2.24) and (2.28)] (see also [14, (1.13)]), on M g,,, r, We
have

A~ 2
&3m.R c(o)
(2.25) (Dfea?ﬁ,ﬂ,y + _,3 )

= (D83m’R )2 + |:D83m,R C(U)] Lo 5|2

FoF.B.y FoFi-.By B B2
an m By L KT
—AC3m.R:P5Y .
+ 12
3 S RO i e B fenr B 1)
a./_l

E3m.R é\(8) |U|2 1 Vz
+[Df@fhﬂav ; ]+ g T OmR gt g )

where —A&3m.z:B:¥ > () is the corresponding Bochner Laplacian, k¥ = 7*(k¥) and
RE3m.r — (V@3m.R.+)2 + (V83m.R,—)2‘

The benefits of (2.25) is that each term on the right-hand side of it can be controlled in
a certain way. More concretely, since f is area decreasing along F, by [13, (2.6)] which goes
back to [12], we have

q

1
(2.26) (— REmE(fi. fyep, (B fi)es, (ﬁ‘lf)s,s)
2/32ij2_1 J)CB.y B,y J = (Supp@f )
q(g—1)
Z 4[3 ” ||2_1(Supp(df))’

where (-, ) =1 (supp(as)y) 0 || * | z=1(supp(a £)) Mean the integration on 7~ (Supp(df)).
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By (1.1), there exists k¥ > 0 such that

(2.27) k¥ —q(qg—1)=« onx ' (Supp(df)).

And by [15, Lemma 2.1], on Mg, r\ s(Mmu,,,), we have

E3m.R c(@) 1 1
(2.28) |:D$€B$1J_’B,y,7:| =0m(,32R)+0m R(ﬂ)

Now we can estimate the first term on right-hand side of (2.17). As a first step, using
(2.20) and (2.25), since the terms involving the Bochner Laplacian and |G| are nonnegative,
we have

~ o~ % 174
e (o, + 0 Tty

FoF By B B

kfF
> (W(pm,ls» (Pm,ls)

q
- ( Z 2;2R83MR(fl’fl)cﬂ V(ﬂ fl)cﬂ )/(13 fj)@m 15, Om, 1S)

2

j=1

E3m.R (o)
(#2570, )
x
&3m.R 8f3m,RV
+ ([D\?d@?]L:ﬂyy’ T}wm,ls, (pmSIS)

(8 (fASm,R ) ® S, Q N 0 S, Q S
2 m,19, m,1 m, R 2 m 19, ¥m,1
ﬁ ’ ’ ﬁ ﬁ ’

=I+1I,

where we need to explain the meaning of symbols I, IT appearing on the rightmost. Note that
every term on the right-hand side of the above inequality can be written as the sum of two
parts: the integral on 77! (Supp(df)) and the integral on 7! (B2, \ Supp(d f)). We denote
the sum of all the integrals on 77~ (Supp(d f)) (resp. 7~ (B2, \ Supp(df))) by the symbol I
(resp. II).

By (2.5) and (2.16), we have ¢, 15 = s on 771 (Supp(d f)). Therefore, by (2.23), (2.26),
(2.27), (2.28) and proceeding as in [15, pp. 1058—-1059], one has

K 2 € 2
(230) 12 131811 suppiarn T O(ﬁ) 11151 suppary)
1
2 2
" OR( B )HSH _‘(SUPp(df)) + O(ER) 171 (suppcary

1 2
+ Om.r 3 ,32 151521 (Supp(a.ry)

2 2
sl Is1l%

~1supp(as) F ( 882

+0( ﬂz)ll I —1(Supp(df)))

— 3 ,32 ! (Supp(df))
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1 2
+ OR( 5 )”S“n‘(Supp(df)) + 0( e R)”S”nl(Supp(df))
1 2
+ Om R(ﬁ IBZ)HSHN—‘(Supp(df))
= 8,32 s =1 (Supp(df)) T OR( B )”S”ﬂ ! (Supp(df))

1 ’ 1 2 2
+0(,32R)” | —'<Supp(df))+0mR(/3 ﬂz)” =1 suppta

where for the last inequality, we have chosen small enough ¢ > 0 such that

K 2 € 2
W”s”n—‘(Supp(df» + O(ﬁ) 11171 (supptary) = O-
By (2.8), on fl]@m,R \ 771 (Supp(df’)), one has

(2.31) (o gV = 6.

Recall that on M, we have assumed that kF is nonnegative, i.e., (2.2). As a result,
inf(k¥) > 0 holds on 771 (B2, \ Supp(d f)). Moreover, on 7~ (B2, \ Supp(d f)) we have
R&3m.R = (), Therefore, from (2.24), (2.28), (2.31) and proceeding as in [15, pp. 1058-1059],
we obtain

> 2 1 2
(232) 1= _2”(pm:ls”n_l(Bzm\Supp(df)) + Om,R (E) ”(pmals||n_1(32m\Supp(df))
2

14 2
+ Om,r (ﬁ) @m. 181121 (B \Supp(a )

1 2
+ Op (,BZ_R) lom. 15171 (B \suppC )"

For the second term on the right-hand side of (2.17), by (2.5), (2.16), (2.20), (2.24) and
(2.31), one has

E3m.x @) | el iV
(2.33) ”(Dmﬁlﬂ’ﬁ 5 + 5 )(qom,zs)

2

2

+ "%T’Rl/((/’m,zs)

pEm.R (@)
H( 5 g Joman|

> 52 5 om sl
From (2.29), (2.30), (2.32) and (2.33), one has

S

_ K 8 Is > Or
minl© se ?4_ /3 Is 112 7~ (Supp(df))

1
+ O 2)||<om,1s||2 + O 5 ) homasl?
g 5
1
+ 053z Jlomasl.
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From (2.17), (2.19) and (2.34), by taking m sufficiently large and then taking R suf-
ficiently large, one finds that there exist cop > 0, € > 0, m > 0 and R > 0 such that when

B > 0,y > 0 are small enough (2.12) holds, i.e., part (i) of the lemma.
The strategy to prove part (ii) of the lemma is similar to that of part (i). For any smooth

section s in question, one has as in (2.17) that

pEm.k P ¢(©) e‘f;;n’RV
e ((5)o5as,(5) + 5+ )
Ay~ f;,;n 1%
(h(%)D?g&;,ﬁ,yh(%)chg) LE 3ﬂ,R )((pm,1S)

pEm.R p\ @)  EfamrY
H(( ) ‘?@fllsﬂ,yh(ﬁ)—i_ :3 + ,B )(<Pm,2S)

= lleg,y (d@m,1)sll = licp,y (dem 2)s]-

=

By a direct calculation (comparing with [15, (2.29)]),
ﬁ E3m.R ﬁ 6(&) 8j;tn,RV 2
w0 ((3)o5s () D+
_ (P pEsmr P, €@)\?
- (&), (2) +75)
+h B 2 D83m'R 8f3>|;’n,RV +82(f3>‘;’n,RV)2
R Fori-By B B2
2 P2 ~12
— p €3m.R o h(ﬁ) &3m.R |U|
= (1(R)P5etept(7)) + 0Pz o)+

eV e 2(fr, QV)
(Ig) [Digyi f3m RV] 313—2’R

We estimate the second term on the right-hand side of (2.35) first. By (2.5), (2.16), (2.24),
(2.31) and the first equality in (2.36), one has
(2.37)

+

pEam p\ @)  EfimrV 2
H( ( ) ‘77@371 =,31’h(_)+ IB + IB )((Pm,zs)
I RV 2
- (h(%)Djfgél,B,yh(R) + %)@m »5) H%—’R((Pm,zs)
&26 2
=z ﬁ Om,28

To estimate the first term on the right-hand side of (2.35), we use the following fact. By

the definition of &, since now
Supp (5) © Mey,, R \ My, &
we have by (2.10)

5 2
(2.38) ('/Tme,ls,rpm,ls) Z 5 [
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From (2.23), (2.24), (2.28), (2.38) and the second equality in (2.36), one gets

8G)  efam gV
(2.39) H (h(%)D?gé,ﬂ’yh(%) + 53) + 3’2’R )(som,ls)
5? h(%)? .
= (ll’%(ﬂm,lsﬂﬂm,ls) + (%[D§3$£L,ﬂ’y,C(U)](ﬂm,lsa(ﬂm,ls)

h(%)z €3m.R 2
" B [D‘?’@jp’dl{ﬂ,l” 8f3maR V](pm,ls, Pm,18

> ollomast? + (0n (535 ) + Oma (5 ) lomasl?
+(0(55) + 0x(F ) Jlomas1- supiary
1 o (1 R
— sgllomsl + ( (,327)* m,R(ﬁ))nwm,lsu
1
+ (g tomast® + 055 )om1s2-: sy

+ OR( ,B )”(pm 15” 71 (Supp(d f))

> s5lomasl?+ (On( 53 ) + Oma (5 ) Jlomast?

ey 2
+ Or (F) ”(Pm,lS ”n—l (Supp(d.f))’

where for the last inequality, we have chosen small enough & > 0 such that

2

1 g
gm0 55 ) homaslZs oy = 0

From (2.37) and (2.39), one gets
(2.40) >

ﬁ 83m.R B 6(5’) sf/;tn,RV '
j=1 (h(R)D‘?'@‘?;’llﬂﬂ’yh(R) + ﬁ + ﬁ ((Pm,js)

: 2, Is1I? B 1 2
> min{l, ¢ 8}2,32 + | O B2R + Om,R 8 lom, 15l

+ OR( ,3 )”90”1 15 ” 71 (Supp(df))"

From (2.19), (2.35) and (2.40), by taking m sufficiently large and then taking R suf-
ficiently large, one finds that there exist ¢co > 0, ¢ > 0, m > 0 and R > 0 such that when
B > 0,y > 0 are small enough (2.13) holds, i.e., part (ii) of the lemma. |

2 2

2.4. Elliptic operators on N 3m,R: Let Q be a Hermitian vector bundle over M 3. R
such that (Sg,,, (¥ & ¥, J') ® A* (372J-) ® Em,r)— @ Q is atrivial vector bundle over ,Mgg3
Then, under the identification

c(@) + f;;n’Rv +Idg,
(Sg(F & F, J‘) ® A*(?J‘) ® Em,Rr)+ ® Q is atrivial vector bundle near 8&(%3%13
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By obviously extending the above trivial vector bundles to ]/3,,1, R, we get a Z,-graded
Hermitian vector bundle § = §; @ §_ over N3, g and an odd self-adjoint endomorphism
W =w+ w* € T'(End(§)) (with w : ['(§4) — I'(§-), w™* being the adjoint of w) such that

Er = (Spy(F®F)RA (F5)®EmpR),. ® 0

over Mg, g, W is invertible on N3, g and

2.41) W =¢@) + f;nRVJr( 0 IdQ)
’ Idp 0
on M J3,,,R» Which is invertible on M oz, R \ M3y, R/2-

Recall that 2(p/ R) vanishes near Mg, g N OMRg. We extend it to a function on N3m R
which equals zero on N3m R and an open neighborhood of oM Hm,R 1N JV3m R, and we denote
the resulting function on N3m R by n R-

Let + Fom TN3m R — N3m R be the projection of the tangent bundle of N3m R. Let

elV?am,R * *
4 € Hom(nN3m'R§+, T[dv3m.R$_)
be the symbol defined for p € ﬂ3m,R andu € Tpﬂ3m,R by

(2.42) y"%m'R(p, u) = n}Sm-R («/—_liz%c/g,y(u) + w(p)).

By (2.41) and (2.42), y¥3m.® is singular only if u = O and p € Mge,,,.R/2- Thus yN3m.R s an
elliptic symbol.
On the other hand, it is clear that h RD?M ; By
define it to equal to zero on N3m R\ M 3. R b
Let A : L?(§) — L?(£) be a second order positive elliptic differential operator on Ifm R
preserving the Z,-grading of £ = £4 @ £_ such that its symbol equals ||? at n € Tﬂ3m,R.7)
Asin [15, (2.33)], let

ER is well defined on ﬂ3m,R if we

PRk L2(§) — L2(§)

be the zeroth order pseudodifferential operator on :ngm’ R defined by

Esmr _ 4—17 HE3mr ~ =1
(2.43) PR,,B,y =A hRDjl_@?_1 By hrA™% +

w
5
Let

PR s L2(E4) > L2

be the obvious restriction. Then the principal symbol of P&3”1 R Yt Wthh we will denote by

(PR3g’ yR Jr) is homotopic through elliptic symbols to y"v 3’" R Thus P 3;3" R + is a Fredholm
operator. Moreover, by the Atiyah—Singer index theorem [1] (cf. [9, Proposmon II1.13.8]), we

can calculate the index of P g 3;3” R 4 as follows:

(244)  ind(Pgy,) = ind(y (Pgyk,)) = ind(yVom)
= (A(TM) * (ch(S(TS"(1))) — ch(S_(TS"(1)))). [M])
= deg(f)(ch(S+(T'S"(1))) — ch(S_(TS"(1))).[S" (1)])
= (—1)2deg(f)x(S™ (1)) = 2(—1)2deg(f) # 0.

7) To be more precise, here A also depends on the defining metric. We omit the corresponding subscript/
superscript only for convenience.




Su, Wang and Zhang, Nonnegative scalar curvature and area decreasing maps 103

In (2.44), for the fourth equality, we use the fact that ch(S+(7'S"(1))) — ch(S—_(T'S"(1)))
has only the top degree; for the fifth equality, we use [9, Proposition III.11.24]; and the last
inequality comes from (2.1).
Forany 0 <1t <1, set
p&am.r p&m.r (t—Dw 1 (l=tw _1
(2.45) Rﬂy,Jr(t) R’g’y’++T+A 4TA 1,
Then P If 3;3" K (t)isa smooth family of zeroth order pseudodifferential operators such that the
correspondmg symbol y(P R3/§n f (1)) is elliptic for 0 < 7 < 1. Thus () is a continu-

ous family of Fredholm operators for 0 < ¢ < 1 with

3mR
PR+

83mR (1) = 83m,R
R Byt R Byt

Now since P 1‘33;3”;2 o (¢) is continuous on the whole [0, 1], if P g 3;;’ , 'f 4 (0) is Fredholm and

has vanishing index, we would reach a contradiction with respect to equation (2.44), and then
complete the proof of Theorem 1.2.
Thus we need only to prove the following analog of [15, Proposition 2.5].

Proposition 2.2. There exist e,m, R, B,y > 0 such that the following identity holds:

dim(ker(Pys %, (0))) = dim(ker(P 5" (0)*)) =

Proof. Let P&m R(O) L?(£) — L?(§) be given by

83m R —4 83,74 R _1 1
(2.46) PRR(0) = A74 g RDELSL , RATs + A7

IL
m—

W 4-
p

Since P83”1 ®(0) is formally self-adjoint, by (2.43) and (2.45), we need only to show that

dim(ker(Pgs X (0))) =

for certaine,m, R, B8,y > 0.
Lets € ker(P83’" %(0)). By (2.46), one has

= ~E3m.R =~ K -1
(2.47) (hRD?'@?li,ﬂ,th + 3 )A 45 = 0.

Since ER =0 on W3m,R \ th%m,R, while W is invertible on I@m,R \ ﬂggm,R, by (2.47),
one has .
A"%s =0 on Ny r\ Mgy, R

Write on M 3, R that

1

(2.48) A"4s =51 + 52,

with s1 € L2(Sg,(F & Fi) ® A*(F55) ® E3m,r) and 52 € L2(Q & Q). By (2.41), (2.47)
and (2.48), one has
Sy = 0,

while

- - o5 ef¥ .V
(2.49) (h pSmr o €O L Tm.r )sl — 0.

FOFLp.y B B
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We need to show that (2.49) implies s; = 0. As in (2.35), one has

7 83m,R nd 8(5) Sf;;n,RV
(2.50) ﬁ” (h RDEYAL o et ) o),
7 83m,R g 6(8) 8f3>’;n,RV
> (hRDf'@grlJ_,ﬂ,th + 5 + 5 (Om.151)
7 &E3m ~ E(a’) Sf* ,RV
" H (hRD;@;f':ﬂsth + B - 3',2 (@m,251)

= lleg,y (d@m, 1511l = lleg,y (dgm 2)s1 -
By proceeding as in the proof of (2.33), one gets

o~ 7% 2 2
= nEm.R = c(0) 8f3m,RV
(hRva@gle_,ﬂ’th + B + 8 (Pm,251)| = ?

On the other hand, we can use Lemma 2.1 and proceed as in [15, p. 1062]. Especially, we need
to choose the parameters in the following way. Firstly, we fix a small enough ¢ > 0. Then we
choose m > 0 sufficiently large. The next step is taking R > 0 sufficiently large. Finally, we
choose a small enough y. With these parameters fixed, we can find a constant ¢; > 0 such that
for any B sufficiently small, the following inequality holds:

2.51) | @m,251 1>

7 n&3m.r = c(©) 8];;)';n,RV
(2.52) H(hRmell’ﬂ,thnL 5 + 5 (¢m,151)

From (2.19) and (2.50)—(2.52), by using the same order to choose parameters as in (2.52), one
finds that there exist c; > 0,& > 0, m > 0, R > 0 and y > 0 such that when f are sufficiently
small, one has

C1
> —lem,151]-
B

e I
7 E3m. R 7 C(U) 8f3m,RV Cc2
D™ > =
(hR sort sy R T g T g 5| = glsilk
which implies, via (2.49), s; = 0. ]

2.5. The general case. Till now, we only deal with the case that f is constant near
infinity. To handle the general case that f is locally constant near infinity as stated in Theo-
rem 1.2, we need some modification for the proof. Note that the most arguments in Section 2.4
are independent of whether f is constant or locally constant near infinity. Therefore, what we
need to do mainly is to establish Lemma 2.1 in this general case.

We use the same notation in this subsection as in Section 2.1. But, now, outside the
compact subset K C M, f is locally constant. Note that the number of connected components
of M \ Mg, is finite at most. Let {Yk}f{:1 be the connected components of M \ Mg, .
Assume f(Yy) = pr € S"(1), k=1,...,1.

Since outside K, f may take several values now, we need to modify the construction of
the endomorphism V' (or v) a little. Due to deg(f) # 0, f is a surjective map. Thus, we can
choose a regular value p # p1,..., p; of f. Now, we can choose

v=c(X): S(TS"(1)) - S_(TS"(1)),

where X is a smooth vector field such that |X| > 0 on S”(1) \ {p}. Then v is invertible over
S™(1) \ {p} and define V = v 4 v* as before.
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The main difficulty about this general case is how to extend f from Mg, to M Hap -
To deal with this problem, we choose a point pg € S”(1) \ {p} and for k = 1,...,[, pick
a curve & (1), t € [0, 1], connecting pr and pg such that & (t) N {p} = @, t € [0, 1]. Then,
for (y,t) € Ham x [-1,2],k = 1,...,1, we define

P> (y.7) € (Y N H3p) x [—1,0],
S 1) = &@), (.71) € (Yr N Hzm) x [0, 1],
J28 (y,7) € (Yr N Hap) X [1,2].

Note that some points of { py }f{zl may coincide.

Recall that Hz,, x [—1,—1 + &) can be identified with a neighborhood U of Hzpy,
in Mpy,,,. Under such an identification, the above f(y, ) coincides with f on U. Thus, f
can be extended to a map on My, U (Hz; x [—1,2]) via f(y,7) and furthermore, such
an extended map can be extended to M Hs,, by setting f( H3m) = po. Denote such a map
on M Hs,, Dy f1. We will use f; to substitute the role played by f in Sections 2.2 and 2.3.
Especially, we note that f; has the following properties®:

Supp(d f;) < Supp(d f) U (Hzm x [0,1]), deg(f;) = deg(f) # 0,
and there exists § > 0 such that
(f*V)* = 6 on My, \ Supp(df).

Hence, the following counterpart of (2.8) (or (2.31)) holds:

(F5smrV)’ =8 on Mg, g \ 7~ (Supp(df)).

Among the estimates in Section 2.3, the first one that needs to be modified is (2.24),
which is changed to

Fx
83m.R 8fl,3m,RV .
(2.53) [D gy ] —0

on e/’ﬁ\le;rgm!R \ (71 (Supp(d f)) U (H3m.r x [0, 1])). Due to our definition of the metric on
Mges,, R> (2.7), the metric on 3., g % [0, 1] is independent of B, y. Therefore, we have

E3m. R gﬁi’)m,RV &
(254) Df@.;FIJ‘ By’ T = Om,R E on J€3m,R X [O, 1]

By (2.53) and (2.54), (2.33) is changed to

2

~ Fx
33m R c(0) 8fl,3m,RV

8
> T lomast? +omR(ﬂ)||¢mz E——

) In general, /7 is only area decreasing along F' on My, rather than on the whole M H,, (evenif in the
case that F can be extended to a foliation on M Hs,,)- But this is enough for our purpose.
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Consequently, (2.34) is changed to

5 . A
S (oS, 4 E@) ekl
£ FoFiBy = B B Ym.J
J=
[« Is|? 2
> mln{— 8¢ }? + ORr ﬂ sl 71 (Supp(df))

2

+ 0, R(ﬂz)nwm I + O, R(ﬂ)nwm s

1
L0, (ﬂz_R)”(pm 15[ + Om R('B)”‘pm 2513, rxto.1):

Using these updated estimates, we can proceed as in Section 2.3 to obtain Lemma 2.1.
Now, the only point in Section 2.4 that we need to change is to replace (2.51) with the
following estimate:

H (h pEm.R Pix (o) + 8flf3m,RV

2
?7®$1L,ﬂ y + ﬂ ﬂ )(¢m,251)

628
= gz llom. 2511 +0mR(ﬂ)||<Pm 2511363, gxf0,11

Then the proof of Theorem 1.2 in this general case is completed.

3. Proof of Theorem 1.2: The odd-dimensional case

In this section, we prove Theorem 1.2 for the odd-dimensional case.

Let M be an odd-dimensional noncompact manifold of dimension n carrying the com-
plete Riemannian metric g7 . Let F € TM be an integrable subbundle of 7M. We will
use the notation in Section 2. Let f : M — S"(1) be a smooth map which is area decreas-
ing along F, locally constant near infinity and of non-zero degree. Let g = g7M | be the
restricted metric on F and let k¥ be the associated leafwise scalar curvature. As in the even-
dimensional case, we assume that 7'M is spin. We still argue by contradiction, that is, we
assume that (2.2) holds.

For any r > 1, let S!(r) be the round circle of radius r, with the canonical metric d62.
Let M x S'(r) be the complete Riemannian manifold of the product metric g7 & d62.
Following [12], we consider the chain of maps

M x St(r) Ll S™(1) x S1(1) SN STy AST1) = S"TH1),
where f X %id is defined as
(f x %id)(x,@) = (f(x), g) (x,0) € M x S'(r),

and 4 is a suspension map of degree one such that |[dh| < 1. Let f = ho (f x %id) denote
the composition. Then one has

deg(fr) = deg(f) # 0.
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_As in Section 2.2, we can construct the manifold M J3,,,R With the Riemannian metric
gT‘M"’Sm’R as (2.7). Set
iy y 1
M3, . Rr = Mz, R XS (1)

and the metric on it to be gT’M"’3m~R ® B2d6?. Then
T Mies,,rr = (F @ TS'(r) & Fi') & F5- on My, »,r-

Let |
f3m,R,r =ho (f3m,R X —id) : Me;‘@m,R,r N Sn—i-l(])
and let S(TS'H—I(I)) = S+(TSn+1(1)) fas) S (TS"+1(1)) be the spinor bundle of Sn+1(l)
The pull-back bundle of S4. (7S "1(1)) via f3m R.r 18 denoted by
(83m,R,r,:|:, g83m,R,r,:t, V83m,R,r,:|:)

~ n+1 n+1
— f3>';n’R’r(S:|:(TSn+l(l))vgSi(TS (1))’ VS:I:(TS (1)))

Then
8?,mRr :83mRr+@83mRr,

is a Zy-graded Hermltlan vector bundle over M Hsm,R,r- Lt Df;g ; ; By be the twisted sub-
Dirac operator on M H3m,R,r defined as in (2.9). LRy

As (2.11), for ¢ > 0, we consider the operator

~ T
D83m.R.r C(O') 8f3m,R,rV
FoFi-By B g

(3.1)

where V : S(TS"T1(1)) — S(TS"T1(1)) is the operator defined in the same way as the
operator V' appeared in Section 2.5 except that we should use f; to replace f. The map f;m R.r
in the above formula may be written as ﬁ,3m, R.r in view of the symbols used in Section 2.5.
We omit the / subscript to simplify the symbol a little. As before, there exists §” > 0 such that

(3.2) (Frnrs V) =8 on Mg, rr\ 7~ (Supp(df)) x S'(r).

Let fz+1 be an orthonormal basis of (T'S!(r),d6?). Then proceeding as [12, p.68],
(2.26) is replaced by

1 & . .
(3.3) (Z,ﬁ > RO, f)epy (B fi)epy (B lms,s)
i,j=1 7~ (Supp(d f))xS ! (r)
4@q=1, !
= 4p2 1511 2=1 supparxs o + 0(52 Isll%- ! (Supp(df)xS1(r)

for any s € I'(Sg,,, (¥ @ TSY(r)) ® ?f‘) ® A*(WZJ-) ® E3m.r.r) supported in the interior
Of MJ(3)713R:"'
Since r > 1, proceeding as (2.21) and (2.22), on 7~ (Supp(d f)) x S1(r), one has

83m,R,r gf_'\;;n,R,rV Y
G4 [D Forisy T p } 0(/32)+0R(ﬂ)
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On (,X/(,;@m,R \ 771 (Supp(d f))) x SL(r), by (2.53), (2.54) and proceeding as (2.21),
one has

(3 5) D83m’R’r ‘C"f’;);’t,R,rV _ O i + 0 i

. FoFl.py B - UmRp R\ g2r )
Onn~! (Bam \ Supp(df)) x Sl(r), we also have
(3.6) R&mkr =0, inf(k") = 0.

Define ¢ i r : f/(,;@m,R,, — [0,1], i = 1,2, to be the pull-back of ¢, ; via the pro-
jection M Hm,R,r O M J3,,R- Then we can argue as in the proof of Lemma 2.1 by using
(3.2)—(3.6). The difference is that after fixing the parameters ¢,m, R,y in the order given
before, we further need to choose r > 1 sufficiently large. As a result, for 8 small enough,
the analog of Lemma 2.1 still holds for the operator (3.1).

Similarly as (2.43), we can define the pseudodifferential operator P If%”f” and we also
have
. E3m.R.r ntl
(3.7 1nd(PR’ﬁ,y’+) =2(—1) 2 deg(fr) # 0.

On the other hand, proceeding as the proof of Proposition 2.2, by taking the parameters in the
order &,m, R, y,r, B, the analog of Proposition 2.2 still holds for the operator P 53[;” ’yR _; , which
contradicts (3.7). The proof for the odd-dimensional case is finished.

4. Proof of Theorem 1.6

In this section, we prove Theorem 1.6.

Let (M, F) be a foliated manifold. Let g7™ be a complete Riemannian metric on TM
and let g = gT™ | be the restricted metric on F. Let k¥ be the associated leafwise scalar
curvature on F. We assume that the Riemannian metric g7 is A%-enlargeable along F.

We assume that dim M is even. If dim M is odd, one may consider M x S! and use the
method in Section 3.

We still argue by contradiction. Assume there is § > 0 such that

4.1) k¥ >§ over M.
Let F1 be the orthogonal complement to F, i.e., we have the orthogonal splitting
(4.2) TM =F @ FL, ¢™ =gF ggf

By definition, for any € > 0, there exists a covering w¢ : M — M such that either M,
or F¢ (the lifted foliation of F in M¢) is spin and a smooth map f¢ : M¢ — S dim M (1) which
is (e, A?)-contracting along F, (with respect to the lifted metric of g7™), constant outside a
compact subset K¢ and of non-zero degree.

We will give the proof for the M, spin case, since one can prove the F¢ spin case by
combining the M, spin case and the argument in [15, Section 2.5].

Let g7Me = 1*gT™™ be the lifted metric of g7™, and let g¥c = n*g¥ be the lifted
Euclidean metric on Fe. The splitting (4.2) lifts canonically to a splitting

TM, = F. & FGJ‘, gTME = gFf @gFfL.
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If both M and M, are compact, by [17, Section 1.1], one gets a contradiction easily.
In the following, we assume that M, is noncompact.
For (M, F.) equipped with the metrics (g7Me¢, gF¢) and the smooth map

fe: Me — SImM (1),

one can follow the steps shown in Section 2. We will use € to denote the corresponding objects
in this case.
Let 7¢ : M — M, be the Connes fibration. Set

ke = n2 k), k¥ = 72wk (kF)).

With these settings, as in Section 2, the key to find a contradiction is to prove an analog
of Lemma 2.1 for the operator

Ay~ A*
Ec.3m.R i c(0¢) ‘Qfe,3m,RVE
F®F.By B B

To show such an analog, after checking the proof of Lemma 2.1, we only need to prove
estimates to replace (2.26) and (2.27).

Let VSTS™ (1) pe the canonical connection on the spinor bundle of S9™M (1), Let
RSTS™™M (D) pe the curvature tensor of the connection. Set”

(4.3) Ci= sup |RSTSTM
pGSdimM(l)

Choose a local frame of M He 3m,R 8810 (2.18). By the (e, A?)-contracting property of fe,
we have the following pointwise estimate:

(4.4)

1 q
(2? 3 R‘ffﬁmﬁ(ﬁ,mcﬁ,y(ﬂ—lmcﬂ,y(ﬁ—lms,s)(x)

ij=1

L4 R .
B ‘(”ﬁ Z f:l’am,R (Rs(f€’3m’R’*ﬁ’ f€’3m’R’*fj))

i,j=1

“cpy (B fidepy (B 1))s. S) (x)

q
) ‘(Fﬁz > Jeam k(R (Jeamros(fi A 1))

i,j=1

~epy (B fidep, (B~ f)s. S) (x)

1
< 2‘ﬁq(q — 1) Ciels|*(x),

where RS is the shorthand for RS (TSdimM(l)).
Now, we choose

. 8
N 4C1q2'

9 Here we need not use the precise estimate in [12].
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Then, using the notation in Section 2, by (4.1) and (4.4), we have

1< _ _ ke
(27 2 REm i fey (B e (B lfj)s’s)ﬁé—l(Kf)Jr (WS’S)H‘(KG)

i,j=1
]
> &‘ﬁllsllégl(l(é)’

which can be used to replace (2.26) and (2.27). The remaining argument to get a contradiction
follows from the same method used in Section 2.

5. Proof of Theorem 1.8

In this section, we prove Theorem 1.8.

Let (M, F) be a foliated manifold. We assume that M is A?-enlargeable along F. Let
g™ pe a complete Riemannian metric on TM and gF = g™ |k be the restricted metric
on F.Let k¥ be the associated leafwise scalar curvature on F.

As before, we argue by contradiction. Assume that

kF >0 over M.
Let F1 be the orthogonal complement to F, i.e., we have the orthogonal splitting
(5.1) TM=F®Ft ¢™=glggl

Inspired by the proof of [8, Theorem 6.12], we consider another metric on 7'M defined
by k' gT™ By definition, for the metric k¥ g7M and any € > 0, there exist a covering

we . M — M
such that either M or F¢ (the lifted foliation of F in M¢) is spin and a smooth map
fe: Mg — SImM (1)

which is (e, A?)-contracting along F, for the lifted metric of k¥ gT™ | constant outside a
compact subset and of non-zero degree.

Let g7Me = 1*gT™ be the lifted metric of g7™, and let g¥c = n*gf be the lifted
Euclidean metric on Fe. The splitting (5.1) lifts canonically to a splitting

TME — FE @ FGJ_’ gTMg — gFe eagFeJ-'

We will give the proof for the M, spin case, since one can prove the F¢ spin case by
combining the M, spin case and the argument in [15, Section 2.5].
We first assume that dim M is even.

For (M., F,) equipped with the metrics (g7Me g

Fe) and the smooth map
fe: Me — SImM (1),

one can follow the steps shown in Section 2. We will use € to denote the corresponding objects
in this case.
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Let 7¢ : Mo — M, be the Connes fibration. We note that the (deformed or not) metric
on M. is defined as in Section 2.2, which means that we use the metric g7Me rather than the
metric k e gTMe to define the metric on Me. Set

ke = mx(kFy k%o = 72 (n2 (kT)).

With these settings, as in Section 2, the key to find a contradiction is to prove an analog
of Lemma 2.1 for the operator

DSG 3m,R 4 ¢(Ge) + 8f::3m,RV€
Fe®F .8y B B
As in the proof Theorem 1.6, to show such an analog, we only need to prove estimates to
replace (2.26) and (2.27).
Choose a local frame of T M g,,, r as in (2.18). By the (e, A?)-contracting property

of f, for the metric ke gTMe and | f; A filgrme = 1,1 # j, we have

(5.2) | fes(fi A SIS €lfi A filiregrme = ke, i & .
Then for x € 7! (Supp(d f¢)), by (5.2), we have the following pointwise estimate:

(5.3) <2ﬂ2 > REmR(fi f)ep (BT fidep, (BT £)s, s)(x)
i,j=1
‘(2[32 Z feSmR R (feBmR*fz,fe3mR*fJ))
i,j=1

~epy (B fidepy (B f)s. S) (x)

‘( T Z Fsm R(RS (Jesm rox(fi A £7)))

i,j=1

repy (B fidepy (B 1))s. S) (x)

< ”%qm — DGk () s P ).

where C is the constant defined in (4.3) and as before, RS is the shorthand for RS(TS™"* (1)
Now, we choose

1
5.4 -
(5.4) 1142
Then f¢ is fixed and Supp(d f¢) is a fixed compact set. Hence, we can find « > 0 such that
(5.5) k¥¢ >k on ﬁe_l(Supp(dfe)).

Therefore, using the notation in Section 2, by (5.3)—(5.5), for any point x € 7. ! (Supp(d fe)),
we have

k%
(zﬂz > REIR(fr, fi)epy (B Fepy (B S)s s)<x>+(4ﬂ2ss)<x>
a.]_l

k¥e
= (50 ) 0 = gzl o,
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which can be used to replace (2.26) and (2.27). The remaining argument to get a contradiction
follows from the same method used in Section 2.

If dim M is odd, as in Section 3, we can replace M, by M x S'(r). Consider the
composition f¢ , of the maps

fex%id . .
Me x S (r) = $3mM (1) 5 §1(1) —Ls gIMM+1 (),

d fel
r

Then this map f; , is pointwise (max{ek e, }, A?)-contracting with respect to the metric

Fix € as (5.4) and set

ko = min{kTe(x) : x € Supp(df)}.

We choose r large enough such that

sup{|d fe|(x) : x € M} -
r

€KQ.

Then by combining the method used in the above even-dimensional case and the content of
Section 3, we can also get a contradiction.
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