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Nonnegative scalar curvature and
area decreasing maps on

complete foliated manifolds
By Guangxiang Su at Tianjin, Xiangsheng Wang at Jinan and Weiping Zhang at Tianjin

Abstract. Let .M; gTM / be a noncompact complete Riemannian manifold of dimen-
sion n, and let F � TM be an integrable subbundle of TM . Let gF D gTM jF be the restricted
metric on F and let kF be the associated leafwise scalar curvature. Let f WM ! Sn.1/ be
a smooth area decreasing map along F , which is locally constant near infinity and of non-zero
degree. We show that if kF > rk.F /.rk.F / � 1/ on the support of df , and either TM or F
is spin, then inf.kF / < 0. As a consequence, we prove Gromov’s sharp foliated ˝"-twisting
conjecture. Using the same method, we also extend two famous non-existence results due to
Gromov and Lawson about ƒ2-enlargeable metrics (and/or manifolds) to the foliated case.

1. Introduction

In this paper, we always assume thatM is a smooth connected oriented manifold without
boundary. We call a pair .M;F / a foliated manifold if F is a foliation of M , or equivalently,
an integrable subbundle of TM .

1.1. An extension of Llarull’s theorem. It is well known that starting with the famous
Lichnerowicz vanishing theorem [10], Dirac operators have played important roles in the study
of Riemannian metrics of positive scalar curvature on spin manifolds (cf. [8, 9]). A notable
example is Llarull’s rigidity theorem [12] which states that for a compact spin Riemannian
manifold .M; gTM / of dimension n such that the associated scalar curvature kTM verifies
that kTM � n.n � 1/, then any (non-strictly) area decreasing smooth map f WM ! Sn.1/ of
non-zero degree is an isometry.

In answering a question of Gromov in an earlier version of [7], Zhang in [16] proves
that for an even-dimensional noncompact complete spin Riemannian manifold .M; gTM / and

The corresponding author is Guangxiang Su.

Guangxiang Su and Weiping Zhang were partially supported by NSFC Grant No. 11931007 and Nankai
Zhide Foundation. Xiangsheng Wang was partially supported by NSFC Grant No. 12101361, the project of Young
Scholars of SDU and the fundamental research funds of Shandong University, Grant No. 2020GN063.



86 Su, Wang and Zhang, Nonnegative scalar curvature and area decreasing maps

a smooth (non-strictly) area decreasing map f WM ! SdimM .1/ which is locally constant
near infinity and of non-zero degree, if the associated scalar curvature kTM verifies

kTM � .dimM/.dimM � 1/ on Supp.df /;

then inf.kTM / < 0.
The main idea in [16], which goes back to [17, (1.11)], is to deform the involved twisted

Dirac operator on M by a suitable endomorphism of the twisted vector bundle. Since the
deformed Dirac operator is invertible near infinity, one can apply the relative index theorem
to obtain a contradiction.

In this paper, we generalize [16] to the foliated case. For this purpose, inspired by [8, Def-
inition 6.1] and [17, Definition 0.1], we define the following class of maps.

Definition 1.1. Let .X;L/ be a foliated manifold. A C 1-map ' W X ! Y between
Riemannian manifolds is said to be .�;ƒ2/-contracting along L, if for all x 2 X , the map
'� W ƒ

2.TxX/! ƒ2.T'.x/Y / satisfies

j'�.Vx ^Wx/j � �jVx ^Wxj

for any Vx; Wx 2 Lx � TxX .

If L D TX , the above definition coincides with the usual definition of the .�;ƒ2/-con-
tracting map in [8, Definition 6.1]. Moreover, similar to the definition of the area decreasing
map, if a map ' is .1;ƒ2/-contracting along L, we call ' area decreasing along L.

Let .M;F / be a noncompact foliated manifold of dimension n. Let gTM be a com-
plete Riemannian metric of M , let gF D gTM jF be the restricted metric on F and let kF

be the associated leafwise scalar curvature. Let f WM ! Sn.1/ be a smooth map, which is
area decreasing along F , and is locally constant near infinity and of non-zero degree. Let
df W TM ! TSn.1/ be the differential of f . The support of df is defined to be

Supp.df / D ¹x 2M W df .x/ ¤ 0º:

The main result of this paper can be stated as follows.

Theorem 1.2. Under the above assumptions, if either TM or F is spin and

(1.1) kF > rk.F /.rk.F / � 1/ on Supp.df /;

then one has

(1.2) inf.kF / < 0:

As an application of Theorem 1.2, we resolve the following conjecture due to Gromov,
appeared in the fourth version of his four lectures, [7, p. 61].

Sharp Foliated˝"-Twisting Conjecture. LetX be a complete oriented n-dimensional
Riemannian manifold with a smooth m-dimensional, 2 � m � n, spin foliation L, such that
the induced Riemannian metrics on the leaves of L have their scalar curvatures > m.m � 1/.
Then X admits no smooth area decreasing locally constant at infinity map f W X ! Sn with
deg.f / ¤ 0.

Proof. Since an area decreasing map on X is area decreasing along L automatically, as
a consequence of Theorem 1.2, Gromov’s above conjecture holds.
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Note that Theorem 1.2 also implies that if the L spin condition is replaced by the X spin
condition, the above conjecture still holds.

On the other direction, in [13], Su proves a generalization of Llarull’s theorem for the foli-
ated compact manifolds. Therefore, Theorem 1.2 can also be viewed as a noncompact extension
of [13]. Figure 1 gives an illustration about the relation between several results.

Llarull’s theorem, compact M , TM

[7, 16], noncompact M , TM [13], compact M , F

Theorem 1.2, noncompact M , F

Figure 1. The relation between several results.

To compare Theorem 1.2 with the related results in the literature further, we recall that
for the enlargeable foliated noncompact manifold, in [14], Su and Zhang also show a similar
estimate on the leafwise scalar curvature. More precisely, let .M;F / be a foliated manifold
carrying a (not necessarily complete) Riemannian metric gTM . Let kF be the leafwise scalar
curvature associated to gF D gTM jF . If either TM or F is spin and gTM is enlargeable, then
inf.kF / � 0. In fact, the argument in [14] motivates our proof of Theorem 1.2 partially.

We will put the different kinds of deformations of Dirac operators appeared in [14], [15]
and [16] together (cf. (2.11)) to prove Theorem 1.2. Still, the sub-Dirac operators constructed
in [11] and [15], as well as the Connes fibration introduced in [5] (cf. [7], [15, Section 2.1]),
will play essential roles in our proof. But the new difficulty in the current case is that the map f
is area decreasing along F , i.e., f only contracts on two forms in some sense1). Such a weaker
assumption on f forces us to construct new cut-off functions to replace '";R;1 and '";R;2
in [14, (1.23)].

Recall that in [8, Theorem 1.17], Gromov and Lawson use a small perturbation of the
distance function to prove their relative index theorem. We will adapt this perturbed distance
function to construct the cut-off functions needed in the current case. As a result, unlike [14],
the completeness of the manifold is necessary in our proof. As in [15], we only give the proof
of Theorem 1.2 for the TM spin case in detail. The F spin case can be proved similarly as
in [15, Section 2.5].

1.2. Two non-existence results. It turns out that our method to prove Theorem 1.2 can
also be used to generalize several classical results about scalar curvature to the foliated case.

In [8], Gromov and Lawson introduce the concept of ƒ2-enlargeability. In the foliated
case, we use the following variant of [8, Definition 7.1].

Definition 1.3. A Riemannian metric on a connected foliated manifold .M;F / is called
ƒ2-enlargeable along F if given any � > 0, there exist a covering manifoldM� !M such that
eitherM� or F� (the lifted foliation of F inM�) is spin and a smooth map f� WM�! SdimM .1/

1) As a contrast, f contracts on one forms in [14].
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which is .�;ƒ2/-contracting along F� (with respect to the lifted metric), constant near infinity
and of non-zero degree.

Gromov and Lawson use the ƒ2-enlargeable metrics to define the ƒ2-enlargeable mani-
folds. We adapt their definition [8, Definition 6.4] to our situation as follows.

Definition 1.4. A connected (not necessarily compact) foliated manifold .M;F / is said
to be ƒ2-enlargeable along F if any Riemannian metric (not necessarily complete!) on M is
ƒ2-enlargeable along F .

As before, if F D TM , the above two definitions coincide with the usual definition of
the ƒ2-enlargeable metric or manifold.

In [8], Gromov and Lawson prove the following famous theorem about ƒ2-enlargeable
metrics. Recall that a function on a manifold is called uniformly positive if the infimum of this
function is strictly positive.

Theorem 1.5 (Gromov–Lawson, [8, Theorem 7.3]). No complete Riemannian metric
which is ƒ2-enlargeable can have uniformly positive scalar curvature.

By the same argument in the proof of Theorem 1.2, we can extend Theorem 1.5 as
follows.

Theorem 1.6. Let .M;F / be a foliated manifold. For any complete Riemannian metric
gTM on M which is ƒ2-enlargeable along F , kF , the leafwise scalar curvature of gTM

along F , cannot be uniformly positive.

If we further assume that M itself is ƒ2-enlargeable, Gromov and Lawson in [8] prove
the following famous theorem,which strengthens the result of Theorem 1.5 in the following
way.

Theorem 1.7 (Gromov–Lawson, [8, Theorem 6.12]). A manifold M which is ƒ2-en-
largeable, cannot carry a complete metric of positive scalar curvature.

The following result is a foliated extension of Theorem 1.7.

Theorem 1.8. Let .M;F / be a foliated manifold. If M is ƒ2-enlargeable along F ,
then M cannot carry a complete metric gTM satisfying that kF , the leafwise scalar curvature
of gTM along F , is positive everywhere.

Theorem 1.6 and Theorem 1.8 extend [2, Theorem 1.7] and [17, Theorem 0.2] to the
noncompact situation. We would like to mention that Benameur and Heitsch [3] have also
studied non-existence of positive scalar curvature metrics on noncompact foliated manifolds.

The rest of the paper is organized as follows. In Section 2, we prove Theorem 1.2 for the
even-dimensional case. In Section 3, we prove Theorem 1.2 for the odd-dimensional case. In
Section 4, we prove Theorem 1.6. In Section 5, we prove Theorem 1.8.
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2. Proof of Theorem 1.2: The even-dimensional case

In this section, we prove Theorem 1.2 for the even-dimensional case. In fact, we first
show this theorem under an additional assumption that f is constant near the infinity in Sec-
tions 2.1–2.4. We hope that in this case, the idea behind the proof is easier to understand. More
specifically, in Section 2.1, we recall the basic geometric setup. In Section 2.2, we review the
definition of the Connes fibration and explain how to lift the geometric data to the Connes
fibration. In Section 2.3, we study the deformed sub-Dirac operators on the Connes fibration.
In Section 2.4, we finish the proof of Theorem 1.2 for the even-dimensional case with the above
simplified assumption. In Section 2.5, we discuss the modifications needed for the general case.

2.1. The basic geometric setup. Let M be a noncompact even-dimensional Riemann-
ian manifold of dimension n carrying a complete Riemannian metric gTM and F an integrable
subbundle of the tangent bundle TM . Let Sn.1/ be the standard n-dimensional unit sphere
carrying its canonical metric. As explained in Introduction, we further assume that TM is spin.

We now assume that f WM ! Sn.1/ is a smooth map, which is area decreasing along F .
Except in the last subsection of this section, we also assume that f is constant near infinity2)

satisfying

deg.f / ¤ 0:(2.1)

Let df W TM ! TSn.1/ be the differential of f . The support of df is defined to be
Supp.df / D ¹x 2M W df .x/ ¤ 0º.

Let gF D gTM jF be the induced Euclidean metric on F . Let kF 2 C1.M/ be the
leafwise scalar curvature associated to gF (cf. [15, (0.1)]). To show Theorem 1.2, we argue by
contradiction. Assume that (1.2) does not hold, that is,

(2.2) inf.kF / � 0:

Let F? be the orthogonal complement to F , i.e., we have the orthogonal splitting

(2.3) TM D F ˚ F?; gTM D gF ˚ gF
?

:

Following [8, Theorem 1.17], we choose a fixed point x0 2M and let d WM ! RC be
a regularization of the distance function dist.x; x0/ such that

(2.4) jrd j.x/ �
3

2

for any x 2M .
Set

Bm D ¹x 2M W d.x/ � mº; m 2 N:

Since the Riemannian metric gTM is complete, Bm is compact.3)

Let K �M be a compact subset such that f is constant outside K, that is,

f .M nK/ D z0 2 S
n.1/:

2) That is, f is a constant map outside a compact subset of M .
3) In fact, if there is a smooth function l on M satisfying properties similar to d , that is, jrl j is bounded

and l�1..�1; m�/, m 2 N, is compact, by [6], M must be a complete manifold.
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Since K is compact, we can choose a sufficiently large m such that K � Bm. This implies

(2.5) Supp.df / � K � Bm:

Following [8], we take a compact hypersurface H3m �M n B3m, cutting M into two
parts such that the compact part, denoted by MH3m , contains B3m. Then MH3m is a compact
smooth manifold with boundary H3m.

To make the gluing process in due course easy to understand, we deform the metric
near H3m a little bit as follows. Let gTH3m be the induced metric on H3m. On the product
manifold H3m � Œ�1; 2�, we construct a metric as follows. Near the boundary H3m � ¹�1º
of H3m � Œ�1; 2�, that is, H3m � Œ�1;�1C "0/, by using the geodesic normal coordinate of
H3m �MH3m , we can identify H3m � Œ�1;�1C "0/ with a neighborhood of H3m, denoted
by U , in MH3m via a diffeomorphism �. Now, we require the metric on H3m � Œ�1;�1C "0/
to be the pull-back metric obtained from that of U by �. In the same way, we can construct
a metric near the boundary H3m � ¹2º of H3m � Œ�1; 2�, i.e., H3m � .2 � "00; 2�. Meanwhile,
on H3m � Œ0; 1�, we give the product metric constructed by gTH3m and the standard metric
on Œ0; 1�. Finally, the metric on H3m � Œ�1; 2� is a smooth extension of the metrics on the
above three pieces.

Let M 0H3m be another copy of MH3m with the same metric and the opposite orientation.
Let �0 be the diffeomorphism, the isometry actually, fromH3m � .2 � "

00; 2� to a neighborhood
of àM 0H3m ,U 0, inM 0H3m . On the disjoint union,M ıH3m tH3m � .�1; 2/ tM

0;ı
H3m

, we consider
the equivalent relation� given by x1 � x2 if and only if x1 2 U ı, x2 2 H3m � .�1;�1C "0/
(resp. x1 2 U 0;ı, x2 2 H3m � .2 � "00; 2/) and x1 D �.x2/ (resp. x1 D �0.x2/). As a set, we
define the gluing manifold yMH3m to be

yMH3m D .M
ı
H3m
tH3m � .�1; 2/ tM

0;ı
H3m

/=�;

endowed with the differentiable structure associated with the open cover

¹M ıH3m ;H3m � .�1; 2/;M
0;ı
H3m
º:

Moreover, since � and �0 are isometries with respect to the metrics on

¹M ıH3m ;H3m � .�1; 2/;M
0;ı
H3m
º;

yMH3m also inherits a metric from this open cover. From now on, we view MH3m , M 0H3m and
H3m � Œ�1; 2� as submanifolds of yMH3m .

Figure 2 helps to explain this gluing procedure.

2.2. The Connes fibration. By following [5, Section 5] (cf. [15, Section 2.1]), we let
� WM!M be the Connes fibration over M such that for any x 2M , Mx D �

�1.x/ is the
space of Euclidean metrics on the linear space TxM=Fx . Let T VM denote the vertical tangent
bundle of the fibration � WM!M . Then it carries a natural metric gT

VM such that any two
points p; q 2Mx with x 2M can be joined by a unique geodesic along Mx . Let dMx .p; q/

denote the length of this geodesic.
By using the Bott connection on TM=F (cf. [15, (1.2)]), which is leafwise flat, one lifts

F to an integrable subbundle F of TM. Then gF lifts to a Euclidean metric gF D ��gF

on F .
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H3m

B3m

H3m × [−1,−1 + ε′)

Product
metric region

H3m × [−1, 2]

Figure 2. Gluing three parts.

Let F ?1 � TM be a subbundle, which is transversal to F ˚ T VM, such that we have
a splitting TM D .F ˚ T VM/˚ F ?1 . Then F ?1 can be identified with TM=.F ˚ T VM/

and carries a canonically induced metric gF ?1 . We denote F ?2 to be T VM.
The metric gF

?

in (2.3) determines a canonical embedded section s WM ,!M. For any
p 2M, set

�.p/ D dM�.p/.p; s.�.p///:

For any ˇ; 
 > 0, following [15, (2.15)], let gTM
ˇ;


be the metric on TM defined by the
orthogonal splitting,

TM D F ˚ F ?1 ˚ F ?2 ; gTM
ˇ;
 D ˇ

2gF
˚
gF ?1


2
˚ gF ?2 :(2.6)

For any R > 0, let MR be the smooth manifold with boundary defined by

MR D ¹p 2M W �.p/ � Rº:

Set H3m D �
�1.H3m/ and

MH3m;R D .�
�1.MH3m// \MR; H3m;R D H3m \MR:

Consider another copy M0
H3m;R

of MH3m;R carrying the metric gTM03m;R defined by
equation (2.6) with ˇ D 
 D 1. We glue MH3m;R, M0

H3m;R
and H3m;R � Œ�1; 2� together

to get a manifold yMH3m;R as we have done for yMH3m . The difference is that yMH3m;R is
a smooth manifold with boundary. To write the boundary manifold explicitly, we note that the
boundary of MH3m;R consists of two smooth pieces of top dimension: one is H3m;R, another
is denoted by A. Note that

�.A/ DMH3m nH3m:

For M0
H3m;R

, we can find a similar boundary piece A0. Then à yMH3m;R is the closed manifold
glued together by A, A0 and àH3m;R � Œ�1; 2�. Without loss of generality, we assume that
yMH3m;R is oriented.

Figure 3 is a heuristic illustration about the different pieces of àMH3m;R and how to glue
three truncated Connes fibrations together.

Let gTH3m;R be the induced metric on H3m;R by equation (2.6) with ˇ D 
 D 1 and let
dt2 be the standard metric on Œ0; 1�. By the construction of yMH3m;R, we can define a smooth
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Figure 3. Gluing the truncated Connes fibration.

metric gT
yMH3m;R on yMH3m;R in the following way:

gT
yMH3m;R jMH3m;R

D g
TM3m;R

ˇ;

;(2.7)

gT
yMH3m;R jM0

H3m;R
D gTM03m;R ;

gT
yMH3m;R jH3m;R�Œ0;1� D g

TH3m;R ˚ dt2;

and then paste these metrics together.4)

Let à yMH3m;R bound another oriented manifold N3m;R so that

zN3m;R D
yMH3m;R [N3m;R

is an oriented closed manifold. Let gT zN3m;R be a smooth metric on T zN3m;R so that

gT
zN3m;R j yMH3m;R

D gT
yMH3m;R :

The existence of gT zN3m;R is clear.
We extend f WMH3m ! Sn.1/ to f W yMH3m ! Sn.1/ by setting

f ..H3m � Œ�1; 2�/ [M
0
H3m

/ D z0:

Let yf3m;R W yMH3m;R ! Sn.1/ be the smooth map defined by

yf3m;R D f ı � on MH3m;R

and yf3m;R..H3m;R � Œ�1; 2�/ [M0
H3m;R

/ D z0.
Let S.TSn.1// D SC.TSn.1//˚ S�.TSn.1// be the spinor bundle of Sn.1/. Follow-

ing [16, (2.6)], we construct a suitable bundle endomorphism V of S.TSn.1//. More precisely,
by taking any regular value q 2 Sn.1/ n f .M nK/ of f , we choose X to be a smooth vector
field on Sn.1/ such that jX j > 0 on Sn.1/ n ¹qº. Let

v D c.X/ W SC.TS
n.1//! S�.TS

n.1//

4) We would like to point out that on yMH3m;R, the metric on H3m;R � Œ�1; 0� also depends on ˇ; 
 .
However, since we do not use the property of the metric on this part for the rest of the paper, we do not write it
down explicitly.
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be the Clifford action of X and

v� W S�.TS
n.1//! SC.TS

n.1//

be the adjoint of v with respect to the Hermitian metrics on S˙.TSn.1//. We define V to be
the self-adjoint odd endomorphism

V D v C v� W S.TSn.1//! S.TSn.1//:

Then there exists ı > 0 such that

(2.8)
�
yf �3m;RV

�2
� ı on yMH3m;R n �

�1
�
Supp.df /

�
:

Let �
E3m;R;˙; g

E3m;R;˙ ;rE3m;R;˙
�
D yf �3m;R

�
S˙.TS

n.1//; gS˙.TS
n.1//;rS˙.TS

n.1//
�

be the induced Hermitian vector bundle with the Hermitian connection on yMH3m;R. Then
E3m;R D E3m;R;C ˚ E3m;R;� is a Z2-graded Hermitian vector bundle over yMH3m;R.

2.3. Adiabatic limits and deformed sub-Dirac operators on yMH3m;R. Recall that
we have assumed that TM is oriented and spin. Thus F ˚ F ?1 D �

�.TM/ is spin. Without
loss of generality, as in [15, pp. 1062–1063], we can assume further that F is oriented and
rk.F?/ is divisible by 4. Then F? is also oriented and dim M is even.

It is clear that F ˚ F ?1 ;F
?
2 over MH3m;R can be extended to�
H3m;R � Œ�1; 2�

�
[M0H3m;R

such that we have the orthogonal splitting5)

T yMH3m;R D .F ˚ F ?1 /˚ F ?2 on yMH3m;R:

Let Sˇ;
 .F ˚ F ?1 / denote the spinor bundle over yMH3m;R with respect to the metric
gT
yMH3m;R jF˚F ?1

(thus with respect to ˇ2gF ˚ gF ?1 =
2 on MH3m;R). Let ƒ�.F ?2 / be the
exterior algebra bundle of F

?;�
2 , with the Z2-grading given by the natural even/odd parity.

Let

DF˚F ?1 ;ˇ;

W �
�
Sˇ;
 .F ˚ F ?1 / y̋ ƒ

�.F ?2 /
�
! �

�
Sˇ;
 .F ˚ F ?1 / y̋ ƒ

�.F ?2 /
�

be the sub-Dirac operator on yMH3m;R constructed as in [15, (2.16)]. It is clear that one can
define canonically the twisted sub-Dirac operator (twisted by E3m;R) on yMH3m;R,

D
E3m;R

F˚F ?1 ;ˇ;

W �
�
Sˇ;
 .F ˚ F ?1 / y̋ ƒ

�.F ?2 / y̋ E3m;R
�

(2.9)

! �
�
Sˇ;
 .F ˚ F ?1 / y̋ ƒ

�.F ?2 / y̋ E3m;R
�
:

Let zf W Œ0; 1�! Œ0; 1� be a smooth function such that zf .t/ D 0 for 0 � t � 1
4

, while
zf .t/ D 1 for 1

2
� t � 1. Let h W Œ0; 1�! Œ0; 1� be a smooth function such that h.t/ D 1 for

0 � t � 3
4

, while h.t/ D 0 for 7
8
� t � 1.

5) F restricted to .H3m;R � Œ�1; 2�/ [M0
H3m;R

needs no longer to be integrable.
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For any p 2MH3m;R, we connect p and s.�.p// by the unique geodesic in M�.p/. Let
�.p/ 2 F ?2 jp denote the unit vector tangent to this geodesic. Then

(2.10) z� D zf

�
�

R

�
�

is a smooth section of F ?2 jMH3m;R
. It extends to a smooth section of F ?2 j yMH3m;R

, which we
still denote by z� . It is easy to see that we may and we will assume that z� is transversal to
(and thus nowhere zero on) à yMH3m;R.

The Clifford action yc.z�/ (cf. [15, (1.47)]) now acts on

Sˇ;
 .F ˚ F ?1 / y̋ ƒ
�.F ?2 / y̋ E3m;R

over yMH3m;R.
For " > 0, we introduce the following deformation of DE3m;R

F˚F ?1 ;ˇ;

on yMH3m;R which

put the deformations in [15, (2.21)] and [17, (1.11)] together,

(2.11) D
E3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ
:

For this deformed sub-Dirac operator, we have the following analog of [15, Lemma 2.4].

Lemma 2.1. There exist c0 > 0, " > 0, m > 0 and R > 0 such that when ˇ; 
 > 0 are
small enough (which may depend on m and R),

(i) for any section s 2 �.Sˇ;
 .F ˚ F ?1 / y̋ ƒ
�.F ?2 / y̋ E3m;R/ supported in the interior of

yMH3m;R, one has6)



�DE3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
s





 � c0

ˇ
ksk;(2.12)

(ii) for any section s 2 �.Sˇ;
 .F ˚ F ?1 / y̋ ƒ
�.F ?2 / y̋ E3m;R/ supported in the interior of

MH3m;R nMH3m;
R
2

, one has



�h� �R
�
D

E3m;R

F˚F ?1 ;ˇ;

h

�
�

R

�
C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
s





 � c0

ˇ
ksk:(2.13)

Proof. Following [8, Theorem 1.17], let � W Œ0;1/! Œ0; 1� be a smooth function such
that � � 1 on Œ0; 1�, � � 0 on Œ2;1/ and �0 � �1 on Œ1; 2�. We define a smooth function
 m WMH3m ! Œ0; 1� by

 m.x/ D �

�
d.x/

m

�
;

where m 2 N. We extend  m to .H3m � Œ�1; 2�/ [M 0H3m by setting

 m
�
.H3m � Œ�1; 2�/ [M

0
H3m

�
D 0:

Following [4, p. 115], let  m;1;  m;2 W yMH3m ! Œ0; 1� be defined by

(2.14)  m;1 D
 m

. 2m C .1 �  m/
2/
1
2

;  m;2 D
1 �  m

. 2m C .1 �  m/
2/
1
2

:

6) The norms below depend on ˇ and 
 . In case of no confusion, we omit the subscripts for simplicity.
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Using the above definition and (2.4), for i D 1; 2, we have

(2.15) jr m;i j.x/ �
C

m
for any x 2 yMH3m ;

where C is a constant independent of gTM .
We lift  m;  m;1;  m;2 to yMH3m;R and denote them by 'm; 'm;1; 'm;2, respectively. By

definition, we have following properties about 'm;1 and 'm;2:

'm;1 D 1 if x 2 ��1.Bm/; 'm;1 D 0 if x 2 yMH3m;R n �
�1.B2m/;(2.16)

'm;2 D 0 if x 2 ��1.Bm/; 'm;2 D 1 if x 2 yMH3m;R n �
�1.B2m/:

We first show part (i) of Lemma 2.1, i.e., (2.12).
For any s 2 �.Sˇ;
 .F ˚F ?1 / y̋ƒ

�.F ?2 / y̋ E3m;R/ supported in the interior of yMH3m;R,
by (2.14), one has



�DE3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
s





2
D





'm;1�DE3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
s





2
C





'm;2�DE3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
s





2;
from which one gets

p
2





�DE3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
s





(2.17)

�





'm;1�DE3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
s






C





'm;2�DE3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
s






�





�DE3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
.'m;1s/






C





�DE3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
.'m;2s/






� kcˇ;
 .d'm;1/sk � kcˇ;
 .d'm;2/sk;

where for each i 2 ¹1; 2º, we identify d'm;i with the gradient of 'm;i and cˇ;
 . � / means with
respect to the metric (2.6).

We are going to estimate the right-hand side of (2.17) term by term. We begin with
a pointwise estimate of cˇ;
 .d'm;i /s, i D 1; 2. By (2.16), we only need to do it on MH3m;R.

Here, as well as at several places in the following, we need to choose a local orthonormal
frame for TMH3m;R. Hence, we explain here our choice of this frame once and for all. Let
rk.F / D rk.F / D q, rk.F ?1 / D q1 and rk.F ?2 / D q2. Since on MH3m;R, gF D ��gF , for
a local orthonormal basis ¹f1; : : : ; fqº of .F ; gF /, we can choose it to be lifted from a local
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orthonormal basis of .F; gF /. Moreover, we choose h1; : : : ; hq1 (resp. e1; : : : ; eq2) to be a local
orthonormal basis of .F ?1 ; g

F ?1 / (resp. .F ?2 ; g
F ?2 /). Then

(2.18) ¹f1; : : : ; fq; h1; : : : ; hq1 ; e1; : : : ; eq2º

is a local orthonormal frame for TMH3m;R.
Back to the estimate of cˇ;
 .d'm;i /s, i D 1; 2. Using the local frame (2.18), by (2.15)

and the fact that
'm;i D  m;i ı �; i D 1; 2;

we have for any 1 � k � q that

jfk.'m;i /j.x/ D O

�
1

m

�
for any x 2MH3m;R

and for any 1 � j � q2 that

ej .'m;i / D 0:

Therefore, by the properties of the Clifford action, for any x 2MH3m;R, we have

jcˇ;
 .d'm;i /sj.x/ �
qX
kD1

�
jˇ�1fk.'m;i /j � jcˇ;
 .ˇ

�1fk/sj
�
.x/(2.19)

C

q1X
lD1

�
j
hl.'m;i /j � jcˇ;
 .
hl/sj

�
.x/

D

�
O

�
1

ˇm

�
COm;R.
/

�
jsj.x/;

where the subscripts in Om;R. � / mean that the estimating constant may depend on m and R.
For the first two terms on the right-hand side of (2.17), by a direct computation, we have�

D
E3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�2
(2.20)

D

�
D

E3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ

�2
C

�
D

E3m;R

F˚F ?1 ;ˇ;

;
" yf �3m;RV

ˇ

�
C
"2. yf �3m;RV /

2

ˇ2
:

Of the three terms on the right-hand side of the above equality, we can control the last term
relatively easily.

Now we will deal with the second term on the right-hand side of the above equality.
By [15, (2.17)], using the local frame (2.18), one has�

D
E3m;R

F˚F ?1 ;ˇ;

;
" yf �3m;RV

ˇ

�
D

qX
iD1

ˇ�1cˇ;
 .ˇ
�1fi /

�
r

E3m;R
fi

;
" yf �3m;RV

ˇ

�
(2.21)

C

q1X
sD1


cˇ;
 .
hs/

�
r

E3m;R
hs

;
" yf �3m;RV

ˇ

�

C

q2X
jD1

cˇ;
 .ej /

�
r

E3m;R
ej ;

" yf �3m;RV

ˇ

�
:
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Since rE3m;R (resp. yf �3m;RV ) is a pull-back connection (resp. bundle endomorphism)
via � , we have �

r
E3m;R
ej ; yf �3m;RV

�
D 0;(2.22) �

r
E3m;R
fi

; yf �3m;RV
�
D O.1/;�

r
E3m;R
hs

; yf �3m;RV
�
D OR.1/:

Putting (2.21) and (2.22) together, one has�
D

E3m;R

F˚F ?1 ;ˇ;

;
" yf �3m;RV

ˇ

�
D O

�
"

ˇ2

�
COR

�
"


ˇ

�
on ��1.Supp.df //:(2.23)

Meanwhile, since f �V is a constant endomorphism outside the support of df , we know�
D

E3m;R

F˚F ?1 ;ˇ;

;
" yf �3m;RV

ˇ

�
D 0 on yMH3m;R n �

�1.Supp.df //:(2.24)

The first term on the right-hand side of (2.20) is nonnegative. But for our purpose, such
an estimate is not enough. We need analyze it more precisely, especially on MH3m;R. In fact,
using the local frame (2.18), by [15, (2.24) and (2.28)] (see also [14, (1.13)]), on MH3m;R, we
have �

D
E3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ

�2
(2.25)

D
�
D

E3m;R

F˚F ?1 ;ˇ;


�2
C

�
D

E3m;R

F˚F ?1 ;ˇ;

;
yc.z�/

ˇ

�
C
jz� j2

ˇ2

D ��E3m;R;ˇ;
 C
kF

4ˇ2

C

qX
i;jD1

1

2ˇ2
RE3m;R.fi ; fj /cˇ;
 .ˇ

�1fi /cˇ;
 .ˇ
�1fj /

C

�
D

E3m;R

F˚F ?1 ;ˇ;

;
yc.z�/

ˇ

�
C
jz� j2

ˇ2
COm;R

�
1

ˇ
C

2

ˇ2

�
;

where ��E3m;R;ˇ;
 � 0 is the corresponding Bochner Laplacian, kF D ��.kF / and

RE3m;R D .rE3m;R;C/2 C .rE3m;R;�/2:

The benefits of (2.25) is that each term on the right-hand side of it can be controlled in
a certain way. More concretely, since f is area decreasing along F , by [13, (2.6)] which goes
back to [12], we have�

1

2ˇ2

qX
i;jD1

RE3m;R.fi ; fj /cˇ;
 .ˇ
�1fi /cˇ;
 .ˇ

�1fj /s; s

�
��1.Supp.df //

(2.26)

� �
q.q � 1/

4ˇ2
ksk2

��1.Supp.df //;

where . � ; � /��1.Supp.df // and k � k��1.Supp.df // mean the integration on ��1.Supp.df //.
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By (1.1), there exists � > 0 such that

kF
� q.q � 1/ � � on ��1.Supp.df //:(2.27)

And by [15, Lemma 2.1], on MH3m;R n s.MH3m/, we have�
D

E3m;R

F˚F ?1 ;ˇ;

;
yc.z�/

ˇ

�
D Om

�
1

ˇ2R

�
COm;R

�
1

ˇ

�
:(2.28)

Now we can estimate the first term on right-hand side of (2.17). As a first step, using
(2.20) and (2.25), since the terms involving the Bochner Laplacian and jz� j are nonnegative,
we have 



�DE3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
.'m;1s/





2(2.29)

�

�
kF

4ˇ2
'm;1s; 'm;1s

�
C

 
qX

i;jD1

1

2ˇ2
RE3m;R.fi ; fj /cˇ;
 .ˇ

�1fi /cˇ;
 .ˇ
�1fj /'m;1s; 'm;1s

!

C

��
D

E3m;R

F˚F ?1 ;ˇ;

;
yc.z�/

ˇ

�
'm;1s; 'm;1s

�
C

��
D

E3m;R

F˚F ?1 ;ˇ;

;
" yf �3m;RV

ˇ

�
'm;1s; 'm;1s

�
C

�
"2. yf �3m;RV /

2

ˇ2
'm;1s; 'm;1s

�
C

�
Om;R

�
1

ˇ
C

2

ˇ2

�
'm;1s; 'm;1s

�
D IC II;

where we need to explain the meaning of symbols I; II appearing on the rightmost. Note that
every term on the right-hand side of the above inequality can be written as the sum of two
parts: the integral on ��1.Supp.df // and the integral on ��1.B2m n Supp.df //. We denote
the sum of all the integrals on ��1.Supp.df // (resp. ��1.B2m n Supp.df //) by the symbol I
(resp. II).

By (2.5) and (2.16), we have 'm;1s D s on ��1.Supp.df //. Therefore, by (2.23), (2.26),
(2.27), (2.28) and proceeding as in [15, pp. 1058–1059], one has

I �
�

4ˇ2
ksk2

��1.Supp.df // CO

�
"

ˇ2

�
ksk2

��1.Supp.df //(2.30)

COR

�
"


ˇ

�
ksk2

��1.Supp.df // CO

�
1

ˇ2
R

�
ksk2

��1.Supp.df //

COm;R

�
1

ˇ
C

2

ˇ2

�
ksk2

��1.Supp.df //

D
�

8ˇ2
ksk2

��1.Supp.df // C

�
�

8ˇ2
ksk2

��1.Supp.df //

CO

�
"

ˇ2

�
ksk2

��1.Supp.df //

�
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COR

�
"


ˇ

�
ksk2

��1.Supp.df // CO

�
1

ˇ2R

�
ksk2

��1.Supp.df //

COm;R

�
1

ˇ
C

2

ˇ2

�
ksk2

��1.Supp.df //

�
�

8ˇ2
ksk2

��1.Supp.df // COR

�
"


ˇ

�
ksk2

��1.Supp.df //

CO

�
1

ˇ2R

�
ksk2

��1.Supp.df // COm;R

�
1

ˇ
C

2

ˇ2

�
ksk2

��1.Supp.df //;

where for the last inequality, we have chosen small enough " > 0 such that

�

8ˇ2
ksk2

��1.Supp.df // CO

�
"

ˇ2

�
ksk2

��1.Supp.df // � 0:

By (2.8), on yMH3m;R n �
�1.Supp.df //, one has

. yf �3m;RV /
2
� ı:(2.31)

Recall that on M , we have assumed that kF is nonnegative, i.e., (2.2). As a result,
inf.kF / � 0 holds on ��1.B2m n Supp.df //. Moreover, on ��1.B2m n Supp.df // we have
RE3m;R D 0. Therefore, from (2.24), (2.28), (2.31) and proceeding as in [15, pp. 1058–1059],
we obtain

II �
ı"2

ˇ2
k'm;1sk

2
��1.B2mnSupp.df // COm;R

�
1

ˇ

�
k'm;1sk

2
��1.B2mnSupp.df //(2.32)

COm;R

�

2

ˇ2

�
k'm;1sk

2
��1.B2mnSupp.df //

COm

�
1

ˇ2R

�
k'm;1sk

2
��1.B2mnSupp.df //:

For the second term on the right-hand side of (2.17), by (2.5), (2.16), (2.20), (2.24) and
(2.31), one has 



�DE3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
.'m;2s/





2(2.33)

D





�DE3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ

�
.'m;2s/





2 C 



" yf �3m;RVˇ
.'m;2s/





2
�
ı"2

ˇ2
k'm;2sk

2:

From (2.29), (2.30), (2.32) and (2.33), one has
2X

jD1




�DE3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
.'m;j s/




2(2.34)

� min
²
�

8
; ı"2

³
ksk2

ˇ2
COR

�
"


ˇ

�
ksk2

��1.Supp.df //

COm;R

�

2

ˇ2

�
k'm;1sk

2
COm;R

�
1

ˇ

�
k'm;1sk

2

COm

�
1

ˇ2R

�
k'm;1sk

2:
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From (2.17), (2.19) and (2.34), by taking m sufficiently large and then taking R suf-
ficiently large, one finds that there exist c0 > 0, " > 0, m > 0 and R > 0 such that when
ˇ > 0; 
 > 0 are small enough (2.12) holds, i.e., part (i) of the lemma.

The strategy to prove part (ii) of the lemma is similar to that of part (i). For any smooth
section s in question, one has as in (2.17) that

p
2





�h� �R
�
D

E3m;R

F˚F ?1 ;ˇ;

h

�
�

R

�
C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
s





(2.35)

�





�h� �R
�
D

E3m;R

F˚F ?1 ;ˇ;

h

�
�

R

�
C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
.'m;1s/






C





�h� �R
�
D

E3m;R

F˚F ?1 ;ˇ;

h

�
�

R

�
C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
.'m;2s/






� kcˇ;
 .d'm;1/sk � kcˇ;
 .d'm;2/sk:

By a direct calculation (comparing with [15, (2.29)]),�
h

�
�

R

�
D

E3m;R

F˚F ?1 ;ˇ;

h

�
�

R

�
C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�2
(2.36)

D

�
h

�
�

R

�
D

E3m;R

F˚F ?1 ;ˇ;

h

�
�

R

�
C
yc.z�/

ˇ

�2
C h

�
�

R

�2�
D

E3m;R

F˚F ?1 ;ˇ;

;
" yf �3m;RV

ˇ

�
C
"2. yf �3m;RV /

2

ˇ2

D

�
h

�
�

R

�
D

E3m;R

F˚F ?1 ;ˇ;

h

�
�

R

��2
C
h. �
R
/2

ˇ

�
D

E3m;R

F˚F ?1 ;ˇ;

; yc.z�/

�
C
jz� j2

ˇ2

C
h
� �
R

�2
ˇ

�
D

E3m;R

F˚F ?1 ;ˇ;

; " yf �3m;RV

�
C
"2. yf �3m;RV /

2

ˇ2
:

We estimate the second term on the right-hand side of (2.35) first. By (2.5), (2.16), (2.24),
(2.31) and the first equality in (2.36), one has
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D
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h

�
�

R

�
C
yc.z�/

ˇ
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2
(2.37)
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�
�

R

�
C
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ˇ

�
.'m;2s/





2 C 



" yf �3m;RVˇ
.'m;2s/





2
�
"2ı

ˇ2





'm;2s



2:
To estimate the first term on the right-hand side of (2.35), we use the following fact. By

the definition of z� , since now

Supp .s/ �MH3m;R nMH3m;
R
2
;

we have by (2.10) �
jz� j2

ˇ2
'm;1s; 'm;1s

�
�

1

ˇ2
k'm;1sk

2:(2.38)
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From (2.23), (2.24), (2.28), (2.38) and the second equality in (2.36), one gets
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F˚F ?1 ;ˇ;

h

�
�

R

�
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yc.z�/

ˇ
C
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2(2.39)

�

�
jz� j2

ˇ2
'm;1s; 'm;1s

�
C

�
h. �
R
/2

ˇ

�
D

E3m;R

F˚F ?1 ;ˇ;

; yc.z�/

�
'm;1s; 'm;1s

�
C

�
h. �
R
/2

ˇ

�
D

E3m;R

F˚F ?1 ;ˇ;

; " yf �3m;RV

�
'm;1s; 'm;1s

�
�

1

ˇ2
k'm;1sk

2
C

�
Om

�
1

ˇ2R

�
COm;R

�
1

ˇ

��
k'm;1sk

2

C

�
O

�
"

ˇ2

�
COR

�
"


ˇ

��
k'm;1sk

2
��1.Supp.df //

D
1

2ˇ2
k'm;1sk

2
C

�
Om

�
1

ˇ2R

�
COm;R

�
1

ˇ

��
k'm;1sk

2

C

�
1

2ˇ2
k'm;1sk

2
CO

�
"

ˇ2

�
k'm;1sk

2
��1.Supp.df //

�
COR

�
"


ˇ

�
k'm;1sk

2
��1.Supp.df //

�
1

2ˇ2
k'm;1sk

2
C

�
Om

�
1

ˇ2R

�
COm;R

�
1

ˇ

��
k'm;1sk

2

COR

�
"


ˇ

�
k'm;1sk

2
��1.Supp.df //;

where for the last inequality, we have chosen small enough " > 0 such that

1

2ˇ2
k'm;1sk

2
CO

�
"

ˇ2

�
k'm;1sk

2
��1.Supp.df // � 0:

From (2.37) and (2.39), one gets

2X
jD1





�h� �R
�
D

E3m;R

F˚F ?1 ;ˇ;

h

�
�

R

�
C
yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
.'m;j s/





2(2.40)

� min¹1; "2ıº
ksk2

2ˇ2
C

�
Om

�
1

ˇ2R

�
COm;R

�
1

ˇ

��
k'm;1sk

2

COR

�
"


ˇ

�
k'm;1sk

2
��1.Supp.df //:

From (2.19), (2.35) and (2.40), by taking m sufficiently large and then taking R suf-
ficiently large, one finds that there exist c0 > 0, " > 0, m > 0 and R > 0 such that when
ˇ > 0; 
 > 0 are small enough (2.13) holds, i.e., part (ii) of the lemma.

2.4. Elliptic operators on zN3m;R. Let Q be a Hermitian vector bundle over yMH3m;R

such that .Sˇ;
 .F ˚ F ?1 / y̋ ƒ
�.F ?2 / y̋ Em;R/�˚Q is a trivial vector bundle over yMH3m;R.

Then, under the identification
yc.z�/C yf �3m;Rv C IdQ;

.Sˇ;
 .F ˚ F ?1 / y̋ ƒ
�.F ?2 / y̋ Em;R/C ˚Q is a trivial vector bundle near à yMH3m;R.
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By obviously extending the above trivial vector bundles to zN3m;R, we get a Z2-graded
Hermitian vector bundle � D �C ˚ �� over zN3m;R and an odd self-adjoint endomorphism
W D w C w� 2 �.End.�// (with w W �.�C/! �.��/, w� being the adjoint of w) such that

�˙ D
�
Sˇ;
 .F ˚ F ?1 / y̋ ƒ

�.F ?2 / y̋ Em;R
�
˙
˚Q

over yMH3m;R, W is invertible on N3m;R and

(2.41) W D yc.z�/C yf �3m;RV C

 
0 IdQ

IdQ 0

!
on yMH3m;R, which is invertible on yMH3m;R nMH3m;R=2.

Recall that h.�=R/ vanishes near MH3m;R \ àMR. We extend it to a function on zN3m;R

which equals zero on N3m;R and an open neighborhood of à yMH3m;R in zN3m;R, and we denote
the resulting function on zN3m;R by zhR.

Let � zN3m;R W T
zN3m;R !

zN3m;R be the projection of the tangent bundle of zN3m;R. Let



zN3m;R 2 Hom.��

zN3m;R
�C; �

�
zN3m;R

��/

be the symbol defined for p 2 zN3m;R and u 2 Tp zN3m;R by

(2.42) 

zN3m;R.p; u/ D ��

zN3m;R

�p
�1zh2Rcˇ;
 .u/C w.p/

�
:

By (2.41) and (2.42), 
 zN3m;R is singular only if u D 0 and p 2MH3m;R=2. Thus 
 zN3m;R is an
elliptic symbol.

On the other hand, it is clear that zhRD
E3m;R

F˚F ?1 ;ˇ;

zhR is well defined on zN3m;R if we

define it to equal to zero on zN3m;R n
yMH3m;R.

Let A W L2.�/! L2.�/ be a second order positive elliptic differential operator on zNm;R

preserving the Z2-grading of � D �C˚ �� such that its symbol equals j�j2 at � 2 T zN3m;R.7)

As in [15, (2.33)], let
P

E3m;R
R;ˇ;


W L2.�/! L2.�/

be the zeroth order pseudodifferential operator on zN3m;R defined by

(2.43) P
E3m;R
R;ˇ;


D A�
1
4 zhRD

E3m;R

F˚F ?1 ;ˇ;

zhRA

� 1
4 C

W

ˇ
:

Let
P

E3m;R
R;ˇ;
;C

W L2.�C/! L2.��/

be the obvious restriction. Then the principal symbol of P E3m;R
R;ˇ;
;C

, which we will denote by

.P

E3m;R
R;ˇ;
;C

/, is homotopic through elliptic symbols to 
 zN3m;R . Thus P E3m;R
R;ˇ;
;C

is a Fredholm
operator. Moreover, by the Atiyah–Singer index theorem [1] (cf. [9, Proposition III.13.8]), we
can calculate the index of P E3m;R

R;ˇ;
;C
as follows:

ind
�
P

E3m;R
R;ˇ;
;C

�
D ind

�


�
P

E3m;R
R;ˇ;
;C

��
D ind

�


zN3m;R

�
(2.44)

D
˝
yA.TM/f �

�
ch.SC.TSn.1/// � ch.S�.TSn.1///

�
; ŒM �

˛
D deg.f /

˝
ch.SC.TSn.1/// � ch.S�.TSn.1///; ŒSn.1/�

˛
D .�1/

n
2 deg.f /�.Sn.1// D 2.�1/

n
2 deg.f / ¤ 0:

7) To be more precise, here A also depends on the defining metric. We omit the corresponding subscript/
superscript only for convenience.
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In (2.44), for the fourth equality, we use the fact that ch.SC.TSn.1/// � ch.S�.TSn.1///
has only the top degree; for the fifth equality, we use [9, Proposition III.11.24]; and the last
inequality comes from (2.1).

For any 0 � t � 1, set

(2.45) P
E3m;R
R;ˇ;
;C

.t/ D P
E3m;R
R;ˇ;
;C

C
.t � 1/w

ˇ
C A�

1
4
.1 � t /w

ˇ
A�

1
4 :

Then P E3m;R
R;ˇ;
;C

.t/ is a smooth family of zeroth order pseudodifferential operators such that the
corresponding symbol 
.P E3m;R

R;ˇ;
;C
.t// is elliptic for 0 < t � 1. Thus P E3m;R

R;ˇ;
;C
.t/ is a continu-

ous family of Fredholm operators for 0 < t � 1 with

P
E3m;R
R;ˇ;
;C

.1/ D P
E3m;R
R;ˇ;
;C

:

Now since P E3m;R
R;ˇ;
;C

.t/ is continuous on the whole Œ0; 1�, if P E3m;R
R;ˇ;
;C

.0/ is Fredholm and
has vanishing index, we would reach a contradiction with respect to equation (2.44), and then
complete the proof of Theorem 1.2.

Thus we need only to prove the following analog of [15, Proposition 2.5].

Proposition 2.2. There exist ";m;R; ˇ; 
 > 0 such that the following identity holds:

dim
�
ker
�
P

E3m;R
R;ˇ;
;C

.0/
��
D dim

�
ker
�
P

E3m;R
R;ˇ;
;C

.0/�
��
D 0:

Proof. Let P E3m;R
R;ˇ;


.0/ W L2.�/! L2.�/ be given by

(2.46) P
E3m;R
R;ˇ;


.0/ D A�
1
4 zhRD

E3m;R

F˚F ?1 ;ˇ;

zhRA

� 1
4 C A�

1
4
W

ˇ
A�

1
4 :

Since P E3m;R
R;ˇ;


.0/ is formally self-adjoint, by (2.43) and (2.45), we need only to show that

dim
�
ker
�
P

E3m;R
R;ˇ;


.0/
��
D 0

for certain ";m;R; ˇ; 
 > 0.
Let s 2 ker.P E3m;R

R;ˇ;

.0//. By (2.46), one has

(2.47)
�
zhRD

E3m;R

F˚F ?1 ;ˇ;

zhR C

W

ˇ

�
A�

1
4 s D 0:

Since zhR D 0 on zN3m;R n
yMH3m;R, while W is invertible on zN3m;R n

yMH3m;R, by (2.47),
one has

A�
1
4 s D 0 on zN3m;R n

yMH3m;R:

Write on yMH3m;R that

(2.48) A�
1
4 s D s1 C s2;

with s1 2 L2.Sˇ;
 .F ˚ F ?1 / y̋ ƒ
�.F ?2 / y̋ E3m;R/ and s2 2 L2.Q˚Q/. By (2.41), (2.47)

and (2.48), one has
s2 D 0;

while

(2.49)
�
zhRD

E3m;R

F˚F ?1 ;ˇ;

zhR C

yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
s1 D 0:
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We need to show that (2.49) implies s1 D 0. As in (2.35), one has

p
2





�zhRDE3m;R

F˚F ?1 ;ˇ;

zhR C

yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
s1





(2.50)

�





�zhRDE3m;R

F˚F ?1 ;ˇ;

zhR C

yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
.'m;1s1/






C





�zhRDE3m;R

F˚F ?1 ;ˇ;

zhR C

yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
.'m;2s1/






� kcˇ;
 .d'm;1/s1k � kcˇ;
 .d'm;2/s1k:

By proceeding as in the proof of (2.33), one gets

(2.51)




�zhRDE3m;R

F˚F ?1 ;ˇ;

zhR C

yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
.'m;2s1/





2 � "2ı

ˇ2
k'm;2s1k

2:

On the other hand, we can use Lemma 2.1 and proceed as in [15, p. 1062]. Especially, we need
to choose the parameters in the following way. Firstly, we fix a small enough " > 0. Then we
choose m > 0 sufficiently large. The next step is taking R > 0 sufficiently large. Finally, we
choose a small enough 
 . With these parameters fixed, we can find a constant c1 > 0 such that
for any ˇ sufficiently small, the following inequality holds:



�zhRDE3m;R

F˚F ?1 ;ˇ;

zhR C

yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
.'m;1s1/





 � c1

ˇ
k'm;1s1k:(2.52)

From (2.19) and (2.50)–(2.52), by using the same order to choose parameters as in (2.52), one
finds that there exist c2 > 0, " > 0, m > 0, R > 0 and 
 > 0 such that when ˇ are sufficiently
small, one has 



�zhRDE3m;R

F˚F ?1 ;ˇ;

zhR C

yc.z�/

ˇ
C
" yf �3m;RV

ˇ

�
s1





 � c2

ˇ
ks1k;

which implies, via (2.49), s1 D 0.

2.5. The general case. Till now, we only deal with the case that f is constant near
infinity. To handle the general case that f is locally constant near infinity as stated in Theo-
rem 1.2, we need some modification for the proof. Note that the most arguments in Section 2.4
are independent of whether f is constant or locally constant near infinity. Therefore, what we
need to do mainly is to establish Lemma 2.1 in this general case.

We use the same notation in this subsection as in Section 2.1. But, now, outside the
compact subsetK �M , f is locally constant. Note that the number of connected components
of M nMH3m is finite at most. Let ¹YkºlkD1 be the connected components of M nMH3m .
Assume f .Yk/ D pk 2 Sn.1/, k D 1; : : : ; l .

Since outside K, f may take several values now, we need to modify the construction of
the endomorphism V (or v) a little. Due to deg.f / ¤ 0, f is a surjective map. Thus, we can
choose a regular value p ¤ p1; : : : ; pl of f . Now, we can choose

v D c.X/ W SC.TS
n.1//! S�.TS

n.1//;

where X is a smooth vector field such that jX j > 0 on Sn.1/ n ¹pº. Then v is invertible over
Sn.1/ n ¹pº and define V D v C v� as before.
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The main difficulty about this general case is how to extend f from MH3m to yMH3m .
To deal with this problem, we choose a point p0 2 Sn.1/ n ¹pº and for k D 1; : : : ; l , pick
a curve �k.�/; � 2 Œ0; 1�, connecting pk and p0 such that �k.�/ \ ¹pº D ;, � 2 Œ0; 1�. Then,
for .y; �/ 2 H3m � Œ�1; 2�, k D 1; : : : ; l , we define

f .y; �/ D

8̂<̂
:
pk; .y; �/ 2 .Yk \H3m/ � Œ�1; 0�;

�k.�/; .y; �/ 2 .Yk \H3m/ � Œ0; 1�;

p0; .y; �/ 2 .Yk \H3m/ � Œ1; 2�:

Note that some points of ¹pkºlkD1 may coincide.
Recall that H3m � Œ�1;�1 C "0/ can be identified with a neighborhood U of H3m

in MH3m . Under such an identification, the above f .y; �/ coincides with f on U . Thus, f
can be extended to a map on MH3m [ .H3m � Œ�1; 2�/ via f .y; �/ and furthermore, such
an extended map can be extended to yMH3m by setting f .M 0H3m/ D p0. Denote such a map
on yMH3m by fl . We will use fl to substitute the role played by f in Sections 2.2 and 2.3.
Especially, we note that fl has the following properties8):

Supp.dfl/ � Supp.df / [ .H3m � Œ0; 1�/; deg.fl/ D deg.f / ¤ 0;

and there exists ı > 0 such that

.f �l V /
2
� ı on yMH3m n Supp.df /:

Hence, the following counterpart of (2.8) (or (2.31)) holds:�
yf �l;3m;RV

�2
� ı on yMH3m;R n �

�1.Supp.df //:

Among the estimates in Section 2.3, the first one that needs to be modified is (2.24),
which is changed to �

D
E3m;R

F˚F ?1 ;ˇ;

;
" yf �
l;3m;R

V

ˇ

�
D 0(2.53)

on yMH3m;R n .�
�1.Supp.df // [ .H3m;R � Œ0; 1�//. Due to our definition of the metric on

yMH3m;R, (2.7), the metric on H3m;R � Œ0; 1� is independent of ˇ; 
 . Therefore, we have�
D

E3m;R

F˚F ?1 ;ˇ;

;
" yf �
l;3m;R

V

ˇ

�
D Om;R

�
"

ˇ

�
on H3m;R � Œ0; 1�:(2.54)

By (2.53) and (2.54), (2.33) is changed to



�DE3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ
C
" yf �
l;3m;R

V

ˇ

�
.'m;2s/





2
�
ı"2

ˇ2
k'm;2sk

2
COm;R

�
"

ˇ

�
k'm;2sk

2
H3m;R�Œ0;1�

:

8) In general, fl is only area decreasing along F on MH3m rather than on the whole yMH3m (even if in the
case that F can be extended to a foliation on yMH3m ). But this is enough for our purpose.
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Consequently, (2.34) is changed to

2X
jD1





�DE3m;R

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ
C
" yf �
l;3m;R

V

ˇ

�
.'m;j s/





2
� min

²
�

8
; ı"2

³
ksk2

ˇ2
COR

�
"


ˇ

�
ksk2

��1.Supp.df //

COm;R

�

2

ˇ2

�
k'm;1sk

2
COm;R

�
1

ˇ

�
k'm;1sk

2

COm

�
1

ˇ2R

�
k'm;1sk

2
COm;R

�
"

ˇ

�
k'm;2sk

2
H3m;R�Œ0;1�

:

Using these updated estimates, we can proceed as in Section 2.3 to obtain Lemma 2.1.
Now, the only point in Section 2.4 that we need to change is to replace (2.51) with the

following estimate:



�zhRDE3m;R

F˚F ?1 ;ˇ;

zhR C

yc.z�/

ˇ
C
" yf �
l;3m;R

V

ˇ

�
.'m;2s1/





2
�
"2ı

ˇ2
k'm;2s1k

2
COm;R

�
"

ˇ

�
k'm;2s1k

2
H3m;R�Œ0;1�

:

Then the proof of Theorem 1.2 in this general case is completed.

3. Proof of Theorem 1.2: The odd-dimensional case

In this section, we prove Theorem 1.2 for the odd-dimensional case.
Let M be an odd-dimensional noncompact manifold of dimension n carrying the com-

plete Riemannian metric gTM . Let F � TM be an integrable subbundle of TM . We will
use the notation in Section 2. Let f WM ! Sn.1/ be a smooth map which is area decreas-
ing along F , locally constant near infinity and of non-zero degree. Let gF D gTM jF be the
restricted metric on F and let kF be the associated leafwise scalar curvature. As in the even-
dimensional case, we assume that TM is spin. We still argue by contradiction, that is, we
assume that (2.2) holds.

For any r > 1, let S1.r/ be the round circle of radius r , with the canonical metric d�2.
Let M � S1.r/ be the complete Riemannian manifold of the product metric gTM ˚ d�2.
Following [12], we consider the chain of maps

M � S1.r/
f � 1

r
id

����! Sn.1/ � S1.1/
h

����! Sn.1/ ^ S1.1/ Š SnC1.1/;

where f � 1
r

id is defined as�
f �

1

r
id
�
.x; �/ D

�
f .x/;

�

r

�
; .x; �/ 2M � S1.r/;

and h is a suspension map of degree one such that jdhj � 1. Let fr D h ı .f � 1
r

id/ denote
the composition. Then one has

deg.fr/ D deg.f / ¤ 0:
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As in Section 2.2, we can construct the manifold yMH3m;R with the Riemannian metric
gT
yMH3m;R as (2.7). Set

yMH3m;R;r D
yMH3m;R � S

1.r/

and the metric on it to be gT
yMH3m;R ˚ ˇ2d�2. Then

T yMH3m;R;r D
�
.F ˚ TS1.r//˚ F ?1

�
˚ F ?2 on yMH3m;R;r :

Let
yf3m;R;r D h ı

�
yf3m;R �

1

r
id
�
W yMH3m;R;r ! SnC1.1/

and let S.TSnC1.1// D SC.TSnC1.1//˚ S�.TSnC1.1// be the spinor bundle of SnC1.1/.
The pull-back bundle of S˙.TSnC1.1// via yf3m;R;r is denoted by�

E3m;R;r;˙; g
E3m;R;r;˙ ;rE3m;R;r;˙

�
D yf �3m;R;r

�
S˙.TS

nC1.1//; gS˙.TS
nC1.1//;rS˙.TS

nC1.1//
�
:

Then
E3m;R;r D E3m;R;r;C ˚ E3m;R;r;�

is a Z2-graded Hermitian vector bundle over yMH3m;R;r . Let DE3m;R;r

F˚F ?1 ;ˇ;

be the twisted sub-

Dirac operator on yMH3m;R;r defined as in (2.9).
As (2.11), for " > 0, we consider the operator

D
E3m;R;r

F˚F ?1 ;ˇ;

C
yc.z�/

ˇ
C
" yf �3m;R;rV

ˇ
;(3.1)

where V W S.TSnC1.1//! S.TSnC1.1// is the operator defined in the same way as the
operator V appeared in Section 2.5 except that we should use fr to replace f . The map yf3m;R;r
in the above formula may be written as yfl;3m;R;r in view of the symbols used in Section 2.5.
We omit the l subscript to simplify the symbol a little. As before, there exists ı0 > 0 such that�

yf �3m;R;rV
�2
� ı0 on yMH3m;R;r n �

�1.Supp.df // � S1.r/:(3.2)

Let fqC1 be an orthonormal basis of .TS1.r/; d�2/. Then proceeding as [12, p. 68],
(2.26) is replaced by 

1

2ˇ2

qC1X
i;jD1

RE3m;R;r .fi ; fj /cˇ;
 .ˇ
�1fi /cˇ;
 .ˇ

�1fj /s; s

!
��1.Supp.df //�S1.r/

(3.3)

� �
q.q � 1/

4ˇ2
ksk2

��1.Supp.df //�S1.r/ CO

�
1

ˇ2r

�
ksk2

��1.Supp.df //�S1.r/

for any s 2 �.Sˇ;
 ..F ˚ TS1.r//˚ F ?1 / y̋ ƒ
�.F ?2 / y̋ E3m;R;r/ supported in the interior

of yMH3m;R;r .
Since r > 1, proceeding as (2.21) and (2.22), on ��1.Supp.df // � S1.r/, one has�

D
E3m;R;r

F˚F ?1 ;ˇ;

;
" yf �3m;R;rV

ˇ

�
D O

�
"

ˇ2

�
COR

�
"


ˇ

�
:(3.4)
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On . yMH3m;R n �
�1.Supp.df /// � S1.r/, by (2.53), (2.54) and proceeding as (2.21),

one has �
D

E3m;R;r

F˚F ?1 ;ˇ;

;
" yf �3m;R;rV

ˇ

�
D Om;R

�
"

ˇ

�
COm;R

�
"

ˇ2r

�
:(3.5)

On ��1.B2m n Supp.df // � S1.r/, we also have

RE3m;R;r D 0; inf.kF / � 0:(3.6)

Define 'm;i;r W yMH3m;R;r ! Œ0; 1�, i D 1; 2, to be the pull-back of 'm;i via the pro-
jection yMH3m;R;r to yMH3m;R. Then we can argue as in the proof of Lemma 2.1 by using
(3.2)–(3.6). The difference is that after fixing the parameters ";m;R; 
 in the order given
before, we further need to choose r > 1 sufficiently large. As a result, for ˇ small enough,
the analog of Lemma 2.1 still holds for the operator (3.1).

Similarly as (2.43), we can define the pseudodifferential operator P E3m;R;r
R;ˇ;


and we also
have

ind
�
P

E3m;R;r
R;ˇ;
;C

�
D 2.�1/

nC1
2 deg.fr/ ¤ 0:(3.7)

On the other hand, proceeding as the proof of Proposition 2.2, by taking the parameters in the
order ";m;R; 
; r; ˇ, the analog of Proposition 2.2 still holds for the operator P E3m;R;r

R;ˇ;
;C
, which

contradicts (3.7). The proof for the odd-dimensional case is finished.

4. Proof of Theorem 1.6

In this section, we prove Theorem 1.6.
Let .M;F / be a foliated manifold. Let gTM be a complete Riemannian metric on TM

and let gF D gTM jF be the restricted metric on F . Let kF be the associated leafwise scalar
curvature on F . We assume that the Riemannian metric gTM is ƒ2-enlargeable along F .

We assume that dimM is even. If dimM is odd, one may consider M � S1 and use the
method in Section 3.

We still argue by contradiction. Assume there is ı > 0 such that

kF � ı over M:(4.1)

Let F? be the orthogonal complement to F , i.e., we have the orthogonal splitting

TM D F ˚ F?; gTM D gF ˚ gF
?

:(4.2)

By definition, for any � > 0, there exists a covering �� WM� !M such that either M�

or F� (the lifted foliation of F in M�) is spin and a smooth map f� WM� ! SdimM .1/ which
is .�;ƒ2/-contracting along F� (with respect to the lifted metric of gTM ), constant outside a
compact subset K� and of non-zero degree.

We will give the proof for the M� spin case, since one can prove the F� spin case by
combining the M� spin case and the argument in [15, Section 2.5].

Let gTM� D ��� g
TM be the lifted metric of gTM , and let gF� D ��� g

F be the lifted
Euclidean metric on F�. The splitting (4.2) lifts canonically to a splitting

TM� D F� ˚ F
?
� ; gTM� D gF� ˚ gF

?
� :
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If both M and M� are compact, by [17, Section 1.1], one gets a contradiction easily.
In the following, we assume that M� is noncompact.
For .M�; F�/ equipped with the metrics .gTM� ; gF� / and the smooth map

f� WM� ! SdimM .1/;

one can follow the steps shown in Section 2. We will use � to denote the corresponding objects
in this case.

Let z�� WM� !M� be the Connes fibration. Set

kF� D ��� .k
F /; kF� D z��� .�

�
� .k

F //:

With these settings, as in Section 2, the key to find a contradiction is to prove an analog
of Lemma 2.1 for the operator

D
E�;3m;R

F�˚F ?�;1;ˇ;

C
yc.z��/

ˇ
C
" yf ��;3m;RV�

ˇ
:

To show such an analog, after checking the proof of Lemma 2.1, we only need to prove
estimates to replace (2.26) and (2.27).

Let rS.TS
dimM .1// be the canonical connection on the spinor bundle of SdimM .1/. Let

RS.TS
dimM .1// be the curvature tensor of the connection. Set9)

(4.3) C1 D sup
p2SdimM .1/

ˇ̌
RS.TS

dimM .1//
p

ˇ̌
:

Choose a local frame of yMH�;3m;R as in (2.18). By the .�;ƒ2/-contracting property of f�,
we have the following pointwise estimate:ˇ̌̌̌

ˇ
 
1

2ˇ2

qX
i;jD1

RE�;3m;R.fi ; fj /cˇ;
 .ˇ
�1fi /cˇ;
 .ˇ

�1fj /s; s

!
.x/

ˇ̌̌̌
ˇ(4.4)

D

ˇ̌̌̌
ˇ
 
1

2ˇ2

qX
i;jD1

yf ��;3m;R
�
RS . yf�;3m;R;�fi ; yf�;3m;R;�fj /

�
� cˇ;
 .ˇ

�1fi /cˇ;
 .ˇ
�1fj /s; s

!
.x/

ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇ
 
1

2ˇ2

qX
i;jD1

yf ��;3m;R
�
RS . yf�;3m;R;�.fi ^ fj //

�
� cˇ;
 .ˇ

�1fi /cˇ;
 .ˇ
�1fj /s; s

!
.x/

ˇ̌̌̌
ˇ

�
1

2ˇ2
q.q � 1/C1�jsj

2.x/;

where RS is the shorthand for RS.TS
dimM .1//.

Now, we choose

� D
ı

4C1q2
:

9) Here we need not use the precise estimate in [12].
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Then, using the notation in Section 2, by (4.1) and (4.4), we have 
1

2ˇ2

qX
i;jD1

RE�;3m;R.fi ; fj /cˇ;
 .ˇ
�1fi /cˇ;
 .ˇ

�1fj /s; s

!
z��1� .K�/

C

�
kF�

4ˇ2
s; s

�
z��1� .K�/

�
ı

8ˇ2
ksk2
z��1� .K�/

;

which can be used to replace (2.26) and (2.27). The remaining argument to get a contradiction
follows from the same method used in Section 2.

5. Proof of Theorem 1.8

In this section, we prove Theorem 1.8.
Let .M;F / be a foliated manifold. We assume that M is ƒ2-enlargeable along F . Let

gTM be a complete Riemannian metric on TM and gF D gTM jF be the restricted metric
on F . Let kF be the associated leafwise scalar curvature on F .

As before, we argue by contradiction. Assume that

kF > 0 over M:

Let F? be the orthogonal complement to F , i.e., we have the orthogonal splitting

TM D F ˚ F?; gTM D gF ˚ gF
?

:(5.1)

Inspired by the proof of [8, Theorem 6.12], we consider another metric on TM defined
by kF gTM . By definition, for the metric kF gTM and any � > 0, there exist a covering

�� WM� !M

such that either M� or F� (the lifted foliation of F in M�) is spin and a smooth map

f� WM� ! SdimM .1/

which is .�;ƒ2/-contracting along F� for the lifted metric of kF gTM , constant outside a
compact subset and of non-zero degree.

Let gTM� D ��� g
TM be the lifted metric of gTM , and let gF� D ��� g

F be the lifted
Euclidean metric on F�. The splitting (5.1) lifts canonically to a splitting

TM� D F� ˚ F
?
� ; gTM� D gF� ˚ gF

?
� :

We will give the proof for the M� spin case, since one can prove the F� spin case by
combining the M� spin case and the argument in [15, Section 2.5].

We first assume that dimM is even.
For .M�; F�/ equipped with the metrics .gTM� ; gF� / and the smooth map

f� WM� ! SdimM .1/;

one can follow the steps shown in Section 2. We will use � to denote the corresponding objects
in this case.
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Let z�� WM� !M� be the Connes fibration. We note that the (deformed or not) metric
on M� is defined as in Section 2.2, which means that we use the metric gTM� rather than the
metric kF�gTM� to define the metric on M�. Set

kF� D ��� .k
F / kF� D z���

�
��� .k

F /
�
:

With these settings, as in Section 2, the key to find a contradiction is to prove an analog
of Lemma 2.1 for the operator

D
E�;3m;R

F�˚F ?�;1;ˇ;

C
yc.z��/

ˇ
C
" yf ��;3m;RV�

ˇ
:

As in the proof Theorem 1.6, to show such an analog, we only need to prove estimates to
replace (2.26) and (2.27).

Choose a local frame of TM�;H3m;R as in (2.18). By the .�;ƒ2/-contracting property
of f� for the metric kF�gTM� and jfi ^ fj jgTM� D 1, i ¤ j , we have

jf�;�.fi ^ fj /j � �jfi ^ fj jkF�gTM� D �k
F� ; i ¤ j:(5.2)

Then for x 2 z��1� .Supp.df�//, by (5.2), we have the following pointwise estimate:ˇ̌̌̌
ˇ
 
1

2ˇ2

qX
i;jD1

RE�;3m;R.fi ; fj /cˇ;
 .ˇ
�1fi /cˇ;
 .ˇ

�1fj /s; s

!
.x/

ˇ̌̌̌
ˇ(5.3)

D

ˇ̌̌̌
ˇ
 
1

2ˇ2

qX
i;jD1

yf ��;3m;R
�
RS . yf�;3m;R;�fi ; yf�;3m;R;�fj /

�
� cˇ;
 .ˇ

�1fi /cˇ;
 .ˇ
�1fj /s; s

!
.x/

ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇ
 
1

2ˇ2

qX
i;jD1

yf ��;3m;R
�
RS . yf�;3m;R;�.fi ^ fj //

�
� cˇ;
 .ˇ

�1fi /cˇ;
 .ˇ
�1fj /s; s

!
.x/

ˇ̌̌̌
ˇ

�
1

2ˇ2
q.q � 1/C1�k

F� .x/jsj2.x/;

where C1 is the constant defined in (4.3) and as before, RS is the shorthand for RS.TS
dimM .1//.

Now, we choose

(5.4) � D
1

4C1q2
:

Then f� is fixed and Supp.df�/ is a fixed compact set. Hence, we can find � > 0 such that

(5.5) kF� � � on z��1� .Supp.df�//:

Therefore, using the notation in Section 2, by (5.3)–(5.5), for any point x 2 z��1� .Supp.df�//,
we have 

1

2ˇ2

qX
i;jD1

RE�;3m;R.fi ; fj /cˇ;
 .ˇ
�1fi /cˇ;
 .ˇ

�1fj /s; s

!
.x/C

�
kF�

4ˇ2
s; s

�
.x/

�

�
kF�

8ˇ2
s; s

�
.x/ �

�

8ˇ2
jsj2.x/;
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which can be used to replace (2.26) and (2.27). The remaining argument to get a contradiction
follows from the same method used in Section 2.

If dimM is odd, as in Section 3, we can replace M� by M� � S
1.r/. Consider the

composition f�;r of the maps

M� � S
1.r/

f��
1
r

id
�����! SdimM .1/ � S1.1/

^
�����! SdimMC1.1/:

Then this map f�;r is pointwise .max¹�kF� ; jdf� j
r
º; ƒ2/-contracting with respect to the metric

gTM� ˚ d�2.
Fix � as (5.4) and set

�0 D min¹kF� .x/ W x 2 Supp.df �/º:

We choose r large enough such that

sup¹jdf�j.x/ W x 2M�º

r
< ��0:

Then by combining the method used in the above even-dimensional case and the content of
Section 3, we can also get a contradiction.
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