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ANALYTIC AND TOPOLOGICAL INVARIANTS
ASSOCIATED TO NOWHERE ZERO VECTOR FIELDS

Weiping Zhang

In memory of Professor Weishu Shi

We construct skew-adjoint operators associated to nowhere
zero vector fields on manifolds with vanishing Euler number.
The mod 2 indices of these operators provide potentially new
invariants for such manifolds. An odd index theorem for cor-
responding Toeplitz operators is established. This last result
may be viewed as an odd dimensional analogue of the Gauss-
Bonnet-Chern theorem.

0. Introduction.

It is well-known that the classical Gauss-Bonnet-Chern theorem [C] can be
interpreted as an index theorem for de Rham-Hodge operators (cf. [BGV]
and [LM]) and that it is nontrivial only for even dimensional manifolds.

This paper arose from an attempt to search an odd dimensional analogue
of this index theorem.

Recall that the Gauss-Bonnet-Chern theorem is closely related to the
famous Poincaré-Hopf index formula expressing the Euler number as the
sum of indices of singularities of a tangent vector field.

Now for odd dimensional manifolds, or more generally for manifolds with
vanishing Euler number, we take the advantage that another result of Hopf
asserts that there always exist nowhere zero vector fields (see e.g. Steenrod
[S]).

Thus let M be an odd dimensional oriented closed manifold and let V be
a nowhere zero vector field on M . Let γ be the one dimensional oriented
vector bundle over M generated by V . Then TM/γ carries a canonically
induced orientation. Let e(TM/γ) be the Euler class of TM/γ.

For any integral element ω in H1(M,Q), we will take 〈ωe(TM/γ), [M ]〉
as our substitute for the Euler class appeared in the Gauss-Bonnet-Chern
theorem. The main result of this paper gives an analytic formula for this
number as the index of certain elliptic Toeplitz operators.

In fact, a general odd index theory has already been developed by Baum-
Douglas [BD] who pointed out that the associated index can be computed
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from the original Atiyah-Singer index theorem [AS1]. Thus, our result
provides a new example for this theory.

Although our index formula can be deduced from the Atiyah-Singer index
theorem in its general form, here we will instead develop a purely analytic
approach by emphasizing the heat kernel aspects of the index theory. See
Section 3 for more details.

Of particular interests is that the operators we construct in Section 2
are in its real form skew-adjoint. Thus, according to Atiyah and Singer
[AS2], they would provide interesting mod 2 invariants for manifolds with
vanishing Euler number. We will however leave the possible systematic
study to elsewhere.

It might also be interesting to note that on the topological side, an odd
analogue of the Poincaré-Hopf index theorem has been proved by Geoghegan
and Nicas [GN, Theorem 3.1].

This paper is organized as follows. In Section 1, we recall some algebraic
preliminaries. In Section 2, we construct the skew-adjoint operators and
study its basic properties. In Section 3, we prove an odd index theorem
associated to the operators constructed in Section 2. Finally in Section 4 we
apply the results of Section 3 to give an analytic interpretation of the above
mentioned invariants 〈ωe(TM/γ), [M ]〉.
Acknoledgements. The author would like to thank Mai Zhou for stimu-
lating discussions.

1. Algebraic preliminaries.

In this section, we describe the basic algebraic data.
Let E be an oriented Euclidean vector space. If e ∈ E, let e∗ ∈ E∗

corresponds to e by the scalar product of E. If e ∈ E, let c(e), ĉ(e) be the
operators acting on the exterior algebra ∧(E∗),

c(e) = e∗ ∧ −ie,(1.1)

ĉ(e) = e∗ ∧+ie,

where e∗∧ and ie are the standard notation for exterior and inner multipli-
cations. If e, e′ ∈ E, the following identities hold,

c(e)c(e′) + c(e′)c(e) = −2〈e, e′〉,(1.2)

ĉ(e)ĉ(e′) + ĉ(e′)ĉ(e) = 2〈e, e′〉,
c(e)ĉ(e′) + ĉ(e′)c(e) = 0.

If we view ∧(E∗) = ∧even(E∗) ⊕ ∧odd(E∗) as a Z2-graded space, then
clearly, c(e), ĉ(e) are odd elements of End(∧(E∗)). Also, End(∧(E∗)) is
generated as an algebra by 1 and the c(e), ĉ(e)’s.

Let e1, ..., en be an orthonormal base of E.
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Proposition 1.1. Among the monomials in the c(ei), ĉ(ei)’s, only
c(e1)ĉ(e1)...c(en)ĉ(en) has a nonzero supertrace. Moreover,

(1.3) Trs[c(e1)ĉ(e1)...c(en)ĉ(en)] = (−2)n.

For a proof of this Proposition, see [BZ, Section 4d)].
We now assume n = 2m+ 1.
Let ĉodd(E) be the algebra generated by monomials of the type

(1.4) cI,J = c(ei1)...c(eik)ĉ(ej1)...ĉ(ejl),

where both k and l are odd integers. Then ĉodd(E) preserves ∧even(E∗) and
∧odd(E∗). We will view ĉodd(E) as a subalgebra of End(∧even(E∗)).

Proposition 1.2. Among the monomials of the type (1.4), only
c(e1)ĉ(e1)...c(en)ĉ(en) has a nonzero trace on ∧even(E∗). Moreover,

(1.5) Tr[c(e1)ĉ(e1)...c(en)ĉ(en)] = −22m.

Proof. We consider an element of the form (1.4). We assume that no two of
jt’s are equal to each other. As l is odd, the set {j1, ..., jl} is not empty. We
can assume without loss of generality that j1 = 1.

Let E′ be the subspace of E generated by the ei’s with i > 1. Then one
clearly has

(1.6) ∧even(E∗) = ∧even(E′∗)⊕ ∧1([e1]∗)⊗ ∧odd(E′∗).

Now there are two possibilities.
(i) 1 does not appear in the set i1, ..., ik. Then one clearly has Tr[cI,J ]=0.
(ii) We can assume without loss of generality that i1 = 1 and that none

of is, s > 1 is equal to 1. Then

cI,J = (−1)k−1c(e1)ĉ(e1)c(ei2)...c(eik)ĉ(ej2)...ĉ(ejl).

And one verifies directly that

(1.7) Tr[cI,J ] = (−1)kTrs[c(ei2)...c(eik)ĉ(ej2)...ĉ(ejl) |∧(E′∗)],

reducing the problem to Proposition 1.1. �

2. Skew-adjoint operators associated to nowhere zero vector
fields.

Let M be a compact oriented manifold. We make the assumption that the
Euler number of M vanishes.

By a classical result of Hopf, there exists a nowhere zero vector field on
M . That is, a vector field V on M such that V (x) 6= 0 for all x ∈ M .
Without loss of generality we will always assume V is smooth.

If V1, V2 are two nowhere zero vector fields on M , we say V1 is homotopic
to V2 if there is a smooth family of nowhere zero vector fields V (t), 0 ≤ t ≤ 1
with V (0) = V1, V (1) = V2.
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We now fix a nowhere zero vector field V on M .
Let gTM be a metric on M . We make the assumption that

(2.1) ‖V ‖gTM = 1.

In fact, for any metric gTM , we can find a positive function on M so that
fV verifies (2.1).

Let d as usual be the exterior derivation acting on Γ(∧(T ∗M)). Let * be
the Hodge star operator of gTM .

Let 〈 , 〉 be the inner product on Γ(∧(T ∗M)) defined by

(2.2) 〈α, β〉 =
∫
M
α ∧ ∗β, α, β ∈ Γ(∧(T ∗M)).

Let δ = d∗ be the formal adjoint of d with respect to the inner product
(2.2).

The Clifford actions c, ĉ in Section 1 can now be defined for ∧(T ∗M) in
the same way. Thus ĉ(V ) acts on ∧(T ∗M) and interchanges ∧even and ∧odd.

Definition 2.1. The operator DV is the operator acting on Γ(∧even(T ∗M))
defined by

(2.3) DV =
1
2

(ĉ(V )(d+ δ)− (d+ δ)ĉ(V )).

Since the Clifford actions c and ĉ anticommute with each other, one ver-
ifies easily that DV is a (real) skew-adjoint elliptic first order differential
operator. To be more precise, if e1, ..., en is an orthonormal base of TM
and ∇TM is the Levi-Civita connection of gTM , then one has the following
formula for DV .

Proposition 2.2. The following identity holds,

(2.4) DV = ĉ(V )(d+ δ)− 1
2

∑
i

c(ei)ĉ(∇TMei V ).

Proof. Clearly,

(2.5) d+ δ =
∑
i

c(ei)∇∧even(T ∗M)
ei ,

where ∇∧even(T ∗M) is the Euclidean connection on ∧even(T ∗M) induced ca-
nonically by ∇TM .

From (2.3) and (2.5), one deduces that

DV = ĉ(V )(d+ δ)− 1
2

(ĉ(V )(d+ δ) + (d+ δ)ĉ(V ))

= ĉ(V )(d+ δ)− 1
2

∑
i

c(ei)ĉ(∇TMei V ).

�
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Now according to Atiyah and Singer [AS2], for any real skew-adjoint
elliptic operator D, the dimension of the kernel of D is a mod 2 homotopy
invariant (cf. also Lawson-Michelsohn [LM] for an exposition). This is the
so called mod 2 index of D.

Definition 2.3. Let α(V ) be the mod 2 index of DV :

(2.6) α(V ) ≡ dim kerDV (mod 2).

Clearly, α(V ) depends only on the homotopy class of V . The Atiyah-
Singer mod 2 index theorem [AS2] provides a purely topological formula
for α(V ).

If we denote by NZ(M) the set of homotopy classes of nowhere zero vector
fields on M , then α defines a map

(2.7) α : NZ(M) −→ Z2.

Example 2.4. Take M = S1 × Y and assume M has a product metric. Let
V be the unit vector field on S1. Then V lifts to a unit vector field on M
in an obvious way. One verifies easily that α(V ) ≡ χ(Y ) (mod 2).

From Example 2.4, we see that the map α is nontrivial for manifolds of odd
dimensions 4q+ 1. It would be very interesting if this map is also nontrivial
in other dimensions. In particular, they might provide new invariants for 3-
manifolds, as well as for 4-manifolds with vanishing Euler number. Anyway
we will leave the possible systematic study to elsewhere.

Here instead, we prove the following result.

Theorem 2.5. If dimM = 4q + 1, then the map α in (2.7) is a constant
map with value the Kervaire semi-characteristic.

Proof. Recall that the Kervaire semi-characteristic is defined by

(2.8) k(M) =
2q∑
i=0

dimH2i(M,R) (mod 2).

As dimM = 4q + 1, k(M) has the following mod 2 index interpretation
(cf. Atiyah-Singer [AS2]).

Let DR be the operator defined by

(2.9) DR = ĉ(e1)...ĉ(e4q+1)(d+ δ) : Γ(∧even(T ∗M)) −→ Γ(∧even(T ∗M)).

Then one verifies easily that DR is a real skew-adjoint elliptic operator with

(2.10) dim kerDR ≡ k(M) (mod 2).

Now for any unit vector field V of (TM, gTM ), set

(2.11) D′R = DR − 1
2
ĉ(V )ĉ(e1)...ĉ(e4q+1)

∑
i

c(ei)ĉ(∇TMei V ).



384 WEIPING ZHANG

Also one verifies that

(2.12) 〈∇TMV, V 〉 = 0.

From (2,12), one finds that the elliptic operator D′R is also real skew-
adjoint. Furthermore, one has the following family of real skew-adjoint
elliptic operators,

(2.13) DR(u) = (1− u)DR + uD′R, 0 ≤ u ≤ 1.

By the homotopy invariance of the mod 2 indices ([AS2]), and by (2.4),
(2.9), (2.11) and (2.12), one then has

dim kerDR ≡ dim kerD′R (mod 2)(2.14)
= dim kerDV .

From (2.14), (2.10), one deduces that

(2.15) dim kerDV ≡ k(X) (mod 2).

The proof of Theorem 2.5 is completed. �

Remark 2.6. The above argument does not work for dimensions 4q − 1.
Thus it remains an interesting question that whether the map α would still
be a constant map for 3-manifolds.

3. An odd index theorem for nowhere zero vector fields.

In this Section, we prove the main result of this paper, which is an odd index
theorem for the operators DV constructed in Section 2. We assume in this
section that M is of odd dimension.

Recall that the odd index theory for self-adjoint elliptic operators has
been developed by Baum and Douglas in [BD]. The index theorem we will
prove is for the operator

√−1DV and can in fact as in [BD] be obtained by
an application of the Atiyah-Singer index theorem [AS1] for elliptic pseu-
dodifferential operators. However, here we prefer to give a direct geometric
proof of our result. This proof consists of two steps. The first step is to use
a theorem of Booss and Wojciechowski [BW], reducing the problem to a
computation of a spectral flow. This spectral flow is then evaluated in the
second step by heat equation methods.

This Section is organized as follows. In a), we state the main result of
this Section. In b), we reduce the problem to computations of spectral flows.
In c), we give an expression of the spectral flow in terms of heat kernels,
and in d) we state a result computing the asymptotic expansion constant
appearing in the formula in c). In e), we prove some Lichnerowicz type
formulas. These formulas will be used in f) to give the proof of the result
stated in d).
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a). An index theorem for certain Toeplitz operators.
Recall that V is a unit vector field on an oriented compact odd dimensional

Riemannian manifold M . We consider the operator DV = 1
2(ĉ(V )(d+ δ)−

(d+ δ)ĉ(V )) constructed in Section 2.
In order to apply the ideas of odd index theory for self-adjoint operators,

we should complexify our geometric data. So in this Section we consider the
exterior algebra bundle with complex coefficients ∧C(T ∗M) = ∧(T ∗M)⊗C.
Without confusion we still denote it by ∧(T ∗M). The inner product 〈 , 〉
now should be modified accordingly,

(3.1) 〈α, β〉 =
∫
M
α ∧ ∗β, α, β ∈ ∧(T ∗M).

Definition 3.1. Let D̃V be the operator
√−1DV acting on Γ(∧even(T ∗M)).

Clearly, D̃V is a self-adjoint first order elliptic differential operator. We
use the same symbol to denote its closed extension on L2(∧even(T ∗M)).

Let L2
+(∧even(T ∗M)) be the direct sum of eigenspaces of D̃V associated to

nonnegative eigenvalues. Denote by P+ the orthogonal projection operator
from L2(∧even(T ∗M)) to L2

+(∧even(T ∗M)).
Let CN be a trivial complex vector bundle over M carrying the trivial

metric and connection. Then D̃V extends trivialy as an operator acting on
Γ(∧even(T ∗M)⊗CN ).

Let g : M → U(N) be a smooth map from M to the unitary group U(N).
Then g extends to an action on ∧even(T ∗M)⊗CN as Id∧even(T ∗M) ⊗ g. We
still note this action by g.

Definition 3.2. Let TV,g be the operator
(3.2)
TV,g = (P+ ⊗ IdCN )g : L2

+(∧even(T ∗M)⊗CN )→ L2
+(∧even(T ∗M)⊗CN ).

This is the so-called Toeplitz operator associated to D̃V and g.
Since g is invertible, one verifies that TV,g is a bounded Fredholm operator

between Hilbert spaces.
Let γ be the one dimensional oriented vector bundle over M generated

by V . Let E be the subbundle of TM orthogonal to γ. Then E carries a
canonically induced orientation so that o(γ,E) = o(TM). Take a metric on
E and let ∇ be a Euclidean connection for this metric on E. Let R be the
curvature of ∇.

The main result of this Section can be stated as follows.

Theorem 3.3. The following identity holds,

(3.3) ind(TV,g) =
1

2π
√−1

∫
M

Tr[g−1dg]Pf
(
R

2π

)
.
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Theorem 3.3 can be proved by an application of the Atiyah-Singer index
theorem [AS1] as in Baum-Douglas [BD]. In the rest of this Section, we
will give a geometric proof of (3.3).

b). Toeplitz operators and spectral flow.
Note that by now D̃V is a self-adjoint elliptic operator acting on

Γ(∧even(T ∗M)⊗CN ).
Since g is unitary, the operator

(3.4) D̃V,g = g−1D̃V g

is also a self-adjoint operator on Γ(∧even(T ∗M)⊗CN ).
Let D̃V (u) be the family of self-adjoint operators

(3.5) D̃V (u) = (1− u)D̃V + uD̃V,g, 0 ≤ u ≤ 1.

Let sf{D̃V (u), 0 ≤ u ≤ 1} be the spectral flow of the family {D̃V (u)}0≤u≤1

in the sense of Atiyah, Patodi and Singer [APS2].
Then one has:

Theorem 3.4. The following identity holds,

(3.6) ind(TV,g) = −sf{D̃V (u), 0 ≤ u ≤ 1}.
Proof. Formula (3.6) is a corollary of a general result of Booss and Woj-
ciechowski (cf. [BW, Theorem 17.17]). �

c). η invariants and spectral flow

For a self-adjoint first order elliptic differential operator D, we will adopt
the standard notation η(D) for the η invariant of D in the sense of Atiyah,
Patodi and Singer [APS1]. Let η̄(D) be the reduced η invariant of D, also
defined in [APS1]:

(3.7) η̄(D) =
1
2

(dim ker(D) + η(D)).

Let D̃V (u), 0 ≤ u ≤ 1, be our family of first order elliptic self-adjoint
operators. Clearly, for any u ∈ [0, 1],

(3.8)
∂

∂u
D̃V (u) = D̃V,g − D̃V

is a bounded operator.
By the standard results for heat kernel asymptotics, one has the following

asymptotic expansion as t→ 0+,

(3.9) Tr
[
∂

∂u
D̃V (u) exp(−tD̃V (u)2)

]
=
c−n

2

t
n
2

+ · · ·+
c− 1

2

t
1
2

+O(t
1
2 ),

where n = dimM is the dimension of M and c−n
2
, ..., c− 1

2
are smooth func-

tions of u ∈ [0, 1].
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The main result of this subsection can be stated as follows.

Proposition 3.5. The following identity holds,

(3.10) sf{D̃V (u), 0 ≤ u ≤ 1} =
∫ 1

0

c− 1
2√
π
du.

In fact, we will prove the following more general result.

Proposition 3.6. For any s ∈ [0, 1], one has

(3.11) sf{D̃V (u), 0 ≤ u ≤ s} =
∫ s

0

c− 1
2√
π
du+ η̄(D̃V (s))− η̄(D̃V ).

Proof. First of all, (3.11) holds for s = 0. Let I be the subset of [0,1] such
that for any s ∈ I, (3.11) holds. Then I is not empty.

Take u0 ∈ I. Let ε0 > 0 be sufficiently small so that

(3.12) Spec(D̃V (u0))
⋂

[−ε0, ε0] = {0}.
Since the eigenvalues of D̃V (u) are continuous functions of u, there is a

sufficiently small neighborhood U of u0 in [0,1] such that for any u ∈ U , ±ε0

are not eigenvalues of D̃V (u).
Take any u ∈ U . Let Eu+(ε0) (resp. Eu−(−ε0)) be the direct sum of

eigenspaces of D̃V (u) associated to eigenvalues greater than ε0 (resp. less
than −ε0). Let P u+ (resp. P u−) be the orthogonal projection operator from
L2(∧even(T ∗M)⊗CN ) onto Eu+(ε0) (resp. Eu−(−ε0)).

Set P = P u = P u+ + P u−.
Let s ∈ C be such that Re(s)� 0. Set

(3.13) ηε0(D̃V (u), s) =
1

Γ( s+1
2 )

∫ ∞
0

t
s−1

2 Tr[PD̃V (u) exp(−tD̃V (u)2)P ]dt.

This function extends to a meromorphic function on C, which is holomorphic
at s = 0 ([APS1, APS2]).

Since P 2 = P , one has

(3.14)
(
∂

∂u
P

)
P + P

∂

∂u
P =

∂

∂u
P.

From (3.14), one gets

(3.15) P

(
∂

∂u
P

)
P = 0.

From (3.13)-(3.15) and by proceeding as in Bismut-Freed [BF, (2.31)],
one finds that

Γ
(
s+ 1

2

)
∂

∂u
ηε0(D̃V (u), s)(3.16)
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= −s
∫ ∞

0
t
s−1

2

{
Tr
[
P
∂

∂u
D̃V (u) exp(−tD̃V (u)2)P

]}
dt.

On the other hand, since ∂
∂uD̃V (u) is a bounded operator, from (3.9) one

verifies easily that as t→ 0+, one has the following asymptotic expansion,

(3.17) Tr
[
P
∂

∂u
D̃V (u) exp(−tD̃V (u)2)P

]
=
c−n

2

t
n
2

+ · · ·+
c− 1

2

t
1
2

+O(1).

From (3.16), (3.17), one gets

(3.18)
∂

∂u
ηε0(D̃V (u), 0) = −

2c− 1
2√
π
.

Now let ku be the number of negative eigenvalues of D̃V (u) in (−ε0, 0).
Then by the definition of spectral flow, one has

(3.19) sf{D̃V (α) : α from u0 to u} = −ku.
Also, by (3.18) one has,

η̄(D̃V (u))− η̄(D̃V (u0))(3.20)

=
1
2
{ηε0(D̃V (u), 0)− ηε0(D̃V (u0), 0)} − ku

= −
∫ u

u0

c− 1
2√
π
ds− ku.

Since (3.11) holds for u0, by (3.19), (3.20) and by the additivity of spectral
flow, it also holds for u ∈ U .

Thus the set I is open in [0,1]. A similar argument shows that I is also
closed in [0,1]. Thus I = [0, 1].

Proposition 3.6 is then proved. �

Proof of Proposition 3.5. Since g−1D̃V g is conjugate to D̃V , they have the
same spectrum. Thus, one has

(3.21) η̄(g−1D̃V g) = η̄(D̃V ).

Proposition 3.5 follows from (3.21) by setting s = 1 in (3.11). �

Remark 3.7. Proposition 3.6 may be seen as a refinement of [BF, Propo-
sition 2.8] in our situation. This kind of refinements is in fact well-known.
We include a proof here just for the sake of completeness.

Remark 3.8. By Theorem 3.4 and Proposition 3.5, in order to prove Theo-
rem 3.3, we need only to evaluate c− 1

2
for each u ∈ [0, 1]. This is the subject

of the following subsections.
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d). An asymptotic result involving the heat kernel of D̃V (u)2.
Recall that E is the oriented subbundle of TM such that E is orthogonal

to the oriented line bundle γ generated by V and that (γ,E) has the same
orientation as TM .

Let

TM = γ ⊕ E,(3.22)

gTM = gγ + gE

be the corresponding orthogonal decomposition of the metric gTM . Let RTM

be the curvature of the Levi-Civita connection ∇TM . Let PE (resp. P γ) be
the orthogonal projection from TM to E (resp. γ). Then

∇γ = P γ∇TMP γ ,(3.23)

∇E = PE∇TMPE

are Euclidean connections of gγ , gE respectively.
Let RE = (∇E)2 be the curvature of ∇E .
For any u ∈ [0, 1], let Qut (x, y) be the kernel of ∂

∂uD̃V (u) exp(−tD̃V (u)2).
Let dvM be the volume element on TM with respect to gTM .

The main result of this subsection can be stated as follows.

Theorem 3.9. For any u ∈ [0, 1], x ∈M , the following identity holds,

(3.24) lim
t→0

√
tTr[Qut (x, x)]dvM (x) =

√−1
2
√
π

Tr[g−1dg]Pf
(
RE

2π

)
.

By Remark 3.8, Theorem 3.3 is a consequence of Theorem 3.9 and the
Chern-Weil theorem (cf. [BGV]) for Euler forms. The rest of this section
is devoted to the proof of (3.24).

e). A Lichnerowicz formula for D̃V (u)2.
We write n = 2m+ 1.
Let e0, ..., e2m be an orthonormal base of TM .

Proposition 3.10. The following identity holds,

D̃V (u)2 = D̃2
V + u((d+ δ)c(g−1dg) + c(g−1dg)(d+ δ))(3.25)

+
u

2

2m∑
0

c(ei)c(g−1dg)ĉ(V )ĉ(∇TMei V )

+
u

2

2m∑
0

c(g−1dg)c(ei)ĉ(V )ĉ(∇TMei V )

+ u2(c(g−1dg))2.
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Proof. By (2.4), Definition 3.1, one has

D̃V =
√−1ĉ(V )(d+ δ) +

1
2
√−1

2m∑
0

c(ei)ĉ(∇TMei V ).(3.26)

Also,

g−1D̃V g = D̃V + g−1[D̃V , g](3.27)

= D̃V +
√−1ĉ(V )c(g−1dg).

From (3.5) and (3.27), one has

D̃V (u) = D̃V + u
√−1ĉ(V )c(g−1dg).(3.28)

Thus,

D̃V (u)2 = D̃2
V + u

√−1D̃V ĉ(V )c(g−1dg)(3.29)

+ u
√−1ĉ(V )c(g−1dg)D̃V

− u2ĉ(V )c(g−1dg)ĉ(V )c(g−1dg).

(3.25) follows from (3.29), (3.26) and (1.2). �

Let ∆ be the standard notation for the Bochner Laplacian

(3.30) ∆ =
2m∑
0

(
∇∧even(T ∗M),2
ei −∇∧even(T ∗M)

∇TMei ei

)
.

Let K be the scalar curvature of gTM .
We also make the assumption that e0 = V . Then e1, ..., e2m is an or-

thonormal base of E.

Theorem 3.11. The following identity holds,

D̃2
V = −∆ +

K

4
(3.31)

+
1
8

∑
0≤i,j≤2m

∑
1≤k,l≤2m

〈RE(ei, ej)el, ek〉c(ei)c(ej)ĉ(ek)ĉ(el)

− 1
2
ĉ(V )ĉ(∆V )−

2m∑
0

ĉ(V )ĉ(∇TMei V )∇TMei −
1
4

2m∑
0

‖S(ei)V ‖2.

Proof. By (3.26), one has

D̃2
V = −(ĉ(V )(d+ δ))2 +

1
2

(
ĉ(V )(d+ δ)

2m∑
0

c(ei)ĉ(∇TMei V )

(3.32)
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+
2m∑
0

c(ei)ĉ(∇TMei V )ĉ(V )(d+ δ)

)
− 1

4

(
2m∑
0

c(ei)ĉ(∇TMei V )

)2

.

Now

(ĉ(V )(d+ δ))2(3.33)

= −(d+ δ)2 + ĉ(V )((d+ δ)ĉ(V ) + ĉ(V )(d+ δ))(d+ δ)

= −(d+ δ)2 + ĉ(V )
2m∑
0

c(ei)ĉ(∇TMei V )(d+ δ).

By (3.32), (3.33), one deduces

D̃2
V = (d+ δ)2 +

1
2

{
ĉ(V )(d+ δ)

2m∑
0

c(ei)ĉ(∇TMei V )(3.34)

− ĉ(V )
2m∑
0

c(ei)ĉ(∇TMei V )(d+ δ)
}

− 1
4

(
2m∑
0

c(ei)ĉ(∇TMei V )

)2

.

The middle term in the right hand side of (3.34) can be evaluated as
follows,

ĉ(V )(d+ δ)
2m∑
0

c(ei)ĉ(∇TMei V )− ĉ(V )
2m∑
0

c(ei)ĉ(∇TMei V )(d+ δ)(3.35)

= ĉ(V )
2m∑
0

{(d+ δ)c(ei) + c(ei)(d+ δ)}ĉ(∇TMei V )

− ĉ(V )
2m∑
0

c(ei){ĉ(∇TMei V )(d+ δ) + (d+ δ)ĉ(∇TMei V )}

= ĉ(V )
2m∑
0

(−2∇TMei )ĉ(∇TMei V ) + ĉ(V )
∑
i,j

c(ej)c(∇TMej ei)ĉ(∇TMei V )

− ĉ(V )
∑
i,j

c(ei)c(ej)ĉ(∇TMej ∇TMei V )

= ĉ(V )

{
−2
∑
i

ĉ(∇TMei V )∇TMei − ĉ(∆V )

}

+
1
2

∑
i,j

c(ei)c(ej)ĉ(V )ĉ(RTM (ei, ej)V ).
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Let S be defined by

(3.36) S = ∇TM −∇E −∇γ .
Then S is a one form taking values in skew-symmetric endomorphisms in-
terchanging γ and E.

Recall that e0 = V . We have

−
(

2m∑
0

c(ei)ĉ(∇TMei V )

)2

(3.37)

=
∑
i,j

c(ei)c(ej)ĉ(∇TMei V )ĉ(∇TMej V )

=
∑
i,j

c(ei)c(ej)ĉ(S(ei)V )ĉ(S(ej)V )

=
1
2

∑
i,j,k,l

(〈S(ei)V, ek〉〈S(ej)V, el〉

− 〈S(ej)V, ek〉〈S(ei)V, el〉)c(ei)c(ej)ĉ(ek)ĉ(el)

−
2m∑
0

‖S(ei)V ‖2.

Also, from (3.36), one deduces that for 1 ≤ k, l ≤ 2m,

〈RTM (ei, ej)el, ek〉

(3.38)

= 〈RE(ei, ej)el, ek〉+ 〈S(ei)S(ej)el − S(ej)S(ei)el, ek〉
= 〈RE(ei, ej)el, ek〉+ 〈S(ei)el, V 〉〈S(ej)ek, V 〉 − 〈S(ej)el, V 〉〈S(ei)ek, V 〉.
On the other hand, by using an obvious extension of the Lichnerowicz

formula [L] for (d+ δ)2 (cf. [BZ, Section 4e)] and [BGV]), one has

(3.39) (d+ δ)2 = −∆ +
K

4
+

1
8

∑
i,j,k,l

〈RTM (ei, ej)el, ek〉c(ei)c(ej)ĉ(ek)ĉ(el).

(3.31) follows from (3.34), (3.35) and (3.37)-(3.39). �
Proposition 3.10 and Theorem 3.11 together gives the following crucial

Lichnerowicz type formula.

Theorem 3.12. For any u ∈ [0, 1], the following identity holds,

D̃V (u)2 = −∆ +
K

4
(3.40)

+
1
8

∑
0≤i,j≤2m

∑
1≤k,l≤2m

〈RE(ei, ej)el, ek〉c(ei)c(ej)ĉ(ek)ĉ(el)
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− 1
2
ĉ(V )ĉ(∆V )−

2m∑
0

ĉ(V )ĉ(∇TMei V )∇TMei

+ u((d+ δ)c(g−1dg) + c(g−1dg)(d+ δ))

+
u

2

2m∑
0

c(ei)c(g−1dg)ĉ(V )ĉ(∇TMei V )

+
u

2

2m∑
0

c(g−1dg)c(ei)ĉ(V )ĉ(∇TMei V )

+ u2(c(g−1dg))2 − 1
4

2m∑
0

‖S(ei)V ‖2.

f). A proof of Theorem 3.9.
We will use the method of Bismut and Zhang [BZ, Section 4] to prove

Theorem 3.9. In particular, we adopt the notation used there. For example,
for any e ∈ TM and e∗ ∈ T ∗M its corresponding element via gTM , we will
write as in [BZ, Section 4] that

(3.41) ĉ(e) = ê∗ ∧+iê.

For any t > 0, x ∈M , e ∈ TM and e∗ ∈ T ∗M its correspondent, set

ct(e) =
e∗

t
1
4

∧ −t 1
4 ie,(3.42)

ĉt(e) =
ê∗

t
1
4

∧+t
1
4 iê.

Then for any e, e′ ∈ TM , one has

ct(e)ct(e′) + ct(e′)ct(e) = −2〈e, e′〉,(3.43)

ĉt(e)ĉt(e′) + ĉt(e′)ĉt(e) = 2〈e, e′〉,
ct(e)ĉt(e′) + ĉt(e′)ct(e) = 0.

Furthermore, for any α ∈End(∧even(T ∗M)), if we denote by αt the ele-
ment obtained from α by replacing c(e) by ct(e) and ĉ(e) by ĉt(e), then we
have:

Proposition 3.13. If α ∈End(∧even(T ∗M)), then for any t > 0,

(3.44) Tr[α] = (−1)m+122mtm+ 1
2 {αt}max,

where {αt}max denotes the coefficient of the monomial e0∧...∧e2m∧ê0...∧ê2m

in the expansion of αt.

Proof. Equation (3.44) follows from (1.5). �
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Now we proceed as in Bismut-Zhang [BZ, Section 4] and Getzler [G].
Let a > 0 be the injectivity radius of (M, gTM ). Take ε such that 0 <

ε ≤ a/2. Take x ∈ M . Let e0, ..., e2m be an orthonormal base of TxM . We
make the assumption that e0 = V (x). We identify the open ball BTxM (0, ε)
in TxM with the open ball BM (x, ε) in M using geodesic coordinates. Then
y ∈ TxM, | y |≤ ε represents an element of BM (x, ε). For y ∈ TxM, | y |≤ ε,
we identify TyM , CN

y to TxM , CN
x by parallel transports along the geodesic

t ∈ [0, 1]→ ty with respect to ∇TM and the trivial connection on CN .
Let ΓTM,x be the connection form for∇TM in the considered trivialization

of TM . By [ABP, Proposition 4.7], we know that

(3.45) ΓTM,x
y =

1
2
RTMx (y, ·) +O(| y |2).

The induced connection form Γ∧
even(T ∗xM)

y on ∧even(T ∗xM) is given by
(3.46)

Γ∧
even(T ∗M),x

y =
1
8

∑
i,j

(〈RTMx (y, ·)ei, ej〉+O(| y |2))(c(ei)c(ej)− ĉ(ei)ĉ(ej)).

The operator D̃V (u)2 now acts on smooth sections of (∧even(T ∗M)⊗CN )x
over BTxM (0, ε).

If h is a smooth section of (∧even(T ∗M)⊗CN )x over TxM , set

(3.47) Tth(y) = h

(
y√
t

)
.

Let Kt(u) be the operator

(3.48) Kt(u) = T−1
t tD̃(u)2Tt.

Then Kt(u) is a differential operator with coefficients in the algebra
spanned by the elements of End(∧even(T ∗xM)) and End(CN )x.

Let Lt(u) be the operator obtained from Kt(u) by replacing the Clifford
variables c(ei), ĉ(ei) by ct(ei), ĉt(ei) defined in (3.42). Let ∇TxM be the
flat connection on TxM . Let ∆TxM be the flat Laplacian over TxM for
the metric gTxM . Using (3.40), (3.46), one concludes easily that as t → 0,
the coefficients of Lt(u) converge uniformly over compact sets together with
their derivatives to the coefficients of the operator L0(u) given by

L0(u) = −∆TxM − ê0∇̂eiV (0)∇TxMei(3.49)

+
1
8

∑
0≤i,j≤2m

∑
1≤k,l≤2m

〈RE(ei, ej)el, ek〉eiej êkêl.

On the other hand, from (3.28), one has

(3.50)
∂

∂u
D̃V (u) =

√−1ĉ(V )c(g−1dg).
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Let Ct(u) be the operator obtained from ∂
∂uD̃V (u) by replacing c(ei), ĉ(ei)

by ct(ei), ĉt(ei) respectively.
Set

(3.51) ω = g−1dg.

Using (3.50), (3.51), we find that

(3.52) lim
t→0

√
tCt(u) =

√−1ê0
∑

0≤i≤2m

ω(ei)ei.

Recall that Qut (x, y) is the kernel of ∂
∂uD̃V (u) exp(−tD̃V (u)2).

Let dvM be the volume element on TM with respect to the metric gTM .
By using Proposition 3.13, Equations (3.49), (3.52), and also the trivial
relation ê0,2 = 0, and by proceeding as in Getzler [G], we see that as t→ 0,
(3.53)
√
tTr[Qut (x, x)]dvM (x) −→

√−1
2
√
π

Tr[g−1dg]Pf
(
RE

2π

)
, uniformly on M.

This completes the proof of Theorem 3.9. By Remark 3.8, Theorem 3.3
is thus also proved. �

Remark 3.14. The local index techniques of this section can also be used
to prove regularity results for the η functions of D̃V (u)’s.

4. Invariants associated to nowhere zero vector fields.

In this Section, we apply the odd index Theorem 3.3 of the last section to
get invariants on odd dimensional manifolds.

Let M as before be an odd dimensional oriented compact manifold.
Let V be a nowhere zero vector field on M . Let γ be the one dimensional

oriented vector bundle generated by V . Then E = TM/γ is an even dimen-
sional vector bundle over M , carrying a canonically induced orientation.

Let e(E) be the Euler class of E.

Definition 4.1. Let αV be the homomorphism

αV : H1(M,Z) −→ Z(4.1)

defined by

αV : ω −→ 〈ωe(E), [M ]〉,(4.2)

if ω is not a torsion class. If ω is a torsion class, we set αV (ω) = 0.

By using Theorem 3.3, we can give an analytic formula for the map αV
as follows.

Let ω ∈ H1(M,Z). We assume ω is not a torsion class. Let ω̃ ∈ ∧1(T ∗M)
be any de Rham representative of ω.
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We fix a point p on M . For any x ∈ M , let γpx be a pass connecting p
and x.

Let ρω̃(x) : M → U(1) be the function on M defined by

(4.3) ρω̃(x) = exp
{

2π
√−1

∫ x

p
ω̃

}
,

where the integral is along the pass γpx.
Since [ω̃] ∈ H1(M,Z), ρω̃ is well defined. Also, one finds

(4.4) ρ−1
ω̃ dρω̃ = 2π

√−1ω̃.

Let gTM be a metric on TM so that ‖V ‖gTM = 1. Let TV,ρω̃ be the
Toeplitz operator defined for V, ρω̃ as in Section 3a). Then from Theorem
3.3 one deduces easily the following result.

Theorem 4.2. The following identity holds,

(4.5) ind(TV,ρω̃) = αV (ω).

Example 4.3. The simplest example is by taking M = S1 × X for some
compact connected oriented even dimensional manifold X, and take V to
be the canonical vector field lifted from that of S1 and ω the canonical
generator of H1(S1,Z). Then one has clearly αV (ω) = χ(X).

As a simple application to problems involving vector fields, we prove the
following result.

Theorem 4.4. If the homomorphism αV is not identically zero, then V can
not be deformed through nowhere zero vector fields to −V .

Proof. Since αV is not a zero map, there exists ω ∈ H1(M,Z) such that

(4.6) αV (ω) = indTV,ω 6= 0.

Now if V is homotopic to −V , then by the homotopy invariance of the
analytic index, one would have

(4.7) ind(TV,ω) = ind(T−V,ω) = −ind(TV,ω).

This contradicts with (4.6). �
Remark 4.5. In some cases, Theorem 4.4 gives refined obstructions for a
vector field V to be able to homotopic to −V . For example, if M = S1×X,
dimM = 4q + 1, and V is the vector field considered in Example 4.3, then
Theorem 2.5 only asserts χ(X) ≡ 0 (mod 2) (cf. [A, Theorem 1.3]), while
Theorem 4.4 asserts that χ(X) vanishes exactly.
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Remark 4.6. Of course, the map αV can be nontrivial only on nonsimply
connected manifolds. For simply connected manifolds, one might expect
that the mod 2 indices discussed in Section 2 would provide meaningful
invariants.

Remark 4.7. In some sense one may regard Theorem 4.2 as an odd di-
mensional analogue of the Gauss-Bonnet-Chern theorem. But in line of the
above remark, one might also take the mod 2 index theorem [AS2] for the
skew-adjoint operator DV constructed in Section 2 as another candidate.
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