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Abstract

We generalize atheorem of Bismut—Zhang, which extends the Cheeger—Miiller theorem on Ray—Singer torsion and
Reidemeister torsion, to the case of infinite Galois covering spaces. Our result is stated in the framework of extended
cohomology, and generalizes in this case a recent result of Braverman—Carey—Farber—Mathai. It does not use the
determinant class condition and thus also (potentially) generalizes several resiftsarsions due to Burghelea,
Friedlander, Kappeler and McDonald. We combine the framework developed by Braverman—Carey—Farber—Mathai
on the determinant of extended cohomology with the heat kernel method developed in the original paper of
Bismut—Zhang to prove our result.
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1. Introduction

LetF be a unitary flat vector bundle on a closed Riemannian man¥dii[31], Ray and Singer defined
an analytic torsion associated &, F) and proved that it does not depend on the Riemannian metric
on X. Moreover, they conjectured that this analytic torsion coincides with the classical Reidemeister
torsion defined using a triangulation &(cf. [25]). This conjecture was later proved in the celebrated
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papers of Cheegdf2] and Muller[26]. Mller generalized this result if27] to the case wherE is a
unimodular flat vector bundle oX. In [4], inspired by the considerations of Quill§g], Bismut and
Zhang reformulated the above Cheeger—Miuller theorem as an equality between the Reidemeister and
Ray-Singer metrics defined on the determinant of cohomology, and proved an extension of it to the
case of general flat vector bundles oXeiThe method used if#] is different from those of Cheeger and
Muiller in that it makes use of a deformation by Morse functions introduced by Wa&mon the de Rham
complex.

The purpose of this paper is to generalize the main resuft ito the case of.2-torsions on infinite
Galois covering spaces of closed manifolds. We recall that Baersions were first introduced by Carey,

Lott and Mathai[10,19,22] under the assumptions that thé-Betti numbers vanish and that certain
technical “determinant class condition” is satisfied. The later condition is satisfied if the Novikov—Shubin
invariants introduced if28] are positive.

In [9], Carey, Farber and Mathai showed that the condition on the vanishing 6ftBetti numbers
can be relaxed. This is achieved by constructing the determinant line of the refiéaathomology
and defining the.2-torsions as elements of the determinant line. They also reformulated the result of
Burghelea, Friedlander, Kappeller and Mcdori8ldn the equality between tHe?-Reidemeister torsion
and L2-Ray-Singer torsion for unitary representations, under the “determinant class condition”, as an
equality between twd.?-elements on the determinant line of the redutéecohomology.

In [11], Carey, Mathai and Mishchenko introduced what they called “relative torsion” in order to avoid
the “determinant class condition” in the consideration8ftorsions. This concept was later used by
Burghelea et al[7] to generalize the main result [B] to the case of nonunitary representations. It is
pointed out ir{7] that the main result if¥] also extends the generalized Cheeger—Mduller theorem proved
in [4] to the case of infinite covering spaces, under the “determinant class condition”.

Recently, Braverman, Carey, Farber and MafBaishowed that if one considers tiestended.?-
cohomology in the sense of Farber (df3]) instead of the usually usedduced.2-cohomology, then one
can naturally define the2-Reidemeister and2-Ray-Singer torsions ds?-elements on the associated
determinant lines, without requiring the “determinant class condition”. By combining with the main result
on relative torsion if7], they established aextendedCheeger—Milller theorem for thegé-elements
on odd dimensional infinite covering spaces for unimodular representations, which holds without the
“determinant class condition”.

In this paper, we will show that one can indeed prove a full extension of the generalized Cheeger—Mdiller
theorem proved 4] to the case of infinite covering spaces without requiring the “determinant class
condition”, in the framework of6]. Moreover, we show that one can prove such a result by a direct
adaptation of the strategy and methog4into this new situation. Thus, the proof will be purely analytical
and avoid for example the use of the concept of relative torsion. The key ingredients to this proof include
the basicL?-estimates of the deformed de Rham-Witten complex developé8l38], the extended
de Rham theorem established by Shul3i8], as well as the finite propagation speed technique which
is crucial in adapting the local index computations[4i into the infinite covering spaces situation.
Moreover, as observed [B,15], one does not need the full strength of itreHelffer—Sjostrand analysis
of the L2-Witten complex developed if8]. This simplifies much of the matter.

As in [4], in order to establish the above-mentioned extended Cheeger—Miiller theorem for covering
spaces, one should first establish an anomaly formula fak #HRay—Singer torsion on the determinant
of the extended de Rham cohomology. Such a formula will also be established in the present paper, see
Theorem 3.4 for details.
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We should also mention that the result§6r9,33]hold for more general finite type Hilbert modules
over a finite von Neumann algebra on a closed manifold, here we will concentrate on the infinite covering
spaces situation which corresponds to a special kind of Hilbert modules over a closed manifold.

This paper is organized as follows. In Section 2, we recall ff6hthe definition of the determinant
line of extended cohomology of a finite length Hilbert cochaircomplex with.e7 a finite von Neumann
algebra, as well as the definition of thé-torsion element lying in this determinant line. We also construct
the L2-Milnor torsion element lying in the determinant line associated to the extended cohomology of
anL2-Thom—Smale cochain complex associated to a lifted Morse function on an infinite covering space
satisfying the Thom—Smale transversality conditions. In Section 3, we recall[@pthe definition of
the L2-Ray-Singer torsion element lying in the determinant line of extended cohomology of de Rham
complexes on infinite covering spaces, and establish an anomaly formula for it. In Section 4, we recall
from [33] the de Rham theorem for the extended cohomologies, and state the main result of this paper,
which is an extension ¢#l, Theorem 0.2]in Theorem 4.2. We prove this result modulus two intermediate
results. These two intermediate results are then proved in Sections 5 and 6 respectively.

2. L2-Milnor torsion on the determinant of extended cohomology

In this section, we define what we call tii€-Milnor torsion element on an infinite covering space.
Following [6], the element lies in the determinant of the extended cohomology 6fdhom-Smale
cochain complex.

This sectionis organized as follows. In Section 2.1, we recall the definition of the extended cohomology
of a finite length Hilbert cochain complex over a finite von Neumann algebra carrying a finite, normal
and faithful trace. In Section 2.2, we recall the definition of the determinant of a finitely generated Hilbert
module over a finite von Neumann algebra. In Section 2.3, we recall the definition éfttarsion
element of a finite length Hilbert cochain complex. In Section 2.4, we defind.fdilnor torsion
element.

2.1. Extended cohomology of a finite length Hilbert cochain complex

Let .7 be a finite von Neumann algebra carrying a fixed finite, normal and faithful trace¢ — C.
Let* denote the canonical involution o# defined by taking adjoint. Lé€(.#) denote the Hilbert space
completion ofe/ with respect to the inner product given by the trace

(a, by = t(b*a). (2.1)

A finitely generated Hilbert module over is a Hilbert spacé! admitting a continuous lef#Z-structure
(with respect to the norm topology o#) such that there exists an isometticlinear embedding o
into /2(«/) ® H, for some finite dimensional Hilbert spate

Let (C*, 0) be afinite length Hilbert cochain complex over,

an—l

d d
(C*0):0>Cc0'3¢ct3... 5 ¢ >0, (2.2)

where eaclC?, 0<i <n, is a finitely generated Hilbert module over and the coboundary maps are
bounded«-linear operators. Since the image spaces of these coboundary maps need not be closed, the
tautological cohomology ofC*, 8) need not be a Hilbert space. This is why in general one studies
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thereducedcohomology of(C*, 8), which is defined by

n
H*(C*,0) =P H'(C*,8) with H'(C*,d) =ker(d,)/im(@,_y), 0<i<n, (2.3)
i=0
where one takes obviously that, = 0 ando, = 0.
On the other hand, there are still ways to extract more information §@ma), rather than just from
H*(C*, 0). One such is to consider tiextendeadtohomology in the sense of Farber (df3,6]), which is
defined by

n
H*(C*, )= #'(C*,0) with #/(C*,8) = (8,1 : C"F — ker(9,)). 0<i<n, (2.4)
i=0
where(0;_; : ci-1- ker(9;)), 0<i<n, lie in an abelian extended category. It constitutes of two parts:

the projective part which is exactly the reduced cohomology defined in (2.3), as well as a torsion part
T(H*(C*,0) =B o7 (#'(C*,0)) defined as an element in the above abelian extended category, with

T(AH(C* ) =@y : €' > Im@_y), 0<i<n, (2.5)
More precisely, one has

AHF(C*,0) = H*(C*,0) @ T (A#*(C*, d)) (2.6)
with

AH(C*,0)= H' (C*,0) ® T (A (C*,d)), 0<i<n. (2.7)

We refer to[13,6] for more details about the definition and basic properties of the above-mentioned
abelian extended category as well as the extended cohomology.

2.2. The determinant of a finitely generated Hilbert module

LetM be afinitely generated Hilbert module over LetGL(M) denote the set of all bounded-linear
automorphisms dfi. Let %, denote the set of all inner productsi@rsuch that if{ , ) € 4y, then there
existsA € GL(M) such that

(u,v) = (Au, v)y,, foranyu,veM (2.8)

with (, ), being the original inner product dvi.

Following[9,6], we define the determinant line d&t of M to be the real one dimensional vector space
generated by symbols, ), one for each element iy, such that if( , ); and(, ), are two elements
of & with

(U, v)p = (Au, v)q, foranyu,ve M, (2.9)
for someA € GL(M), then as elements in déf, one has

(, )2=Det(A) Y2 (, )y, (2.10)
where Det(A) is the Fuglede—Kadison determingid] of A.
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For the sake of self-completeness, we recall the definition of(@gfor any A € GL(M) and its basic
properties froni9,6].

Let A;, 0<r <1, be a continuous piecewise smooth pathe GL(M) such thatAg =7 andA; = A.
The existence of such a path is cleaGS M) is known to be pathwise connected. Then define §8,in
(13); 6, (2.7)]that

1
log Det,(A) = / Re(Tr.[A71A!]) dr, (2.11)
0

where A; is the derivative of4; with respect tat, while Tr; is the canonically induced trace on the
commutant oM (cf. [9, Proposition 1.8}

It has been proved if®] that the right-hand side of (2.11) does not depend on the choice of thd path
0<r< 1. Moreover, we recall the following basic properties taken ff@nirheorem 1.10; 6, Theorem
2.11]

Proposition 2.1. The function
Det, : GL(M) — R>9, (2.12)
called the Fuglede—Kadison determinant o&Atisfies

(a) Det is a group homomorphisnthat is,

Det,(AB) = Det,(A) - Det,(B), for A, B € GL(M). (2.13)
(b) If I is the identity element in Gl31), then

Det, (1) = |A|"") for 1 e C, 4+ 0. (2.14)
(c) One has

Det;.(A) = Det,(A)* for 1 € R*C, (2.15)

(d) Det, is continuous as a map GlM) — R>0, where GI(M) is supplied with the norm topology
(e) If A;,t €0, 1], is a continuous piecewise smooth path in(@L, then

Det: (A1)
Det;(Ao)

(H Let M, N be two finitely generated Hilbert modules ovgrLet A € GL(M), B € GL(N) and let
v : N — M be a boundeds-linear homomorphism. We extendB, y to obvious endomorphisms
onM & N by takingA|y =0, B|yy =0andy|y =0.ThenA + B +y € GL(M @ N) and

1
]: / Re(Tr [A;1A]) dr. (2.16)
0

Det.(A + B + y) = Det,(A) - Det,(B). (2.17)

Now come back to the determinant line det Clearly, detM has a canonical orientation as the
transition coefficient DetA)~/2 is always positive.

Following[9, 2.3], for any boundeds-linearisomorphisny : M — N between two finitely generated
Hilbert modules over/, there induces canonically an isomorphism of determinant Ifhedet M —
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det N, which preserves the orientations. Moreover, one has the following property which is recalled from
[9, Proposition 2.5]

Proposition 2.2. If f € GL(M), then the induced isomorphisfi : det M — det M coincides with the
multiplication byDet,(f) € R>°.

Remark 2.3. Following[9,6], one thinks of elements of dét as “densities” oM. In the.«/ = C case,
this is dual to the considerations [#i] where one uses metrics on determinant lines instead of “volume
forms”.

2.3. Extended cohomology and the torsion element of a finite length cochain complex of Hilbert modules

Let (C*, 9) be a finite length Hilbert cochain complex over

n—1

0, 0 0
(C*9): 0 0 cta ... "ren 40 (2.18)

asin (2.2). Letr*(C*,0) = Y.I_, #"(C*, d) denote the corresponding extended cohomology defined
in (2.4), which admits the splitting to projective and torsion parts as in (2.5)—(2.7).
Following [6], we define for each Qi <n that

det 7' (C*,0) := det H' (C*, ) ® det 7 (#' (C*, d)) (2.19)
with
det 7 (#'(C*, 9)) := detim(d,_,) ® (detC'~1)* ® det kexd,_,). (2.20)

Definition 2.4. (i) We define the determinant line ¢€*, 0) to be

detc*,d) = R)det V', (2.21)
i=0

(i) We define the determinant line of*(C*, 9) to be
n .
det #*(C*,9) = ) (det #7 (C*,8)) Y. (2.22)
i=0
The following result is recalled frorf6, Proposition 7.2]

Proposition 2.5. The cochain complei2.18)defines a canonical isomorphism

V(C*,0) * det(C*, a) — det J(’*(C*, a). (223)

For each & <n, the (fixed) inner product oa’ determines an element € det C'. They together
determine an element
n .
o=[] o edet(c* o). (2.24)
i=0
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Definition 2.6 ([6, Definition 7.5). The positive element
Pc*p) = V(C*,@)(J) € det e}f*((j*, a) (225)
is called the torsion element of the cochain comgléx, 0).

For any otheZ-graded inner produdt, )’ € %c, that is, there existd; € GL(C’) for any 0<i <n
such that

(u,v): = (Aju,v) foranyu,ve ct, (2.26)

let p’(c* ) denote the corresponding torsion element in #&t(C*, d). Then one has the following
anomaly formula for the torsion elements in dé&t (C*, 0).

Proposition 2.7. The following identity holds idet #*(C*, 9):
- i+1
pzc*va) = p(c*’a) l_[ Det-[(Al')(_l) /2. (227)
i=0
Proof. Let o, be the corresponding element in det. From (2.26), one has by definition (cf. (2.10))
o, = Det.(A;) " Y2q;. (2.28)
From Proposition 2.5 and from (2.24), (2.25) and (2.28), one gets (2.27).

For any 0<i <n, letd} : C'*1 — C’ denote the adjoint af with respect to the inner products 6#
andCi+1,

Letd=)7 40; : C* —» C*,8* =) 10 : C* — C* denote the induced homomorphisms©@h
Then

O=(0+ 02 (2.29)

preserves eacti’. LetJ; denote the restriction afl on C*.

Now consider the special case where the cochain com(aéxd) is acyclic, i.e., for any &i <n,
im(9;) = ker (9, 1) (in particular, this implies that i@, ) is closed inC’*1). Then the torsion element
p(c+.0) = V(c*,0)(0) € det #™*(C*, 0) ~ R can be thought of as a positive real number.

The following result has been proved[ Proposition 7.8]

Proposition 2.8. If the cochain complekC*, 9) is acyclig then the following identity holds
1 n )
_ i+1. .
logp(c+.0) = > E_O(—l) i log Det (03)). (2.30)

We refer to[6] for more complete discussions about the torsion elements in determinant lines.
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2.4. L2-Milnor torsion for covering spaces

LetI' - M > M be a Galois covering of a closed smooth manifieldwith dim M = n. We make
the assumption thdt is an infinite group, as the case of finite group has been dealt with for example in
[20,21,5]

Let (F, VF) be a complex flat vector bundle over carrying the flat connectioR 7. Let ¢ be a
Hermitian metric orf. Let (f, vF) denote the naturally lifted flat vector bundle ovdrobtained as the
pullback of (F, VF) through the covering map Let g’ be the naturally lifted Hermitian metric af.

Let (F*, VI") be the dual complex flat vector bundle@f, V¥ carrying the flat connectiow””. Let
¢F" be the dual metric off*. Let (F*, V™) andg” denote the corresponding lifted objectsidn

Let f : M — R be aMorse function. Let” " be a Riemannian metric &M such that the correspond-
ing gradient vector field-X = —V f € I'(TM) satisfies the Smale transversallty conditions [&4]),
that is, the unstable cells (efX) intersect transversally with the stable cells. Lfe([resp gTM ) denote
the lifted Morse function of on M (resp. lifted Riemannian metric OT]M) Then the corresponding
gradient vector field-X = —Vf € I'(T M) still satisfies the Smale transversality conditions. Set

={xeM:;:X(x)=0}, B={Xe M; X =0} (2.31)

For anyx e B, let W4(X) (resp.W3(X)) denote the unstable (resp. stable) celf atvith respect to
—X. We also choose an orientatior; (resp. 0+) on WY(X) (resp.W3(x)) in aI-invariant way.

Letx,y € B satisfy the Morse index relation ifg) =ind(x) — 1, thenr"(x, y) =W"(x)NW*(y) consists
a finite number of integral curvesof —X. Moreover, for each € I'(x, y), by using the orientations
chosen above, on can define a numbgk, y) = +1 as in[4, (1.28)]

If ¥ € B, let[WY(3)] be the complex line generated B! (x). Set

C (WY F =P W™ ® F2, (2.32)
¥eB

WU FY= P IW'®Ie F (2.33)
¥eB,ind®)=i

If ¥ € B, the flat vector bundI&™* is canonically trivialized orW"(x). In particular, ifx, y € §~satisfy
ind(y) =ind(x) — 1, and ify € I'(X, y), f* € F%, lett,(f*) be the parallel transport of* € F into

Fg‘ alongy with respect to the flat connection’” .

Clearly, forany% € B, thereis only afinite number §fe B, satisfying together that ind) =ind(¥)—1
andI'(x,y) #0. _
If X e B, f* € FZ, set

AW (® ® f*) = > > mEHWIG) @1, (f). (2.34)
yeB.ind(5)=ind(x)—1 7€l'X.5)
Thend mapsC; (WY, F*) into C;_1(W", F*). Moreover, one has
2 =0. (2.35)
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That is, (C.(WY, f*), 0) forms a chain complex. We call it the?-Thom—Smale complex associated to
(M, F, —X).

If X € B, let[W"(x)]* be the dual line tav"(x). Let (C*(W"{, F),?) be the complex which is dual to
(C+(WY, F*),9). For 0<i <n, one has

CwhhH= P WA F. (2.36)
¥eB,ind(®)=i

Itis easy to verify that bothandd arer-equivariant with respect to the naturaction onc; (WY, F*) S
andC! (WY, F)'s for 0<i <n, which is induced from the canonlcal deck actionodn M.

Let WU(X)* e [WHY(X)]* be such thatW!(x), W"(x)*) =_ _

We now introduce an inner product on ed®(x)]* ® F; such that for anyf, f’ € F3,

(WIE* @ £ WG @ f1) = (f. ) - (2.37)

Let/2(I') denote the Hilbert space obtained throughZRecompletion of the group algebra dfwith
respect to the canonical trace on it.

For any 0<i <n, letC' (WY, F) carry the inner product obtained from those defined in (2.37) so that
the splitting (2.36) is orthogonal. The® (WY, F) is a Hilbert space, which is isomorphic to the direct
sum ofn;-copies of 2(I'), wheren; =#{x € B : ind(x)=i} is the number of critical points of : ¥ — R
with Morse index.

Let 4°(I') be the von Neumann algebra associatedi generated by the left regular representations
onl2(I') = [2(./(I')). The canonical finite faithful trace on’(I') is given by the following formulas:

Ty (L) =0 if a1, (2.38)
while
Ty (L) =1 if =1, (2.39)

whereL, denote the left action of € I on/?(I'). It induces canonically a trace on the commutant of any
finitely generated Hilbert/"(I")-module (cf.[9, Proposition 1.8} which will be denoted by Ty-.

Then eactCi (WY, F), 0<i <n, as well asCH* (WY, F)_EB o Cl(WY, F), becomes a Hilbert (I')-
module. Moreover, the coboundary mjs . (I')-linear.

In summary,(C*(WY, F), ) is a finite length Hilbert cochain complex ovetr(r) in the sense of
Section 2.1. We call it thé2-Thom—Smale cochain complex associatedio F, g%, —X).

Definition 2.9. The torsion element in the determinant line of the extended cohomology of the
L2-Thom-Smale cochain complég™ (W“ F) 9), in the sense of Definition 2.6, is called thé-Milnor
torsion element associated, F, ¢*, —X), and is denoted bY 7. F o7 —x)-

From the anomaly formula (2.27), one deduces easily the following result.

Proposition 2.10. If gf is another Hermitian metric on the flat vector bundle F over M-ASE F oF —x)
denote the corresponding torsion element dat . #(C*(WY, F),), then the following anomaly
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formula holds

(_1)ind(x)+l/2
) (2.40)

-1
~ — o~ Flyx Flx
P, F.gf,—x) = P(M,F.gF,—X) | | det((é’ | ) 81

xXeB

3. Infinite covering spaces and thd.?-Ray—Singer torsion on the determinant of extended de
Rham cohomology

In this section, we recall the definition of te-Ray—Singer torsion element in the infinite covering
space case and prove an anomaly formula for it.

This section is organized as follows. In Section 3.1, we recall the definition of the extended de Rham
cohomology associated to a lifted flat vector bundle on an infinite covering space. In Section 3.2, we
define theL?-Ray-Singer torsion element as an element in the determinant of the extended de Rham
cohomology. In Section 3.3, we state an anomaly formula about3HRay—Singer torsion element. This
anomaly formula is then proved in Section 3.4.

3.1. Infinite covering spaces and the extended de Rham cohomology

We make the same assumptions and use the same notations as in Section 2.4. Thus we have an infiniti
I' covering spac@/ — M, with dim M =n, and a flat vector bundig”, V) overM, etc. However, we
do not use the Morse function and make transversality assumptions as in Section 2.4.

For any 0<i <n, denote

QM F)=r(A(T*"M)®F), @M, F)=p @M. F). (3.1)
i=0
Letd” denote the natural exterior differential @h(M, F) induced fromv ¥ which maps each (M, F),
0<i<n, into @ (M, F). .
The IifteQRigmannian metrig:TM determines a canonical inner product on eqbtM, F), 0<i<n.
Let L2(Q' (M, F)), 0<i <n, denote the Hilbert spaces obtained from the corresporicircpmpletion.
Then we can consider the?- de Rham complex
~ o~ ~ ~ ~ gF ~ o~
(L2@* (M, F)),d") : 0 — L2@°(i, F)) &> L2, F))
F ~ ~
o Y L2, Fy) — o (3.2)
Letd™ : Q*(M, F) — 0*(M, F) denote the formal adjoint af’ . Set

Then the Laplacia®? preserves th&-grading ofQ*(M, F).
For any.# C R and 0<i <n, denote by

L%(Q (M, F)) € L2(Q (M, F)) (3.4)
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the image of the spectral projectiaty ; : L2(Q'(M, F)) — L*(Q' (M, F)) of D?| ;2. ji 7, corre-
sponding tos.
We recall the following important result due to Shuf3, Theorem 5.1]

Theorem 3.1. Fix e > 0. Then for any0<i<n,

® L[0 8](9‘ (M F)) c (M F) i.e., L[0 ](Ql (M, F)) consists of smooth forms

(i) when carrying the induced metric from that bf(Q (M F)) L[o 8](52”(1\71, f)) is a finitely gen-
erated Hilbert module over (I').

Now consider the finite length cochain complex.6fI")-Hilbert modules

(L3 (@ (M, F)), afy .0 L[Og](QO(M F))—>L[0 (@Y, FY)
. d L2 (@' (M, F)) - 0. (3.5)

Itis easy to verify that the extended cohomology(lbfO (Q*(M, F)), df) isindependentcﬁ> 0. Forif

¢ >¢e>0,the subcomple§<L2 (Q*(M F)) d¥yof (L2 0.¢] (Q*(M F)) dF) is acyclic. Moreover, itis
easy to verify that this extended cohomology, up to boun@reﬂ“) -linear isomorphisms, does not depend

on the choice of the metrigd ¥ andg? onTM andF, respectively. We denote it W(Z) (Q*(M, F),dF).

Definition 3.2. The extended cohomologf(z)(sz*(zf/i, f), dﬁ) defined above is called tHe®-extended
de Rham cohomology associatedioandF.

3.2. L2-Ray-Singer torsion on the determinant of the extended de Rham cohomology

We continue the discussion of the above subsection.
In view of Definition 2.6, for any > 0, the finite length cochain complex mf”(l") -Hilbert modules

(L[0 ](Q*(M F)) dF) in (3.5) determines a torsion element in detf)(g*(M F) dF) We denote

this torsion element bjo (M, F, g™, gT).
Also, following [6, Section 12.2]for anys € C with Re(s) > n/2 and for 0<i <n, set

i 1 oo s—1 ~2
C<&+°°>(S):ﬁ/o £ Tr lexp(—t D |L(2€A’+oo)(9i(ﬁ’f)))]dt. (3.6)

Thenci&m) (s) is analytic ins for Re(s) > n/2 and can be extended to a meromorphic functiorCon
which is holomorphic at = 0 (cf. [8,19,22). Let T<8,+oo)(1\71, F,g™ ¢y e Rt be defined by

- (s)
0g e, 400) (M, F, g™, g") = Z( 1)’ d +°°’ : (3.7)
s=0

By [6, Lemma 12.4] the productTjo (M, F, g™, gF) - Tt 1oo)(M, F, g™ ¢F) in det/f(z)
(Q*(M, F), dF) does not depend an> 0.
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Definition 3.3([6, Definition 12.5). TheL2-Ray-Singer torsion element associatedito 7, g™, gh
is the positive element in the determinant of the extended de Rham cohonmflﬁ@(z*(M, F),dF)
defined by

TR M, F, g™, ¢") =Tioe) (M, F, g™, ¢") - Te 1ooy(M, F, g"™, g"). (38)
In [6, Section 13] Braverman, Carey, Farber and Mathai showed that if 8fm= » is odd and
(F, VF, gf)is unimodular, theﬂ%(l\?, F, g™ ¢F)does not depend gyt . They proved this result
by using theL2-Cheeger—Milller type theorem they proved in this situation. In the next subsections, we
will give a direct proof of a general anomaly formula extending both the above result as well as the
Bismut—Zhang anomaly formu(d, Theorem 0.1bf Ray—Singer metrics in thE = {¢} case.

3.3. An anomaly formula for the2-Ray—Singer torsion elements

We continue the discussion of the above subsection.
Let 0(F, gF') € @1 (M) be defined by (cfl4, Definiton 4.1)

O(F, ") =Trri(e"H) vl g"]. (3.9)

Thend(F, g¥') is a closed one form ol (cf. [4, Proposition 4.6]

Let VI'M denote the Levi—Civita connection associated to the Riemannian mgétficon TM. Let
RTM — (vTM)2 pe the curvature oV 7M. Lete(T M, VIM) ¢ Q"(M, o(T M)) be the associated Euler
form defined by (cf[4, (3.17); 37, Chapter J]

™™
e(TM, VM) = pf <R ) . (3.10)
2n

Let ¢’ be another Riemannian metric v andV’’ be the associated Levi—Civita connection.
Lete(TM, VM, V/TM) be the Chern-Simons classof- 1 smooth forms oM valued ino(T M),
which is defined modulo exast— 1 forms, such that

de(TM, V™ v ™y — ot V'™ —e(TM, VT M) (3.11)
(cf. [4, (4.10)). Of course, ifnis odd,
STM, VM Ty _ o (3.12)

Let ¢’ be another metric oR. Letpr, p» denote the volume element on détinduced byg”, gk,
respectively. Thep’./pr € R*. One verifies easily that

/ 1 ,
log 2Z = —Z log detr ((g")1g'"). (3.13)
PF 2
From (3.9) and (3.13), one deduces that
pp 1 ,
dlog =L = Z(0(F.g") —0(F.g'")) (3.14)
PF

(cf. [4, (4.12)).
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Let 12, F, g™ ¢'") e det # 2@, F),d") denote theL.>-Ray-Singer torsion element
associated tg’” ™ andg’”. Then the positive real number
2
Tea (M. F. g™ g'")

R+
T(Z)(M F gTM F)

is well-defined.
We can now state the anomaly formula fof-Ray—Singer torsion elements as follows.

Theorem 3.4. The following identity holds

(2) ' TM 1F /

T M F, ,

log (2)( ¢ 8 ) f (Iogp—F)e(TM,vTM>
Ty (M F,gTM oF) M PF

1 -
+§/ OF, ¢ He(rm, vTM v, (3.15)
M

In particular, if dim M =n is odd then

Tes(M, F, g™ ¢
T2 (M, F, g™, gF)

log =0. (3.16)

Theorem 3.4 will be proved in the next subsection.

Remark 3.5. Eq. (3.15) generalizes the anomaly formula of Bismut—Zhg@hdrheorem 0.1}fo the
infinite covering space case. Also, wherf, VF) and(g’", V') are unimodular, (3.16) is a special case
of [6, Theorem 13.8]

3.4. A proof of Theorem 3.4

We first give a slightly more flexible formula of the2-Ray—Singer torsion elemeﬂyé (M, F,

g™ ¢F) defined in (3.8).

Foranya >0, let(C*, dF) be afinite lengtht"(I")-Hilbert cochain subcomplex 61.2(Q*(M, F)), dF)
such that(L[0 ](Q*(M, F)), d") is a subcomplex ofC*, dF). That is, as/"(I')-Hilbert cochain com-
plexes, one has

(L2 (2% (M, F),d") < (c*, d"). (3.17)

Letdgf : C* — C* be the formal adjointaff : C* — C* with respect to the induced Hilbert metric
on C* from that of L2(Q*(M, F)). Set

Des =d +dfr, DE. =@ +alr?=afrat +aFaly: c* > c*, (3.18)
ThenD%* preserves th&-grading ofC*. Moreover, one has

Di.=D?: L% (" (M, F)) — L% (2" (M, F)). (3.19)
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For any 0<i <n, let D2, denote the restriction ab2., onC'.
By (3.17) it is clear that the extended cohomology (6f*, dF) is identical to that of(L[Oa
(Q*(M, F)), dF) That is, one has

a*(C*, dF) = # Q@ (01, F), d"). (3.20)

From (3.20), one sees thaC™, d") induces canonically ar.2-torsion element in det'2
(Q*(M, F), dF). We denote it by

T e det # Q@ (M, F), d"). (3.21)

(c*.dF)
For anys € C with Re(s) > n/2 and for 0<i <n, set
i 1 oo s—1 n2
Cc*,L(s) = m /0 r (TF,M[EXP(—tD |L2(Qi([q7f))))]
— Tr[exp(—tD?2,)]) dt. (3.22)
If we rewrite the right-hand side of (3.22) as

too _ _
57HTr o lexp(—tD?), 2,00 5 20)] — Tt - [exp(—t D? o= )]) d
I'(s) /0 (Tr_[exp( |L2(Q (M,F)))] wlexp( |L[20$a](Q (M,F)))])

1 +00 B N
+r(s) / zs 1(Tr_/V[exp(—tDzlleo,aJmf<M,F>>>]‘Tf.,/v[exp(—tDzi)]) dr, (3.23)

then in view of (3.17) and (3.19), one sees that e;éC(;h (s), 0<i<n, is a holomorphic function for
Re(s) > n/2 and can be extended to a meromorphic functiotCamhich is holomorphic at = 0. Let

T(C*’dp)’L € R™ be defined by
1 " ot | (5)
log 7 .. dFy, 1= Z( D'i % . (3.24)
i=0 s=0

Proposition 3.6. The following identity holds idet %(2>(Q*(M F) dF)

T2M, F, g™ ¢f)=T T

(C*.dFy. L (3.25)

(c*.afy’

Proof. By (3.17), one can splitthe cochain compl(éX, dF)to the directsum oa‘L2 (Q*(M F)) dF)
and its orthogonal complement, which is clearly acyclic. Proposition 3.6 then foIIows easily from Propo-
sition 2.8, Definition 3.3 and formulas (3.6), (3.7) and (3.21)—(3.24).

We now come to the proof of Theorem 3.4.

Let gI'M (resp.gl), 0<u <1, be a smooth path of metrics @M (resp.F) such thatgl ¥ = gT™,

™™
giM=g"" (respgl =g, el =¢

When dealing with objects associated wig ™, ¢1), we will use a subscriptu” to indicate. While
atu = 0 we usually omit this subscript indication.

/F).
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Proposition 3.7. For anyu € [0, 1], one can construct a finite length'(I')-Hilbert cochain subcomplex
(C*(u), d¥) of (L2(Q*(M, F)), d") such that
(i) One has the inclusion relation of cochain complexes

(L2 10.0(Q* (M, F)),d") € (C* (), d"). (3.26)
(i) The cochain comple¢C*(u), dﬁ) depends smoothly ane [0, 1].

Proof. We will use a trick due to Fangbing W86] (cf. [18, Section 2.4}

For anyk >0 and O<u <1, let Po 1, denote the orthogonal _projection frobf(Q*(M F)) onto

L, k](Q*(M F)) c LZ(Q*(M F)), where we V|e\/\L[0 k](Q*(M F)) C L2(Q*(M, F)) as a (closed)
subspace iL.2(Q*(M, F)).

It is clear that for any fixed > O, Pjo x},, depends smoothly am € [0, 1].

Lety: R — [0, 1] be a smooth function~sugh thatt) = 0 if t <2 while y(z) = 1if t >5.

Theny(D?) : L2(Q*(M, F)) — L?(Q*(M, F)) depends smoothly om € [0, 1]. Moreover, for any
0<u <1, inview of Theorem 3.1, one sees easily that the closure of the image of

Id — 4(D?) : L2(Q*(M, F)) - L2(Q*(M, F))

is a finitely generated/”(I")-Hilbert module.
One then checks easily thatlas> +o0,

(Id — x(D?)) Pyo.sy.u — 1d — 7(D?) (3.27)

in the operator norm. Moreover, the convergence is uniform with respecttfo, 1].
Let nowk > 10 be fixed such that for any € [0, 1], one has

10d — 2(D2)) Piosy.u — (1d = (D) lo.u < 3, (3.28)

where in the subscript of the left-hand side, “0” indicatestRenorm, while ‘u” indicates the parameter
u € [0, 1].
Rewrite (3.28) as

10d = Por.) — 2(DAUd — Pio ) llow < 3. (3.29)

Now we apply[36, Lemma 2.4]recalled in[18, Lemma 5 in Section 2.%]which can be thought of
as a noncommutative generalizatiof24, Lemma 1]

For anyu € [0, 1], we denotePjo,.(x) the orthogonal projection fromLz(Q*(M F)) onto
Im(X(D 2y(1d — Pio,k1,4)), which by Wu[36, Lemma 2.4{s closed. Fronfi36, Lemma 2.4]one knows that
Pro,k1, () i1s smooth with respect to < [0, 1].

For anyu € [0, 1], set

C*(u) = (IM(Pios1. () = (IMx(D?)(Id — Piosy.)) ™ C L2(Q*(M, F)). (3.30)

We first observe that all the operators appeared abové -&guivariant and preserve the obvious
Z-grading through out the context. Théri(z) admits an obviouZ-grading.

We now show thail ¥ preserve<* () for anyu < [0, 1].
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Take anyx € C*(u), by definition, we know that for any e LE(Q*(IVI)), one has
(z(D2)(1d = Piojg.u)y. ), = 0. (3.31)

Letd!* denote the adjoint af* with respect to the inner product @rf (Q*(#, F)).
From the obvious identity

d" Poxr.u = Posud” Posu (3.32)

one gets
P dF*P =P dﬁ* 3.33
10.k1,udy ~ Proxlu = Poiudy, ™ (3.33)

which implies
d*(1d — Pio ) = (Id — Po ) dl*(d — Pos.u)- (3.34)
From (3.31) and (3.34) one deduces that for ary C* (1) andy € Lﬁ(Q*(]VI)), one has

(1(DH(1d = Poa)y. d” ), = (1D (1d = Pioju)y. x),
= (1D (Id = Poyg.)d, *(1d = Pou)y. x), =0, (3.35)

which implies that/¥ x € C*(u). ~

Thus, for anyu € [0, 1], (C*(u), d¥) is a cochain subcomplex (ﬁ,f(Q*(IVI, f)). From (3.30), one
sees it depends smoothly ere [0, 1], which proves the second part of the proposition.

On the other hand, by the definition paind by (3.30), one gets (3.26) immediately.

It remains to show that as an'(I")-Hilbert module,C*(«) is finitely generated. By Theorem 3.1, this
follows from the following result.

Lemma 3.8. There existK > k such that for any: € [0, 1], one has
L2 [k 4oy (@ (M, F)) S IM(Pos1.u(2))- (3.36)
Proof. Let Pk +o0)(u) denote the orthogonal projection from,f(Q*(A?, F)) onto Llf’[
(Q“(M, F)).
Sincek > 10, by the definition of;,, we need only to show that

K ,+00)

L2 (k400 (@ (M, F)) = IM(P(k 40) (1) P14 (7))
=IM(Pg, +o0) @) (Id — Pjox).u))- (3.37)
In order to prove (3.37), observe first that there exist constant®, B > 0 andC > 0 such that for
anyu € [0, 1], one has that (cf. with (3.28) for subscript notation convention)

1
ol llowsli-llo<Cll - llo, (3.38)

and that for any € Q*(M, f), one has
I1Duxllo.u <A(IDxllo + Blix[lo). (3.39)
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Now assume that (3.37) does not hold for> k and some: € [0, 1], then there exists a nonzero
elementx € Lu (K. +Oo)(Q*(M F)) such that for any € LZ(Q*(M F)) one has

(PiK +o0))(Id — Pio1,u)y, ), = ((Id — Piox1u)y, x), =0. (3.40)
From (3.40), one sees thate Im(Pyo..) = L (2°(M, F)). Thus, one has

I Dx o<~k x]lo. (3.41)
From (3.38), (3.39) and (3.41), one gets
I Dyuxll0.0 <C(AVK + B)|1x]lo. (3.42)

On the other hand, sincee Li[K’JrOO)(Q*(AA/VI, F)), by (3.38) one has

~ VK

I Duxllo > VK Ixllow == Ixllo. (3.43)
From (3.42), (3.43) and the assumption that 0, one finds

K <(C*(AVk + B))*. (3.44)

Thus (3.36) holds wheR > k + (C2(Avk + B))>.
The proof of Lemma 3.8 is completed

The proof of Proposition 3.7 is thus also completed]

Remark 3.9. The method in the proof of Lemma 3.8 can also be used to give a direct analytic proof
of (3.27).

We now come back to the proof of Theorem 3.4.
By (3.25) and Proposition 3.7, one gets that for ary0< 1,

(2) -
T (M F g agu ) T(c*( )dF) T(C*(u),dF),l' (345)
For anys € C with Re(s) >n/2 and O<u <1, set
n
0,(s) = Z (=) il .1 (5)- (3.46)

i=0

Let N denote the number operator 8i(M, F) acting by multiplication by on @/ (M, F). It extends
to obvious actions oi.2-completions.
From (3.22) and (3.46), one can rewritg(s) as

1 00 ~
Ou(s) = o / T [N exp(—t D] — Tr s [N exp(—t DZ. )] dt, (3.47)
S
where Tty s[-1=Tr - [(— HN. -] is the supertrace in the sense of Quil[80], taking on bounded”(I")-

linear operators acting a@* (M, F) as well as theit.2- -completions. In what follows we will also adopt
the notation if30] of supercommutators.
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By proceeding asif19, Lemma 8] one gets the following analogue[@B, (35)]in the current situation

0 ~ oD?2 -
—Tr - s[N exp(—tD?)] = —1Tr u —tD?)|. (3.48)
ou ’ ’ ou

We now proceed similarly as {31] and[2, Theorem 1. 18]

Let*F denote the Hodge star operator mapping fl@TﬂM F)toQ*(M, F ® o(T M)) with respect to
g™ andg whereo(TM) is the orientation bundle o;f(TM) Letx, be the usual Hodge star operator
associated thM for the F = C case (cf[37, Chapter 4] Then one has

0. = () ——( L g“. (3.49)
A direct verification shows that, when acting (M, F), one has

dF = (~1) () LgF@oTil) | F (3.50)
From (3.49) and (3.50), one gets

a ~ ~
adf* = [df*, 0.1. (3.51)

On the other hand, by (3.3) one verifies directly that

[Dy. N1 = —d* +aF*, (3.52)

From (3.3) one deduces that

oD? ~ [ [~ 0 = ~
Tro s | N4 —tD?) | =Tty s | N | Dy, —dl™ | exp(—t D?)
B au u ) u u

ou

[ [~ oaf* ~
= Trﬂ"",s N | Dy, a_u exp(—tDL%)
u

B - adf*
=Tr 5| [N, D,]—
ou

exp(—tﬁf)}

Fx

od,
+Trs |:Du, N exp(— tD )i| (3.53)

Clearly,

~ adf * ~ I ~5\ ~ adlE * t ~
Trys | Dy, N—"—exp(—tD?) | =Tr | exp( —= D?) D,, N —"— exp| —= D?
’ ou ’ 2 ou 2

—0. (3.54)
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Using the fact thaﬂf* commutes withﬁg, by (3.51) and (3.52), one deduces that
Trﬂ’”,s |:[N, Du] 5
ou

exp(—t55)i|
=Tr o 0@ —d*)al*, o, exp—D?)]
—Tr s [exp(—% 53) @Faf*, — af 0 af* + af 0, exp(—%f)iﬂ
=Tty s[Qu(@ dl* + af*a") exp—1 D2 (3.55)
From (3.3), (3.48) and (3.53)—(3.55), one gets
% Tr s [N exp(—t DA = 1 %Tr,,,v»,s[Qu exp(—1D})] (3.56)
(cf. [2, (1.113)).

On the other hand, for any<Qu <1, let Pc+(,) denote the orthogonal projection frobf;(Q*(M F))
ontoC*(u). Then by Proposition 3.7¢+(,, depends smoothly am € [0, 1]. Moreover, one has

d¥ Pory = Poruyd® Pos.- (3.57)
Letdgf(u) C*(u) — C*(u) be the formal adjoint of
dCF*(u) = Pcrnyd! Pesqey : C*(u) — C*(u). (3.58)
Then in view of (3.57), one has
dE oy = Perwdy " Perw = Perady " (3.59)
Set

One has, similar as in (3.52), that
[5C*(u)» N]= dC*(u) + dC*(u) (361)

In order to have a formula fc(n@/au)dc* similar to (3.51), by using (3.51) and (3.59), we compute

(u)
0

F F F F
™ —dgiy = (PC*(u)du )= (a PC*(u)) d, "+ Pesw 5, du *

3 - -
= <a PC*(u)) d,f* + PC*(u)[df*, Oul

5 _ - -
B (a_ PC*(u>) " + Perud,* Qu — Peruy Qudy *

a ~
C*(u)’ Oul+ ( PC*(M)) df* + QuPC*(u)d — Per(uy Qudl™. (3.62)
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SinceC* (u), 0<u <1, are finitely generated Hilbert modules, one sees easily that an analogue of (3.48)

holds forD%*(u) Thus, by using (3.61), (3.62) and proceeding as in (3.53)—(3.56), one deduces

9 - i 65%* -
S TrrsIy exp(—1 D2, ) = —1Tr g [N T(”) exp(—t D+ ()

f
= —tTry s | [N, Dc*(u)] (u)

exp(— tDC*(u))

3 ~
= [a TrJ/‘,S[Qu exﬁ_tD%*(u))]

OPc+()

—tTr s |:(dCF*(M) c*(u)) ( dF* + 0, Pc*(u)d,f* — Pc*(u)QuduF*> eX[X—tD%*(M))]

0

—1Trp [(dcf*m) —dfr) <P et GF Py + Qul P df *]> exp(—t 5%*@{))] :
(3:63)
Denote for O<u <1 that
F) = @y — dEz) (Pc«u) an;(”) dF* Pesy + Qul Pery df *J) - (3.64)

SinceC*(u) containsL2 o ;,(2*(M, F)) for 0<u <1 (cf. (3.26)), one sees that whep> +oo,

Tr s [Qu exp(—t D] — Tr 4 [Qu eXp(—1 D )]

is of exponential decay. ~ ~
On the other hand, since, when restricted to the subcon@%hl](sz*(M, F)),dF) of (C*(w),d"),

dl* commutes withPc+ (), while

OPc+ ()
ou

Pexu) Pcxuy =0, (3.65)

from (3.64), (3.65) one gets

f(u)|L5.[O.l](Q*(A7,F)) =0. (3.66)

From (3.26) and (3.66), one sees that as +o0,
Try s Lf u) exp(—1 DZ. )]

is of exponential decay.
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By (3.47), (3.56), (3.63), (3.64) and (3.66), we have fo(sRéarge enough that

0,(s) 1 [T 0 - ﬂ .
ou  I(s) /o 4 a_t(Tr,/V,s[Qu exp(—1D;)] — Tr i s[Qu eXp(—1 D ,))]) dt
1 o T sl exp(—t D2, )] dt
1) Jo AsLf () €X(—=1 D))
_—_S e s—=1 R NI ) =2
=T® Jo £ s[Qu eXp(—1 D)1 = Tr y s[Qu eXp(—1 Dgs(,)]) dt
1 +00 N

Now by proceeding as ifl9, Lemma 4] and using the standard heat kernel asymptotic expansion
on the closed manifol1, one sees that as— 0T, for any positive integer one has an asymptotic
expansion

l
Tr v s[Quexp(—tDDl = Y Mjut! +o(t"). (3.68)
j=—n/2

From (3.67) and (3.68), one finds that for ang 0<1, one has
0 (aou(s)

5 os

) = — MO,u + Tr{/t”",s[Qu PC*(u)]
s=0

oo ~
- /0 Trps[f (w) exp(—t DZ. )] dr. (3.69)
Now observe that at = 0, by (3.30), one has
(C€*(0), dF) = (L7 (@*(M, FY), dD). (3.70)
Thus one again has the fact tlaggt* commutes withPc+(,), which, together with (3.65), implies that
() =0. (3.71)
From (3.24), (3.46), (3.69) and (3.71), one finds

dlogT, F M 1
(C*(u),dF), L 0,0
=20 L T Tr P . 3.72
” > + > 1T s[QoPc+0)] ( )
u=0
Now let us consider the variation GS[CW) JF) nearu = 0.

Observe that for any, o’ € C*(0) = L% ,,(2"(M, F)), the induced inner product of them @ (u)
is given by

(Pcxwyw, Poruy'), = (o, Peruyo'), = /Jw A *EF Pory o) 7
M

= (0, 1)L T Pesp o). (3.73)
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Set for O<u <1 that
Au = Pc*(o)(*F) k PC*(M)PC*(O) C (0) —> C (0) (374)
From (2.25)—(2.27), (3.21), (3.73) and (3.74), one finds,
T w,a) 1¢ ~
log ~—“2 = -2 Z (—1)' log Det., ,, (Aulci(o))- (3.75)
T, * F 2 .
(C*(0),d™) i=0
From (2.16) and (3.75), one deduces
0 T cxwy.aF 1 0A,
 jog €D _ Ty [A_l } (3.76)
Ou T(C*(O)’d;) ou

By (3.74), one sees directly that
Au|u:0 = Id|C>“(O)- (377)
From (3.49), (3.65), (3.74), (3.76) and (3.77), one finds

0 TC* daF 1 =~ L 0xF
a— |Og % = — E Tr.,/V,s |:PC*(0) (*F) 1 p U PC*(O)
lu=0  L(c*(0).aF) S
1
= — ETI'U,V,S[Qopc*(O)]. (378)

From (3.45), (3.72) and (3.78), one gets

3 T(Z)(M F, guTM,gu) Moo
= S 0 (3.79)
Since (3.79) holds for arbitrar()gTM, ¢f), one gets indeed that for anyg® <1,
(2) 17
0 Toc(M, F, , M

ou T TR (M, F, (T gh) 2

Now by using[19, Lemma 4Jagain, one sees that for any@ <1, My , is exactly the same quantity
appears iff4, Theorem 4.14]lwhere a similar result is proved for the usual Ray—-Singer metrics.

Formula (3.15) then follows from the evaluation of thg ,, O<u <1, in[4, Theorem 4.2Q]and an
integration from O to 1 of the obtained result.

The proof of Theorem 3.4 is completed

Remark 3.10. As was mentioned in Remark 2.3, the “torsion element” dealt with here is dual to the
Ray—-Singer metric discussed[#1, at least in thd” = {e} case. This explains that the right-hand side of
(3.15) differs from that of4, (4.13)]by a factor of—3.

Remark 3.11. If for any u € [0, 1], Speo:DZ) contains a nonempty gap, then the proof of Theorem 3.4
can be simplified a lot. Here we did not make this assumption as usuallfﬁf)ea € [0, 1], may not
be discrete whem is an infinite group.
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4. Infinite covering spaces and a formula relatingL2-Milnor torsion element to L2-Ray—Singer
torsion element

In this section, we state the main result of this paper, which is an extensjdnTdieorem 0.2]n the
infinite covering space case, and prove it modulus two intermediate results.

This section is organized as follows. In Section 4.1, we recall Shubin’s de Rham theorem for extended
cohomologies. In Section 4.2, we state the above mentioned main result of this paper as Theorem 4.2. In
Section 4.3, we state two intermediate results and prove Theorem 4.2.

4.1. An extended de Rham theorem

We assume that we are in the same situation as in Section 2.4.

By a simple argument of Helffer—Sjostrafib, Proposition 5.1{cf. [4, Section 7b}, we may and we
well assume thagTM there satisfies the following property without altering fifeThom—Smale cochain
complex(C*(WY, F),d),

(%) For anyx € B, there is a system of coordinates= (y1, ..., y") centered ax such that neax,
n 1 ind(x) 1 n
gM=D YR f=f@ =5 Y P Y A (4.1)
i=1 i=1 i=ind(x)+1

By aresult of Laudenbadi7], {W"(x) : x € B} form a CW decomposition d¥l. As a consequence,
{WH(X) : ¥ € B} form a ("-equivariant) CW decomposition o4 .

For anyx e B, F is canonically trivialized over each céif¥(%).

Let Py be the de Rham map defined by

we Q" (M, F)N LQ*(M, F)) — Pogo= Z WY )™ f % e C*(WY, F). (4.2)

WU
¥eB @

Let Hl(M F) denote the first Sobolev space with respect to a (fikeidyariany first Sobolev norm
on Q*(M F) By Stokes theorem, one verifies that when actlngzb(M Fyn Hl(Q*(M F)) one has

From (4.3), one deduces easily tifat induces & -grading preserving homomorphisﬁf between the
extended cohomologies (¢6,13,33),

BY @@ (31, Fy,d") — #*(c*(W", F). ). (4.4)
The following theorem has been proved by Shulpg3( Theorem 3.1)]

Theorem 4.1. The canonical homomorphisﬁg{f in (4.4)is an isomorphism

By Theorem 4.1, the isomorphisﬁgf in (4.4) induces a natural isomorphism between the determinant
lines,

PUts . det 2 (Q* (M, F), d¥) — det #*(C* (WY, F), D). (4.5)
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4.2. An extended Cheeger—Miiller theorem

Let /'™ be an arbitrary smooth metric 6iM. Then by Definition 3.3, one has an associated
L2-Ray-Singer torsion element

TR M, F. k™  ¢F) e det # 2 @* (M, F),d"). (4.6)
From (4.5) and (4.6), one gets a well-defined element
PI (T @ (M, F,h™™, gF)) € det #*(CH(WY, F), D). (4.7)
On the other hand, by Definition 2.9, one has a well-defib&dilnor torsion element
Pl F.gF—x) € QLA (CHWY, F). D), (4.8)
whereX = V f is the gradient vector field dfassociated tg” ™.
Let y(TM, VIM) be the Mathai—Quillen currerf23] over TM, associated t&’™, defined in[4,
Definition 3.6} As indicated in4, Remark 3.8]the pull-back currenk*y(T M, VM) is well-defined
OV'T'L'ZI .main result of this paper, which exterjdsTheorem 0.2}o the infinite covering spaces case, can

be stated as follows.

Theorem 4.2. The following identity irR holds

o~
PSR (TQ (M, F,hTM gF)) 1

log > /M 0F, WYX (T M, vTHM). (4.9)

P, F.gF,—X)

Remark 4.3. If I' = {e} is trivial, then (4.9) reduces tp4, Theorem 0.2] which generalizes the
Cheeger—Muiller theorem (cf12,26,27) to the case of general flat vector bundles. It is interesting
to observe that the right-hand side of (4.9) does not deperid on

Remark 4.4. When T is infinite, » = dim M is odd andv’ preserves the volume form determined
by ¢ on det(F), Theorem 4.2 was proved [6, Theorem 13.8]WhenT is infinite and(M, F) is of
determinant class (cfi8]), Theorem 4.2 was proved ji] (cf. [7, Remark to Theorem 1.1 in Section §.1]
as an extension of the main result[8f to the nonunitary case. Both proofs[if6] use essentially the
concept of “relative torsion” introduced [d1]. In what follows, we will give a direct heat kernel proof
of Theorem 4.2 in the spirit d#].

4.3. Witten deformation and a proof of Theorem 4.2

First of all, in view of Proposition 2.10 and Theorem 3.4, by proceeding gk Bection 7b]in order
to prove Theorem 4.2, we need only to prove it in the case winee= g7 . Moreover, we may well
assume thag’ is flat neaB. From now on, we will make these assumptions.
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Let Trs(M, F, g™, g") (resp.p(y r o# _x)) be the Ray-Singer (resp. Milnor) torsion element cor-
responding to thé = {e¢} case. Theid, Theorem 0.2]in the above choice of metrics, takes the form
PdetH T M, F, TM’ F 1
log Lo (TRs( g .8 _1 / OCF, hFYX* (T M, VM), (4.10)
P(M,F.gF ,—X) 2 Ju

Thus, in order to prove Theorem 4.2, we need only to prove the following identRy in

o
PEUA (T (M, F, g™, g")) P (Trg(M, F. g™ g"))

(4.11)
P(M,F.gF,—X) P(M.F.gF ,—X)

In what follows, as above, whenever we do somethingf/brwe will assume the same thing has been
done onM also, and the results av will be formulated through the corresponding resultsidrby
simply withdraw the “~” notation. Also, while onM we use “#” to denote the extended cohomology,
we use H” to denote the cohomology dvi.

Asin[4,8,7], we will use the deformation associated to the Morse fundtiottoduced by Wittei35]
to prove (4.11).

Recall from[4, Section 5bthat the Witten deformation is equivalent to a deformation of the metric on
the flat vector bundI€&. Thus, following[4, Definition 5.1] for anyT >0, Ietgf be the smooth metric
onF given by

gr =€ 2T/ gh, (4.12)

LetL%(Q*(A?, f)) be the associated Hilbert space. Hét“ be the corresponding formal adjointa)?.
Recall thatf denotes the lifting of on M. Then one has

dFr = 17 gFe=21T . o* (31, F) — *(M1, F). (4.13)
Set
Dr=df +af*, D2 = +af2=af*af +aFaf>. (4.14)
Then D? preserves th&-grading of@* (M, F). Let
(L2.(Q*(M, F)),d") : 0> L2(Q°(M, F)) < L%(QY(M, F))
N d—F; L2(Q"(M,F)) - 0 (4.15)

denote the corresponding deformed compIeXLc?f(Q*(M, F)), df) in (3.2).
By [8, Proposition 5.2Jand [32], one knows that there exigt’ >0, C” >0 andTp > 0 such that
whenevelT > Ty, one has

SpeeD2) N (e €7, C"'T) =4. (4.16)

We may well assume that tifg above can be chosen so that e €T, C"T) for T >Tp. Then (4.16)
allows us to split the deformed compIeK%(Q*(M, F)),dF) into an orthogonal direct sum of two
subcomplexes,

(L2(Q° (M, F)), dF) = (L3 10,1, (2" (M, F)), d¥) @ (L2 1 o) (@*(M, ), dD), (4.17)
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whereL2. o 1(Q"(M, F)) (resp.L2 (Q*(M F))) is the image of the spectral projection b
corresponding to the spectral mter‘yej 1] (resp.[1, +00)).

It is clear that splitting (4.17) ig-equivariant.
For anyT > Tp, let P», 7 denote the restriction cﬂ’ on L T.00.1] (Q*(M F))

Poo.r = Poo t L} 04(Q* (M, F)) — C*(WY, F). (4.18)
By (4.3), one has
3o = Poo.rd” . (4.19)
By Theorem 4. 1,POo 7 induces an isomorphism between the extended de Rham cohomology and
HE(CH(WY, F) 3). Thus it induces an isomorphism between the determinant lines

PALS - det #'BQ* (M, F), d") ~ det #* (L3 1o (2 (M, F)), d")

— det #*(C*(WY, F), D). (4.20)

Clearly, by choosingy sufficiently large, all these discussions also holdvhn
By Theorem 3.44, Theorem 0.1]and using the notation in Definition 3.3, one sees that (4.11) is

equivalent to
ﬁdetf%)(g‘ (M F ™ ))
’T [0,1] k) ’ g ) gT ~
= 9'[1,+OO)(M, Fa gTMagﬁ)

P(M.F.gF.—X)

PdetH(J (M F TM’ ))
[0,1] 8 8r (4.21)

'9—[1,+OO)(M5 Fvg agT)

P(M,F,gF,—X)
where we use the notation for torsion elements, in order to avoid possible confusions with the notation

T for the deformed parameter.
We now state two intermediate results which will be proved in the next two sections.

Theorem 4.5. The following identity holds

P (T1o0(M, F, g™, ¢f)) P (T 00(M, F, g™ g)

log — log =0.
P(M,F.gF,—X)

lim
P(M,F,gF,—X)
(4.22)

T—+o00

Theorem 4.6. The following identity holds

Nim_ (109 711,400 (M, F, g™, ¢) — 109 71,100 (M, F, g™, 7)) =0 (4.23)
Proof of Theorem 4.2. By Theorem 3.4 anf#4, Theorem 0.1]one knows that
P (T 100(M, F, g™ gy
P(M,F,gF ,—X) T 1400 (M, F, g™ g5 (4.24)

PR (T 100(M, F, g™  gf))  T(1400)(M, F,gT™™ ¢k

P(M,F,gF —X)
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does not depend ofi >0. By Theorems 4.5 and 4.6, one sees that it equals to 1. Thus, one gets (4.21)
which implies (4.11).

From (4.10) and (4.11), one gets (4.9).

The proof of Theorem 4.2 is completed

Remark 4.7. Itis clear that the strategy of the above proof is similar to tho$4,ii8], where one uses

the Witten deformation and studies the asymptotic properties of the small and large eigen-complexes. A
notable point here is that by Theorem 4.6, one is able to avoid the repeat of the local index computations
in [4, Sections 12—-15Moreover, as one compares directly with the usual Ray-Singer torsion element,
one is able to avoid the comparison argumen{d j8], and thus able to prove Theorem 4.2 directly.

5. A proof of Theorem 4.5

In this section, we prove Theorem 4.5. Recall that an asymptotic formula for

PSS (Ton (M. F. g™, 1))
log —2T 0.1 7 asT — 4oo,
P(M,F,gF —X)

has been established[#, Theorem 7.6]Thus, we need only to show that a similar asymptotic formula
holds for

log PI (To(M, F, g™  ¢k)

P, F,gF ,—X)

While such an asymptotic formula can be proved by usingltfhélelffer—Sjostrand—Witten theory
developed i8], we will use anL2-generalization of the arguments [, Section 6]to prove it (the
idea of using an extension of the argument§SinSection 6]to prove anL2-Cheeger—Miiller theorem
first appeared ifil5], where Gong dealt with the case whéré preserveg’ and the Novikov—Shubin
invariants associated {@/, F) are all positive).

We continue the discussion in Section 4.3.

For anyT >0, following Witten[35], set

df =eT/afel/, 55* — el TaF*e T . o* (3. F) — (3. F). (5.1)

Thenéf* is the formal adjoint of:if with respect to the usual inner product (associate@ td?, g7))
onL?(Q*(M, F)). Set

~ o

D'y =df + o, D% =l +oF*)? = sF*aF 4 aFob>, (5.2)

ThenD’> preserves th&-grading of@* (i, F).
The following formula is clear (cfi4, Proposition 5.4)}

D'y =e T/ Drel/f, 5@ —e T/ D2el/, (5.3)
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Let
o~ o~ ~ ~ ~ dF - o~
(L2(Q*(M, F)),dE) : 0 — L?(Q°(M, F)) > L*(Q'(M, F))
d; 2/ /A1 T
— .= L¥Q"(M,F)) > 0 (5.4)

denote the corresponding deformed complekIGi(@* (M, F)), d) in (3.2). .
From (4.16) and (5.3), one sees thatfas 0 is sufficiently large(L2(Q*(M, F)), df) decomposes
to an orthogonal direct sum of two subcomplexes,

(L2Q (M, F)), df) = (L3 3y 1 (@ (M, F)), df) @ (LY, o) 1(Q°(M, F)), df), (5.5)

whereL? ;7 (Q*(M. F)) (resp.L? , ., 7(Q*(M., F))) is the image of the spectral projection bf-
correspon |ng to the spectral |nter‘{/éj 1] (resp.[1, +00)).
Let Po,1y, 7 (resp. PLO 1, T)denote the orthogonal projection frdig (* (M, F)) (respL?(2*(M, F)))

onto L% 10.1] (Q*(M F)) (resp. L[0 1. T(Q*(M F))) Then by (5.3), one has
Poyr=¢""Poare’. (5.6)

Thus, the linear map — e 7/ identifiesL2 o, (2*(M, F)) isometrically withL2, |, (@*(M, F)).
Lete > 0 be such that for any € B, (4.1) holds on

By(x,e)=1{yeM:d® " (x,y)<e),

and thatgF is flat on By (x, €). Such are > 0 clearly exists.

For anyx € B, we use the local coordinate systéit, ..., 7) lifted from (4.1) neax = n(X) € B.
In particular, R'”d(x) ~ TWY(X) inherits an orientation from the orientation Bf(x). Let p; be the
volume form on the oriented vector spaREI®) . One can assume that, ..., 5"™ are such that

pr=dyt A A dPNAO), (5.7)
Lety : R — [0, 1] be a smooth function such that
p@) =1 if a<3, whiley@) =0if a>1. (5.8)

If y € R", set

()—/('y') (5.9)

_We can consider as a smooth function defined dd with nonnegative values, which vanishes on
M\Bj; X, ¢).
For anyT > 0, set

ur = /R W23 exp(—TI71?) dF. (5.10)
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Clearly, there ig: > 0 such that a§ — +o0,

T

ar = (?>"/Z +o@E™). (5.11)

Following[4, Definition 8.7; 5, Definition 6. 5]foranyT > 0, letJ; be the linear map fror@* (WY, F)
into L2(2*(M, F)) such that it € B, h € Fz,y € By (X, ¢),

~ .. ~ ~T1y|?

Clearly, JT is an isometry frorrC*(W“ F) into LZ(Q*(M F)) which preserves thg-grading.
Letel, : C*(WY, F) — L[O 1. T(Q*(M F)) be defined by

ET = P[O,l],TJT' (513)

The following L2-extension of4, Theorem 8.8; 5, Theorem 6.Z&n be proved by an easy adaptation
of the arguments if4, Theorem 8.8; 5, Theorem 6.f¢j theL2-setting (cf[8, Proposition 5.4; 15, Lemma
3.6)).

Proposition 5.1. There existg > 0 such that ag” — +o0, for anys € C*(WY, F),

@ — Jr)s =0 T)s uniformlyon M. (5.14)
Leter : C*(WY, F) —> L% o 1,(Q*(M, F)) be defined by

or=el 72 (5.15)

Using Proposition 5.1, the followind.?-extension of[5, Theorem 6.9)can be proved by an easy
adaptation of the arguments[, Theorem 6.9}o the L2-setting (cf.[15, Lemma 3.6}

Proposition 5.2. There existg > 0 such that ag" — o0,

ever =1+ 0. (5.16)
Moreovet for 7 > 0 large enough?y : C*(WY, F) — L2 o 1 (*(M, F)) is an 4 (I")-linear isomor-
phism between thé-graded.+"(I')-Hilbert modules

Proof. Formula (5.16) can be proved in the same way agjirheorem 6.9]cf. [15, Lemma 3.6}
Moreover, an easy argument (E£5, pp. 75—76) shows that

IM@7) = L% 0,1,(Q* (M, F)). (5.17)
The proof of Proposition 5.2 is completed

Recall that the map?oo T L 0. 1](Q*(M F)) — C*(WY, F) has been defined in (4. 18)

LetZ : C*(WY, F) — C*(Wu F) be acting orW“(x)®F,7,x € B, by multiplication byf(x) Also,
we still denote byN : C*(WY, F) — C*(WY, F) the operator acting o6 (WY, F) by multiplication
byi.
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The following L2-extension of5, Theorem 6.11tan be proved by exactly the same arguments as in
[5, Theorem 6.11{cf. [15, Lemma 4.2).

Proposition 5.3. There existg > 0 such that ag" — +o0,

~ = u\N/2-n/4 .
Poorer =€l <T> 1+ 0@<Ty). (5.18)

In particular, for T > 0 large enoughFoo,TET L CH*(WY, F) — C*(WY, F) is an.#"(I')-linear isomor-
phism betweei -graded./"(I')-Hilbert modules

From (4.19) and Propositions 5.2, 5.3, one sees that Wwhe is large enough,
Poo1 L% 104)(Q" (M, F)) — C*(W", F) (5.19)

is a cochain isomorphism between finite length cochain complexgs(@h-Hilbert modules.
From Proposition 2.7, one deduces easily that

PEY (TouM, F.g™  gf

) -
=[] pet, ., (P% 1 Poo.1,2
i=0

L (=D2
2 oy (@ (1. F)) : (5.20)

P(M,F,gF,—X)

which can be thought of as drf-extension of5, Theorem 6.17]
Now for any 0<i <n, by Propositions 2.1, 5.2 and 5.3, one computes that Whe is large enough,

Detr,m(r)(P:QTPOO’T|L%[o,1](9i(ﬁ’ﬁ)))
=Det (ETE?P:QTPOO’T|L%,[0,1J(Qi(ﬁ7[’f)))
-1~ ~ ~
’ Detu ) (eTE%L'Zn[O’l](Qi(M’F)))
= Det. , , ((Poo,727)" Poo, 727 | ci v 7)) - Det:}(l,) (ererlciqwu, 7))
D n\N-n/2 > ¢
= Detum <(1+ O(e LT))*(T) 17 d+0e CT))|Ci(Wu’ﬁ))
-Det ! (L+ 0€ )iy i)
T\N—n/2 = _ —
= Det, ,,, (‘) 71+ 0TI+ o Ty -
T CHWY,F)

AT
-Det ! (L+ 0@ M)y ) (5.21)

From Proposition 2.1 and (5.21), one deduces thdt as +oo,

log D pr P ~ =y =rk(F) (i = L) log(Z
o9 etf'‘”“)(PO‘”TPOO’T|L%[o.,1](Qi(M’F)))_r ( )<l B E) 9 (7)

+2Tk(F) Y fx) +o(). (5.22)

x€B,ind(x)=i
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Following [4, (7.13)—(7.15)]we introduce the notations

dim M
(Fy= > (=)' dim H (M, F) = rk(F) Y (-1,
i=0 XEB
7 (F)=1k(F) Y (-=)™Wind(x),
xeB
T 1= ()M £ (). (5.23)
xeB

From (5.20), (5.22) and (5.23), one gets thaf'as> +o0,

Pdetz/ M F, TM,
og 7 (7 10,11( 8 8r ))_Trk(F)Trf[f]_( 1(E) = o )) g<;)

P, F.gF,—X)
— 0. (5.24)

On the other hand, in using our notation, one seeq#hdtheorem 7.6]s equivalent to the following
formula:

PYUH (101 (M, F, g™, a
0g (7 10,11( g™ 81)) — Trk(F)Tr8 [ f1— (ZX(F) - (F)> o9 (z)
P(M,F.gF,—X) ) i '

— 0. (5.25)

From (5.24) and (5.25), one gets (4.22).
The proof of Theorem 4.5 is completed.]

6. A proof of Theorem 4.6

In this section, we prove Theorem 4.6. The method of finite propagation speed will play an essential
role in the proof.

_This section is organized as follows. In Section 6.1, we give an explicit expression0f.
(M, F,¢g™  ¢F) and decompose it into two parts: a part involving the integration from 0 to 1 and
the other from 1 tot-oo. In Section 6.2, we show that the part involving the integration from }do
tends to zero a8 — +oo. In Section 6.3, we deal with the part involving the integration from O to 1. We
show that this part can be further decomposed into two parts and one of them tends tofzeso-aso.
In Section 6.4, we complete the proof of Theorem 4.6.

6.1. An expression of 1 4o (M, F, g™™ gr)

We continue the discussion in Section 5. _ _
Recall that wher” > 0 is large enough, & Spec(D%) andJ (1,100 (M, F, g™, gT) can be defined
as in (3.7) by setting = 1 and by replacing’ there byg~.
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More precisely, foil' > 0 large enough and e C with Re(s) > n/2, set (cf. (3.6) and (3.47)),

1 [t
BT(S):W/O #7ITr ([N exp(—1D2|,2

T,[1,+00

)(Q*(M,f)))] dr. (6.1)
Thenfr (s) can be extended as a meromorphic functiorComhich is holomorphic at = 0, and

M oFy = 1307 () _

2 os s=0

Now by Lott[19, Lemma 4]and Bismut and Zhanpgt, Theorem 7.1QJone sees that for ariy >0,
whenr — 0T, one has the asymptotic expansion

109 711, 400) (M, F, g (6.2)

Tr i s [N exp(—t D? )]—7+a0+0(\/_) (6.3)

wherea_1, ap are defined if4, (7.55)]and do not depend ohas well agl".
Also, smceL 7.0, 1)(Q*(M F)) is afinitely generated (I')-Hilbert module and ist"(I')-isomorphic

to C*(WY, F) whenT >0 is large enough, one sees that wies 0 is large enough, one has the
asymptotic expansion

~5 N
Trs [V exp(—1D| 12 @ )| =7F) + 0. (6.4)
From (6.1), (6.3) and (6.4), one can rewrite (6.1) as

1 ! s—1 — a—1 ~ d

—+00

T,[1,+
a_1 aog —7 (F) (6.5)
F(s)(s—%) rs+1 - .
From (6.3) to (6.5), we get
307 (s) 1 ~, - a_1 - dr
5 | = /0 (TF,V,S[N eXFX_tDT|L%[1V+Oo)(9*(M,F)))] i ao+7 (F) "
oo dr
—2a_1 —I'(D(ao — 7’(F))- (6.6)
Set
5(T)—fl Tr - [N exp(—t D2| S (6.7)
1= 0 NS TILZ ) o) (2 (M, F)) 7 —ao+7 :
- +o0 dl‘

In the next subsections, we will study the behaviofTas> +oo of 51(T) andEZ(T) separately.
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6.2. The behavior 0?2(T) asT — +oo
In this subsection, we prove the following result.

Proposition 6.1. The following identity holds
lim  0,(T) = 0. (6.9)

T—400
Proof. We first prove the following.?-analogue of4, Theorem 7.§]

Lemma 6.2. For anyr > 0,

lim  Tr [N exp(— tDT|L2

T—+00 T.[1,+ )(Q*(A;,F)))] =0. (610)

Moreover there exisiC > 0, c > 0and Ty > 0 such that for >1, T > T1, one has

[Tr - s[N exp(— tDTle 2 1oy (@ (i, Fll<cexp(—Cr). (6.11)

Proof. Let Jr : C*(WY, F) — L2(Q*(M, F)) be the map defined in (5.12). Let
Er = Jp(C*(WY, F)) (6.12)
be the image oﬁ'T SlnceJT is an |sometryET C LZ(Q*(M F)) Is closed.
Let E- denote the orthogonal complementif in L2(Q*(M, F)), that is,
L2(Q*(M, F)) = Er ® E. (6.13)

Let Py (resp.P;-) denote the orthogonal projection frabf(2* (M, F)) onto E7 (resp.E7).
Recall thatD’. has been defined in (5.3).
Following Bismut—Lebea(B, Section 9] we define

Dy =PrDyPr, Djy,=PrDy P},
Dy 3= PyDyPr, Dj,=P;yDyPp. (6.14)
Recallthat 1@}1 , F) denotes the first Sobolev space with respect to a (fixedvariany first Sobolev
norm onQ*(M, F).
By proceeding as if8, Section 9b]which can be made much simpler in the current situatio 3cf.

Proposition 5.2}, one deduces that
() The following identity holds:

Dy, =0. (6.15)
(i) There existsT» > 0 such that for any e E% NHYM, F),s' € Er NHY(M, F) andT >T>, one
has

Isllo ~
157 2sl0< =52 and 1D} 3l

/
Is”lo (6.16)
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(iii) There existT3 > 0 andC’ > 0 such that for any e E% N H1(1\71, F) andT > T3, one has

1D’ 4sllo>C'~'Tsllo- (6.17)
Following[3, (9.113)] for T > 1, set
C'\T
Ur=1{.eC:1<]i< :1/_ . (6.18)

From (6.15) to (6.18), one can proceed ag3inSection 9eto show that there exist >1 such that
foranyT >Ts, /. € Ur, . — D% is invertible. For any positive integer>n + 2, there exist€” > 0 such
that if T > Ty, 4 € Uy, the following L2-analogue of3, (9.142)]in our current situation holds,

4

vT

From (6.19), one can then proceed aRlirSection 10c]with an obvioud.2-modification, to complete
the proof of Lemma 6.2. O

ITr 4 s[N (% = D) "P1 = 27 PF (F)| < —= (1 + |4 P2, (6.19)

From (5.3), (6.8), Lemma 6.2 and the dominate convergence theorem, one gets (6.9).
The proof of Proposition 6.1 is completed]

Remark 6.3. Alternatively, one can proceed as[8) Corollary 6.9] which works equally in the nonuni-
tary case, to get the following analogue[8f (6.75)} there existi5 > 0, ¢’ > 0,¢” > 0 such that it > 1,
T >Ts, then

Tr - ;[N exp(—tD'2 |2

[1,400),T

@iyl < exp(—c"tT). (6.20)
From (5.3) and (6.20), one also gets Lemma 6.2.
6.3. A behavior 0f1(T) asT — ~+o0o

From (5.3) and (6.7), one can rewritg(T) as

a_

1 ~ dr
@@ Fp)l = i ap + X/(F)> "

[1,-+00),T

1
01(T) = /o <Tf{/v‘,s[N GXP(—ID%L2

1
_ 27572 o a—1 ~ dr
=2 /O (Tr_,y,s[N exp—*DTlz @iy - a0+ (F)) - (6.21)
We now proceed as if8, Section 13h]
Let« > O be a positive constant. L&t: R — [0, 1] be a smooth function such that
hi)=1 i |t|§g, h(t) =0 if |f|>. (6.22)

Set
g(t)=1—h(r). (6.23)
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Following[3, (13.9)] if t € (0, 1], a € C, set
2

+00
H(a) = / expliuy/2a) exp<—%) nur) -

o NS
Gi(a) = /ﬁo exp(iuv/2a) exp(—u—z) g(ut)d—u. (6.24)
e 2 V2
Then
exp(—a®) = H;(a) + Gy(a). (6.25)

Sinceh is even,H, andG; are even functions, which takes valueskinMoreover,H, andG, lie in the
Schwartz spacé(R).
For simplicity, denote

Dr=Drlig ., @iy (6.20)
From (6.25), (6.26), one deduces that
exp(—12D}?) = H,(tD}) + G, (1 D}). (6.27)

SinceH;, G, € S(R) and sincelN)’T verifies the elliptic estimate, one verifies easily thattﬁy) and
G.(t DY) are given by smooth kernels, and so are of trace class with respect-t(cT1]).

The main result of this section can be stated as follows. It can be thought of E&amalogue of
[3, Theorem 13.4in our situation.

Proposition 6.4. There exist > 0, C > 0, Ty > 0 such that for any € (0, 1], T > Ty,

= c C

[Tr 4 sING; (t D7) < ﬁ exp(—t—z) . (6.28)
Proof. Set

I;(a) = /+OO exp(iu\/ﬁa) ex (—u—z) (u)d—u (6.29)

W= P\722) 8" |
Then

Gi(a)=1, (?) . (6.30)

Observe thag(r) = 0 nearr = 0. Forp € N, setas i3, (13.15)]
+oo . u? g(u) du

L p(a)=(p — 1)!/_oo expliu~/2q) exp(—?) PN P (6.31)
Clearly,

1(17_1)

fp @ =1,(a). (6.32)

(p—D!
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Thena € C — I; ,(a) is holomorphic. Moreover, for any> 0, if [Im(a)|<c, asla| — 400, I; ,(a)
decay faster than any|~".
Let4 =4, U 4_ C C be the contour considered [#, Section 10c]That is

Ay =f{x+iy:x=1 -1<y<}U{x +iy:x>L y=1}U{x +iy:x>1 y= -1},
A_={x+iy:x=-1 -1<y<PU{x+iy:x<—-Ly=1U{x+iy:x< -1, y=-1}.

We orient4. in counter clockwise manner. Then for amy R with |a| > 1,

I (a) = i / L) —a)tda. (6.33)
27 A
Equivalently,
1
Ii(a) = — / L ,(A)(h—a)~Pdi (6.34)
27 S,
foranyp € N.
From (6.30), one has
G(tD}) = I,(D}). (6.35)

We now takep > dim M + 2. From (6.34) and (6.35), one gets
~ 1 ~
G,(tD}) = —_/ L. ,(2)(%— D})~P da. (6.36)
27l A
ForT >0, letUr c C be defined as in (6.18). Recall that7if> 0 is large enough, if € Uy, then
(6.19) holds.

Also, sinceg(t) vanishes near= 0, we deduce from (6.31) that for any € N, there exist,,, C,,, > 0
such that if/. € 4,

Cn
|2 L p (W) <cm exp(—t—2> (6.37)

(cf. [3, (13.23)).
From (6.19), (6.37), it is clearly that whd@h> O is large enough,

1 ~ 1
Try .| N— I N — DY P d)—F(F)— 1 AY V!
. [ . /A B 06= Bp) ] LT /A T
c C
< exp(-C 6.38
. exp( 12> (6.38)

for some positive constants C > 0.
On the other hand, fof > 0 large enough, if. € AN“Ur, by proceeding as if8, Section 9e]one
deduces that the followinfj2-analogue of3, (9.170)]holds,

Tr¢ s[N(G.— D) Pl <c/ (L + )P (6.39)

for some constant > 0.
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From (6.37) and (6.39), one finds that for anye N, if T > 0 is large enough, then

e (vt / L ,()(.— Dy)~P| di| <c ! mex Cin (6.40)
— AL — < — —— ], .
N8 i AU t,p T m T p l‘2

for some positive constants,, C,, > 0. Also, by (6.37), one has

1 1 m C//
— L, Pdi <l =) expl——2& 6.41
e a(7) eo(-%) (641

for some positive constant§,, C,, > 0.
From (6.36), (6.38), (6.40), (6.41) and the obvious identity

1
— | L;,(A)A"Pdi=0 6.42
27'Ci y Z,p( ) ] ( )
one gets (6.28).
The proof of Proposition 6.4 is completed

6.4. A Proof of Theorem 4.6

Itis clear that all the above analysis works equally well forkhe {e¢} case. As was indicated earlier,
we will use notations without™” to denote the corresponding quantities for the- {¢} case.

We now will compare)1(T) defined in (6.21) withd1(7) which corresponds to the= {e} case. That
is,

1
2 a-1 ~ dr
01(T) = 2/0 <Trs[N exq_tzD/T|L[21.+OO)A’T(Q*(M,F)))] - T + X/(F)> - (6.43)
From (6.21), (6.26), (6.27) and (6.43), one finds that wkienO is large enough,
~ 1 ~ d
01(T) — 00(T) = 2 / (Tr.p ;[N exp(—t2Dy?)] — Trs[N exp(—2Df?)]) {
0
1 ~ dr
—2 / (Tt 1 4ING (1 D] = THING (D)D)
0
1 ~ dr
42 / (T - [INH, D)) = Tr, [N, D) (6.44)
0
Now we write
Tr s [NH, ( D)1 — Trg[NH, ( D’p)] = Tr_y- s [INH, ( D})] — Try[NH, ( D))
— (Tr/V’s [NH[ (tD/T |L[201)T(.Q*(M,f)))]
= TRINH (DYl 2 o, my)))- (6.45)

Let H,(tﬁ/T)(SZ, x") (resp.H;(tD’%)(x, x")) denote the smooth kernel associatedil;Qtﬁ’T) (resp.
H;(tD’))onM x M (resp.M x M) with respect to dv%Im (resp. dvolrw).
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LetW be a fundamental domain of the covering space M 5 M. Then one has (cf1])
Tr s [NH, (1 D)) = / Try[NH, (: D) (X, ¥)] dvol(%). (6.46)
w

By proceeding in exactly the same way ag3n Remark 13.5]which uses in an essential way the
finite propagation speed property of hyperbolic equations, one sees that one canch@iseSection
6.3 small enough (but still fixed) so that for aiy= M, H;(t D7) (x, X) depends only on the behavior of
D/, in a sufficiently small neighborhood &fin M.

In particular, one gets

TrS[NHt(tﬁ/T)(f, X)) = TrS[NHt(tD/T)(n()?), n(X))]. (6.47)
From (6.46), (6.47), one gets

Tr:/,y-,s[NH,(tﬁ/T)]:/ Trs[NH, (D) (x, x)] dvol(x) = Trs[NH, (s D7)]. (6.48)
M

On the other hand, by (4.16) and (6.4), one deduces easily thativkdhis large enough,
D o~ —CT
|Tr{/4”,s[NHt (ID%lL[ZO,l),T(Q*(M’F)))] - Trs[NHt (tD/T|L[20’1)’T(Q*(M,F)))]I gc\/;e (649)

for some constants, C > 0.
From (6.28), (6.44), (6.45), (6.48), (6.49) and the dominant convergence theorem, one gets

. Iirpr (01(T) — 01(T)) = 0. (6.50)
From (6.9) and (6.50), one gets
Nim (01(T) +02(T) = (01(T) + 02(T))) = 0. (6.51)

From (6.2), (6.6), (6.7) and (6.51), one gets (4.23).
The proof of Theorem 4.6 is completed
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