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Abstract

Wegeneralizea theoremofBismut–Zhang,whichextends theCheeger–Müller theoremonRay–Singer torsionand
Reidemeister torsion, to the case of infinite Galois covering spaces. Our result is stated in the framework of extended
cohomology, and generalizes in this case a recent result of Braverman–Carey–Farber–Mathai. It does not use the
determinant class condition and thus also (potentially) generalizes several results onL2-torsions due to Burghelea,
Friedlander, Kappeler and McDonald.We combine the framework developed by Braverman–Carey–Farber–Mathai
on the determinant of extended cohomology with the heat kernel method developed in the original paper of
Bismut–Zhang to prove our result.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

LetFbeaunitary flat vector bundle on a closedRiemannianmanifoldX. In [31], Ray andSinger defined
an analytic torsion associated to(X, F ) and proved that it does not depend on the Riemannian metric
on X. Moreover, they conjectured that this analytic torsion coincides with the classical Reidemeister
torsion defined using a triangulation onX (cf. [25]). This conjecture was later proved in the celebrated
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papers of Cheeger[12] and Müller[26]. Müller generalized this result in[27] to the case whereF is a
unimodular flat vector bundle onX. In [4], inspired by the considerations of Quillen[29], Bismut and
Zhang reformulated the above Cheeger–Müller theorem as an equality between the Reidemeister and
Ray–Singer metrics defined on the determinant of cohomology, and proved an extension of it to the
case of general flat vector bundles overX. The method used in[4] is different from those of Cheeger and
Müller in that it makes use of a deformation byMorse functions introduced byWitten[35] on the deRham
complex.
The purpose of this paper is to generalize the main results in[4] to the case ofL2-torsions on infinite

Galois covering spaces of closedmanifolds.We recall that theL2-torsions were first introduced by Carey,
Lott and Mathai[10,19,22], under the assumptions that theL2-Betti numbers vanish and that certain
technical “determinant class condition” is satisfied. The later condition is satisfied if the Novikov–Shubin
invariants introduced in[28] are positive.
In [9], Carey, Farber and Mathai showed that the condition on the vanishing of theL2-Betti numbers

can be relaxed. This is achieved by constructing the determinant line of the reducedL2-cohomology
and defining theL2-torsions as elements of the determinant line. They also reformulated the result of
Burghelea, Friedlander, Kappeller andMcdonald[8] on the equality between theL2-Reidemeister torsion
andL2-Ray–Singer torsion for unitary representations, under the “determinant class condition”, as an
equality between twoL2-elements on the determinant line of the reducedL2-cohomology.
In [11], Carey, Mathai and Mishchenko introduced what they called “relative torsion” in order to avoid

the “determinant class condition” in the consideration ofL2-torsions. This concept was later used by
Burghelea et al.[7] to generalize the main result in[8] to the case of nonunitary representations. It is
pointed out in[7] that the main result in[7] also extends the generalized Cheeger–Müller theorem proved
in [4] to the case of infinite covering spaces, under the “determinant class condition”.
Recently, Braverman, Carey, Farber and Mathai[6] showed that if one considers theextendedL2-

cohomology in the sense of Farber (cf.[13]) instead of the usually usedreducedL2-cohomology, then one
can naturally define theL2-Reidemeister andL2-Ray–Singer torsions asL2-elements on the associated
determinant lines, without requiring the “determinant class condition”. By combiningwith themain result
on relative torsion in[7], they established anextendedCheeger–Müller theorem for theseL2-elements
on odd dimensional infinite covering spaces for unimodular representations, which holds without the
“determinant class condition”.
In this paper, wewill show that one can indeed prove a full extension of the generalizedCheeger–Müller

theorem proved in[4] to the case of infinite covering spaces without requiring the “determinant class
condition”, in the framework of[6]. Moreover, we show that one can prove such a result by a direct
adaptation of the strategy andmethod in[4] to this new situation. Thus, the proof will be purely analytical
and avoid for example the use of the concept of relative torsion. The key ingredients to this proof include
the basicL2-estimates of the deformed de Rham–Witten complex developed in[8,32], the extended
de Rham theorem established by Shubin[33], as well as the finite propagation speed technique which
is crucial in adapting the local index computations in[4] into the infinite covering spaces situation.
Moreover, as observed in[5,15], one does not need the full strength of theL2-Helffer–Sjöstrand analysis
of theL2-Witten complex developed in[8]. This simplifies much of the matter.
As in [4], in order to establish the above-mentioned extended Cheeger–Müller theorem for covering

spaces, one should first establish an anomaly formula for theL2-Ray–Singer torsion on the determinant
of the extended de Rham cohomology. Such a formula will also be established in the present paper, see
Theorem 3.4 for details.
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We should also mention that the results in[6–9,33]hold for more general finite type Hilbert modules
over a finite von Neumann algebra on a closedmanifold, here we will concentrate on the infinite covering
spaces situation which corresponds to a special kind of Hilbert modules over a closed manifold.
This paper is organized as follows. In Section 2, we recall from[6] the definition of the determinant

line of extended cohomology of a finite length Hilbert cochainA-complex withA a finite von Neumann
algebra, aswell as the definition of theL2-torsion element lying in this determinant line.We also construct
theL2-Milnor torsion element lying in the determinant line associated to the extended cohomology of
anL2-Thom–Smale cochain complex associated to a lifted Morse function on an infinite covering space
satisfying the Thom–Smale transversality conditions. In Section 3, we recall from[6] the definition of
theL2-Ray–Singer torsion element lying in the determinant line of extended cohomology of de Rham
complexes on infinite covering spaces, and establish an anomaly formula for it. In Section 4, we recall
from [33] the de Rham theorem for the extended cohomologies, and state the main result of this paper,
which is an extension of[4, Theorem 0.2], in Theorem 4.2.We prove this result modulus two intermediate
results. These two intermediate results are then proved in Sections 5 and 6 respectively.

2. L2-Milnor torsion on the determinant of extended cohomology

In this section, we define what we call theL2-Milnor torsion element on an infinite covering space.
Following [6], the element lies in the determinant of the extended cohomology of anL2-Thom–Smale
cochain complex.
This section is organized as follows. In Section 2.1, we recall the definition of the extended cohomology

of a finite length Hilbert cochain complex over a finite von Neumann algebra carrying a finite, normal
and faithful trace. In Section 2.2, we recall the definition of the determinant of a finitely generated Hilbert
module over a finite von Neumann algebra. In Section 2.3, we recall the definition of theL2-torsion
element of a finite length Hilbert cochain complex. In Section 2.4, we define theL2-Milnor torsion
element.

2.1. Extended cohomology of a finite length Hilbert cochain complex

LetA be a finite von Neumann algebra carrying a fixed finite, normal and faithful trace� : A→ C.
Let ∗ denote the canonical involution onA defined by taking adjoint. Letl2(A) denote the Hilbert space
completion ofA with respect to the inner product given by the trace

〈a, b〉 = �(b∗a). (2.1)

A finitely generated Hilbert module overA is a Hilbert spaceM admitting a continuous leftA-structure
(with respect to the norm topology onA) such that there exists an isometricA-linear embedding ofM
into l2(A)⊗H , for some finite dimensional Hilbert spaceH.
Let (C∗, �) be a finite length Hilbert cochain complex overA,

(C∗, �) : 0→ C0 �0→C1 �1→· · · �n−1→ Cn → 0, (2.2)

where eachCi , 0�i�n, is a finitely generated Hilbert module overA and the coboundary maps are
boundedA-linear operators. Since the image spaces of these coboundary maps need not be closed, the
tautological cohomology of(C∗, �) need not be a Hilbert space. This is why in general one studies
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thereducedcohomology of(C∗, �), which is defined by

H ∗(C∗, �)=
n⊕

i=0
Hi(C∗, �) with Hi(C∗, �)= ker(�i)/im(�i−1), 0�i�n, (2.3)

where one takes obviously that�−1= 0 and�n = 0.
On the other hand, there are still ways to extract more information from(C∗, �), rather than just from

H ∗(C∗, �). One such is to consider theextendedcohomology in the sense of Farber (cf.[13,6]), which is
defined by

H∗(C∗, �)=
n⊕

i=0
Hi(C∗, �) with Hi(C∗, �)= (�i−1 : Ci−1→ ker(�i)), 0�i�n, (2.4)

where(�i−1 : Ci−1→ ker(�i)), 0�i�n, lie in an abelian extended category. It constitutes of two parts:
the projective part which is exactly the reduced cohomology defined in (2.3), as well as a torsion part
T(H∗(C∗, �))=⊕n

i=0T(Hi(C∗, �)) defined as an element in the above abelian extended category, with

T(Hi(C∗, �))= (�i−1 : Ci−1→ im(�i−1)), 0�i�n. (2.5)

More precisely, one has

H∗(C∗, �)=H ∗(C∗, �)⊕T(H∗(C∗, �)) (2.6)

with

Hi(C∗, �)=Hi(C∗, �)⊕T(Hi(C∗, �)), 0�i�n. (2.7)

We refer to[13,6] for more details about the definition and basic properties of the above-mentioned
abelian extended category as well as the extended cohomology.

2.2. The determinant of a finitely generated Hilbert module

LetM be a finitely generatedHilbert module overA. LetGL(M) denote the set of all boundedA-linear
automorphisms ofM. LetCM denote the set of all inner products onM such that if〈 , 〉 ∈ CM , then there
existsA ∈ GL(M) such that

〈u, v〉 = 〈Au, v〉M, for anyu, v ∈ M (2.8)

with 〈 , 〉M being the original inner product onM.
Following[9,6], we define the determinant line detM ofM to be the real one dimensional vector space

generated by symbols〈 , 〉, one for each element inCM such that if〈 , 〉1 and〈 , 〉2 are two elements
of CM with

〈u, v〉2= 〈Au, v〉1, for anyu, v ∈ M, (2.9)

for someA ∈ GL(M), then as elements in detM, one has

〈 , 〉2= Det�(A)
−1/2 · 〈 , 〉1, (2.10)

where Det�(A) is the Fuglede–Kadison determinant[14] of A.
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For the sake of self-completeness, we recall the definition of Det�(A) for anyA ∈ GL(M) and its basic
properties from[9,6].
LetAt , 0� t�1, be a continuous piecewise smooth pathAt ∈ GL(M) such thatA0 = I andA1= A.

The existence of such a path is clear asGL(M) is known to be pathwise connected. Then define as in[9,
(13); 6, (2.7)]that

log Det�(A)=
∫ 1

0
Re(Tr�[A−1t A′t ])dt , (2.11)

whereA′t is the derivative ofAt with respect tot, while Tr� is the canonically induced trace on the
commutant ofM (cf. [9, Proposition 1.8]).
It has been proved in[9] that the right-hand side of (2.11) does not depend on the choice of the pathAt ,

0� t�1. Moreover, we recall the following basic properties taken from[9, Theorem 1.10; 6, Theorem
2.11].

Proposition 2.1. The function,

Det� : GL(M)→ R>0, (2.12)

called the Fuglede–Kadison determinant of A, satisfies,

(a) Det� is a group homomorphism, that is,

Det�(AB)= Det�(A) · Det�(B), for A,B ∈ GL(M). (2.13)

(b) If I is the identity element in GL(M), then

Det�(�I )= |�|�(I ) for � ∈ C, � �= 0. (2.14)

(c) One has

Det��(A)= Det�(A)
� for � ∈ R>0. (2.15)

(d) Det� is continuous as a map GL(M)→ R>0, where GL(M) is supplied with the norm topology.
(e) If At , t ∈ [0,1], is a continuous piecewise smooth path in GL(M), then

log

[
Det�(A1)

Det�(A0)

]
=
∫ 1

0
Re(Tr�[A−1t A′t ])dt . (2.16)

(f) Let M, N be two finitely generated Hilbert modules overA. LetA ∈ GL(M), B ∈ GL(N) and let
� : N → M be a boundedA-linear homomorphism. We extend A, B, � to obvious endomorphisms
onM ⊕N by takingA|N = 0,B|M = 0 and�|M = 0.ThenA+ B + � ∈ GL(M ⊕N) and

Det�(A+ B + �)= Det�(A) · Det�(B). (2.17)

Now come back to the determinant line detM. Clearly, detM has a canonical orientation as the
transition coefficient Det�(A)−1/2 is always positive.
Following[9, 2.3], for any boundedA-linear isomorphismf : M → N between two finitely generated

Hilbert modules overA, there induces canonically an isomorphism of determinant linesf∗ : detM →
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detN , which preserves the orientations. Moreover, one has the following property which is recalled from
[9, Proposition 2.5].

Proposition 2.2. If f ∈ GL(M), then the induced isomorphismf∗ : detM → detM coincides with the
multiplication byDet�(f ) ∈ R>0.

Remark 2.3. Following [9,6], one thinks of elements of detM as “densities” onM. In theA=C case,
this is dual to the considerations in[4] where one uses metrics on determinant lines instead of “volume
forms”.

2.3. Extended cohomology and the torsion element of a finite length cochain complex of Hilbert modules

Let (C∗, �) be a finite length Hilbert cochain complex overA

(C∗, �) : 0→ C0 �0→C1 �1→· · · �n−1→ Cn → 0 (2.18)

as in (2.2). LetH∗(C∗, �) =∑n
i=0Hi(C∗, �) denote the corresponding extended cohomology defined

in (2.4), which admits the splitting to projective and torsion parts as in (2.5)–(2.7).
Following [6], we define for each 0�i�n that

detHi(C∗, �) := detHi(C∗, �)⊗ detT(Hi(C∗, �)) (2.19)

with

detT(Hi(C∗, �)) := det im(�i−1)⊗ (detCi−1)∗ ⊗ det ker(�i−1). (2.20)

Definition 2.4. (i) We define the determinant line of(C∗, �) to be

det(C∗, �)=
n⊗

i=0
(detCi)(−1)i . (2.21)

(ii) We define the determinant line ofH∗(C∗, �) to be

detH∗(C∗, �)=
n⊗

i=0
(detHi(C∗, �))(−1)i . (2.22)

The following result is recalled from[6, Proposition 7.2].

Proposition 2.5. The cochain complex(2.18)defines a canonical isomorphism

�(C∗,�) : det(C∗, �)→ detH∗(C∗, �). (2.23)

For each 0�i�n, the (fixed) inner product onCi determines an element�i ∈ detCi . They together
determine an element

�=
n∏

i=0
�(−1)

i

i ∈ det(C∗, �). (2.24)
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Definition 2.6 ([6, Definition 7.5]). The positive element

�(C∗,�) = �(C∗,�)(�) ∈ detH∗(C∗, �) (2.25)

is called the torsion element of the cochain complex(C∗, �).

For any otherZ-graded inner product〈 , 〉′ ∈ CC , that is, there existsAi ∈ GL(Ci) for any 0�i�n

such that

〈u, v〉′i = 〈Aiu, v〉 for anyu, v ∈ Ci , (2.26)

let �′(C∗,�) denote the corresponding torsion element in detH∗(C∗, �). Then one has the following
anomaly formula for the torsion elements in detH∗(C∗, �).

Proposition 2.7. The following identity holds indetH∗(C∗, �):

�′(C∗,�) = �(C∗,�)

n∏
i=0

Det�(Ai)
(−1)i+1/2. (2.27)

Proof. Let �′i be the corresponding element in detCi . From (2.26), one has by definition (cf. (2.10))

�′i = Det�(Ai)
−1/2�i . (2.28)

From Proposition 2.5 and from (2.24), (2.25) and (2.28), one gets (2.27).�

For any 0�i�n, let �∗i : Ci+1→ Ci denote the adjoint of�i with respect to the inner products onCi

andCi+1.
Let �=∑n

i=1 �i : C∗ → C∗, �∗ =∑n
i=1 �∗i : C∗ → C∗ denote the induced homomorphisms onC∗.

Then

�= (�+ �∗)2 (2.29)

preserves eachCi . Let�i denote the restriction of� onCi .
Now consider the special case where the cochain complex(C∗, �) is acyclic, i.e., for any 0�i�n,

im(�i) = ker(�i+1) (in particular, this implies that im(�i) is closed inCi+1). Then the torsion element
�(C∗,�) = �(C∗,�)(�) ∈ detH∗(C∗, �) � R can be thought of as a positive real number.
The following result has been proved in[6, Proposition 7.8].

Proposition 2.8. If the cochain complex(C∗, �) is acyclic, then the following identity holds:

log�(C∗,�) =
1

2

n∑
i=0

(−1)i+1i log Det�(�i). (2.30)

We refer to[6] for more complete discussions about the torsion elements in determinant lines.
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2.4. L2-Milnor torsion for covering spaces

Let � → M̃
�→M be a Galois covering of a closed smooth manifoldM, with dim M = n. We make

the assumption that� is an infinite group, as the case of finite group has been dealt with for example in
[20,21,5].
Let (F,∇F ) be a complex flat vector bundle overM carrying the flat connection∇F . Let gF be a

Hermitian metric onF. Let (F̃ ,∇F̃ ) denote the naturally lifted flat vector bundle overM̃ obtained as the
pullback of(F,∇F ) through the covering map�. Let gF̃ be the naturally lifted Hermitian metric oñF .
Let (F ∗,∇F ∗) be the dual complex flat vector bundle of(F,∇F ) carrying the flat connection∇F ∗ . Let

gF
∗
be the dual metric onF ∗. Let (F̃ ∗,∇F̃ ∗) andgF̃

∗
denote the corresponding lifted objects oñM.

Letf : M → R be aMorse function. LetgTM be aRiemannianmetric onTMsuch that the correspond-
ing gradient vector field−X = −∇f ∈ �(TM) satisfies the Smale transversality conditions (cf.[34]),
that is, the unstable cells (of−X) intersect transversally with the stable cells. Letf̃ (resp.gT M̃ ) denote
the lifted Morse function off on M̃ (resp. lifted Riemannian metric onT M̃). Then the corresponding
gradient vector field−X̃ =−∇f̃ ∈ �(T M̃) still satisfies the Smale transversality conditions. Set

B = {x ∈ M;X(x)= 0}, B̃ = {̃x ∈ M̃; X̃(̃x)= 0}. (2.31)

For anyx̃ ∈ B̃, letWu(̃x) (resp.W s(̃x)) denote the unstable (resp. stable) cell atx̃, with respect to
−X̃. We also choose an orientationO−x̃ (resp.O+x̃ ) onWu(̃x) (resp.W s(̃x)) in a�-invariant way.
Let x̃, ỹ ∈ B̃ satisfy theMorse index relation ind(ỹ)=ind(̃x)−1, then�(̃x, ỹ)=Wu(̃x)∩W s(ỹ) consists

a finite number of integral curves� of −X̃. Moreover, for each� ∈ �(̃x, ỹ), by using the orientations
chosen above, on can define a numbern�(̃x, ỹ)=±1 as in[4, (1.28)].
If x̃ ∈ B̃, let [Wu(̃x)] be the complex line generated byWu(̃x). Set

C∗(Wu, F̃ ∗)=
⊕
x̃∈B̃
[Wu(̃x)] ⊗ F̃ ∗̃x , (2.32)

Ci(W
u, F̃ ∗)=

⊕
x̃∈B̃,ind(̃x)=i

[Wu(̃x)] ⊗ F̃ ∗̃x . (2.33)

If x̃ ∈ B̃, the flat vector bundlẽF ∗ is canonically trivialized onWu(̃x). In particular, ifx̃, ỹ ∈ B̃ satisfy
ind(ỹ) = ind(̃x) − 1, and if� ∈ �(̃x, ỹ), f ∗ ∈ F̃ ∗̃x , let ��(f

∗) be the parallel transport off ∗ ∈ F̃ ∗̃x into

F̃ ∗̃y along� with respect to the flat connection∇F̃ ∗ .

Clearly, for anỹx ∈ B̃, there is only a finite number of̃y ∈ B̃, satisfying together that ind(ỹ)=ind(̃x)−1
and�(̃x, ỹ) �= ∅.
If x̃ ∈ B̃, f ∗ ∈ F̃ ∗̃x , set

�(Wu(̃x)⊗ f ∗)=
∑

ỹ∈B̃,ind(ỹ)=ind(̃x)−1

∑
�∈�(̃x,̃y)

n�(̃x, ỹ)W
u(ỹ)⊗ ��(f

∗). (2.34)

Then� mapsCi(W
u, F̃ ∗) intoCi−1(Wu, F̃ ∗). Moreover, one has

�2= 0. (2.35)
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That is,(C∗(Wu, F̃ ∗), �) forms a chain complex. We call it theL2-Thom–Smale complex associated to
(M̃, F,−X).
If x̃ ∈ B̃, let [Wu(̃x)]∗ be the dual line toWu(̃x). Let (C∗(Wu, F̃ ), �̃) be the complex which is dual to

(C∗(Wu, F̃ ∗), �). For 0�i�n, one has

Ci(Wu, F̃ )=
⊕

x̃∈B̃,ind(̃x)=i
[Wu(̃x)]∗ ⊗ F̃x̃ . (2.36)

It is easy to verify that both�and̃�are�-equivariantwith respect to thenatural�actiononCi(W
u, F̃ ∗)’s

andCi(Wu, F̃ )’s for 0�i�n, which is induced from the canonical deck action of� on M̃.
LetWu(̃x)∗ ∈ [Wu(̃x)]∗ be such that〈Wu(̃x),Wu(̃x)∗〉 = 1.
We now introduce an inner product on each[Wu(̃x)]∗ ⊗ F̃x̃ such that for anyf, f ′ ∈ F̃x̃ ,

〈Wu(̃x)∗ ⊗ f,Wu(̃x)∗ ⊗ f ′〉 = 〈f, f ′〉
gF̃x̃

. (2.37)

Let l2(�) denote the Hilbert space obtained through theL2-completion of the group algebra of� with
respect to the canonical trace on it.
For any 0�i�n, letCi(Wu, F̃ ) carry the inner product obtained from those defined in (2.37) so that

the splitting (2.36) is orthogonal. ThenCi(Wu, F̃ ) is a Hilbert space, which is isomorphic to the direct
sumofni-copies ofl2(�), whereni=#{x ∈ B : ind(x)=i} is the number of critical points off : M → R
with Morse indexi.
LetN(�) be the von Neumann algebra associated to� generated by the left regular representations

on l2(�) ≡ l2(N(�)). The canonical finite faithful trace onN(�) is given by the following formulas:

�N(�)(L	)= 0 if 	 �= 1, (2.38)

while

�N(�)(L	)= 1 if 	= 1, (2.39)

whereL	 denote the left action of	 ∈ � on l2(�). It induces canonically a trace on the commutant of any
finitely generated HilbertN(�)-module (cf.[9, Proposition 1.8]), which will be denoted by TrN.
Then eachCi(Wu, F̃ ), 0�i�n, as well asC∗(Wu, F̃ )=⊕n

i=0Ci(Wu, F̃ ), becomes a HilbertN(�)-
module. Moreover, the coboundary map�̃ isN(�)-linear.
In summary,(C∗(Wu, F̃ ), �̃) is a finite length Hilbert cochain complex overN(�) in the sense of

Section 2.1. We call it theL2-Thom–Smale cochain complex associated to(M̃, F, gF ,−X).

Definition 2.9. The torsion element in the determinant line of the extended cohomology of the
L2-Thom–Smale cochain complex(C∗(Wu, F̃ ), �̃), in the sense of Definition 2.6, is called theL2-Milnor
torsion element associated to(M̃, F, gF ,−X), and is denoted by�(M̃,F,gF ,−X).

From the anomaly formula (2.27), one deduces easily the following result.

Proposition 2.10. If gF1 is another Hermitianmetric on the flat vector bundle F overM. Let�(M̃,F,gF1 ,−X)

denote the corresponding torsion element indetH(C∗(Wu, F̃ ), �̃), then the following anomaly
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formula holds:

�(M̃,F,gF1 ,−X) = �(M̃,F,gF ,−X)

∏
x∈B

det

((
gF |x

)−1
g
F |x
1

)(−1)ind(x)+1/2
(2.40)

3. Infinite covering spaces and theL2-Ray–Singer torsion on the determinant of extended de
Rham cohomology

In this section, we recall the definition of theL2-Ray–Singer torsion element in the infinite covering
space case and prove an anomaly formula for it.
This section is organized as follows. In Section 3.1, we recall the definition of the extended de Rham

cohomology associated to a lifted flat vector bundle on an infinite covering space. In Section 3.2, we
define theL2-Ray–Singer torsion element as an element in the determinant of the extended de Rham
cohomology. In Section 3.3, we state an anomaly formula about theL2-Ray–Singer torsion element. This
anomaly formula is then proved in Section 3.4.

3.1. Infinite covering spaces and the extended de Rham cohomology

Wemake the same assumptions and use the same notations as in Section 2.4. Thus we have an infinite
� covering spacẽM → M, with dim M = n, and a flat vector bundle(F,∇F ) overM, etc. However, we
do not use the Morse function and make transversality assumptions as in Section 2.4.
For any 0�i�n, denote


i(M̃, F̃ )= �(�i(T ∗M̃)⊗ F̃ ), 
∗(M̃, F̃ )=
n⊕

i=0

i(M̃, F̃ ). (3.1)

LetdF̃ denote the natural exterior differential on
∗(M̃, F̃ ) induced from∇F̃ whichmapseach
i(M̃, F̃ ),
0�i�n, into
i+1(M̃, F̃ ).
The lifted Riemannian metricgT M̃ determines a canonical inner product on each
i(M̃, F̃ ), 0�i�n.

LetL2(
i(M̃, F̃ )), 0�i�n, denote the Hilbert spaces obtained from the correspondingL2-completion.
Then we can consider theL2- de Rham complex

(L2(
∗(M̃, F̃ )), dF̃ ) : 0→ L2(
0(M̃, F̃ ))
dF̃→L2(
1(M̃, F̃ ))

→ · · · dF̃→L2(
n(M̃, F̃ ))→ 0. (3.2)

Let dF̃∗ : 
∗(M̃, F̃ )→ 
∗(M̃, F̃ ) denote the formal adjoint ofdF̃ . Set

D̃ = dF̃ + dF̃∗, D̃2= (dF̃ + dF̃∗)2= dF̃∗dF̃ + dF̃ dF̃∗. (3.3)

Then the LaplaciañD2 preserves theZ-grading of
∗(M̃, F̃ ).
For anyI ⊆ R and 0�i�n, denote by

L2
I(


i(M̃, F̃ )) ⊆ L2(
i(M̃, F̃ )) (3.4)
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the image of the spectral projectionPI,i : L2(
i(M̃, F̃ )) → L2(
i(M̃, F̃ )) of D̃2|L2(
i (M̃,F̃ )) corre-
sponding toI.
We recall the following important result due to Shubin[33, Theorem 5.1].

Theorem 3.1. Fix ε >0.Then for any0�i�n,
(i) L2[0,ε](
i(M̃, F̃ )) ⊂ 
i(M̃, F̃ ), i.e.,L2[0,ε](
i(M̃, F̃ )) consists of smooth forms;

(ii) when carrying the induced metric from that ofL2(
i(M̃, F̃ )), L2[0,ε](
i(M̃, F̃ )) is a finitely gen-
erated Hilbert module overN(�).

Now consider the finite length cochain complex ofN(�)-Hilbert modules

(L2[0,ε](
∗(M̃, F̃ )), dF̃ ) : 0→ L2[0,ε](
0(M̃, F̃ ))
dF̃→L2[0,ε](
1(M̃, F̃ ))

→ · · · dF̃→L2[0,ε](
n(M̃, F̃ ))→ 0. (3.5)

It is easy to verify that the extended cohomology of(L2[0,ε](
∗(M̃, F̃ )), dF̃ ) is independent ofε >0. For if

ε′>ε>0, the subcomplex(L2
(ε,ε′](


∗(M̃, F̃ )), dF̃ ) of (L2
[0,ε′](


∗(M̃, F̃ )), dF̃ ) is acyclic. Moreover, it is
easy to verify that this extended cohomology, up to boundedN(�)-linear isomorphisms, does not depend
on the choice of themetricsgTM andgF onTMandF, respectively.Wedenote it byH(2)

dR(

∗(M̃, F̃ ), dF̃ ).

Definition 3.2. The extended cohomologyH(2)
dR(


∗(M̃, F̃ ), dF̃ ) defined above is called theL2-extended
de Rham cohomology associated tõM andF.

3.2. L2-Ray–Singer torsion on the determinant of the extended de Rham cohomology

We continue the discussion of the above subsection.
In view of Definition 2.6, for anyε >0, the finite length cochain complex ofN(�)-Hilbert modules

(L2[0,ε](
∗(M̃, F̃ )), dF̃ ) in (3.5) determines a torsion element in detH
(2)
dR(


∗(M̃, F̃ ), dF̃ ). We denote

this torsion element byT[0,ε](M̃, F, gTM, gF ).
Also, following [6, Section 12.2], for anys ∈ C with Re(s)>n/2 and for 0�i�n, set

�i(ε,+∞)(s)=
1

�(s)

∫ +∞

0
t s−1TrN[exp(−tD̃2|L2

(ε,+∞)
(
i (M̃,F̃ )))]dt . (3.6)

Then�i(ε,+∞)(s) is analytic ins for Re(s)>n/2 and can be extended to a meromorphic function onC

which is holomorphic ats = 0 (cf. [8,19,22]). Let T(ε,+∞)(M̃, F, gTM, gF ) ∈ R+ be defined by

logT(ε,+∞)(M̃, F, gTM, gF )= 1

2

n∑
i=0

(−1)ii ��i(ε,+∞)(s)

�s

∣∣∣∣∣
s=0

. (3.7)

By [6, Lemma 12.4], the productT[0,ε](M̃, F, gTM, gF ) · T(ε,+∞)(M̃, F, gTM, gF ) in detH(2)
dR

(
∗(M̃, F̃ ), dF̃ ) does not depend onε >0.
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Definition 3.3([6, Definition 12.5]). TheL2-Ray–Singer torsion element associated to(M̃, F, gTM, gF )

is the positive element in the determinant of the extended de Rham cohomologyH
(2)
dR(


∗(M̃, F̃ ), dF̃ )

defined by

T
(2)
RS (M̃, F, gTM, gF )= T[0,ε](M̃, F, gTM, gF ) · T(ε,+∞)(M̃, F, gTM, gF ). (3.8)

In [6, Section 13], Braverman, Carey, Farber and Mathai showed that if dimM = n is odd and
(F,∇F , gF ) is unimodular, thenT (2)

RS (M̃, F, gTM, gF ) does not depend ongTM . They proved this result
by using theL2-Cheeger–Müller type theorem they proved in this situation. In the next subsections, we
will give a direct proof of a general anomaly formula extending both the above result as well as the
Bismut–Zhang anomaly formula[4, Theorem 0.1]of Ray–Singer metrics in the�= {e} case.

3.3. An anomaly formula for theL2-Ray–Singer torsion elements

We continue the discussion of the above subsection.
Let 
(F, gF ) ∈ 
1(M) be defined by (cf.[4, Definiton 4.1])


(F, gF )= TrF [(gF )−1∇F gF ]. (3.9)

Then
(F, gF ) is a closed one form onM (cf. [4, Proposition 4.6]).
Let ∇TM denote the Levi–Civita connection associated to the Riemannian metricgTM on TM. Let

RTM = (∇TM)2 be the curvature of∇TM . Let e(TM,∇TM) ∈ 
n(M, o(TM)) be the associated Euler
form defined by (cf.[4, (3.17); 37, Chapter 3])

e(TM,∇TM)= Pf

(
RTM

2�

)
. (3.10)

Let g′TM be another Riemannian metric onTM and∇′TM be the associated Levi–Civita connection.
Let ẽ(TM,∇TM,∇′TM) be the Chern–Simons class ofn − 1 smooth forms onM valued ino(TM),
which is defined modulo exactn− 1 forms, such that

dẽ(TM,∇TM,∇′TM)= e(TM,∇′TM)− e(TM,∇TM) (3.11)

(cf. [4, (4.10)]). Of course, ifn is odd,

ẽ(TM,∇TM,∇′TM)= 0. (3.12)

Let g′F be another metric onF. Let �F , �
′
F denote the volume element on detF induced bygF , g′F ,

respectively. Then�′F /�F ∈ R+. One verifies easily that

log
�′F
�F
=−1

2
log detF ((g

F )−1g′F ). (3.13)

From (3.9) and (3.13), one deduces that

d log
�′F
�F
= 1

2
(
(F, gF )− 
(F, g′F )) (3.14)

(cf. [4, (4.12)]).
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Let T (2)
RS (M̃, F, g′TM, g′F ) ∈ detH(2)

dR(

∗(M̃, F̃ ), dF̃ ) denote theL2-Ray–Singer torsion element

associated tog′TM andg′F . Then the positive real number

T
(2)
RS (M̃, F, g′TM, g′F )
T
(2)
RS (M̃, F, gTM, gF )

∈ R+

is well-defined.
We can now state the anomaly formula forL2-Ray–Singer torsion elements as follows.

Theorem 3.4. The following identity holds:

log
T
(2)
RS (M̃, F, g′TM, g′F )
T
(2)
RS (M̃, F, gTM, gF )

=
∫
M

(
log

�′F
�F

)
e(TM,∇TM)

+ 1

2

∫
M


(F, g′F )̃e(TM,∇TM,∇′TM). (3.15)

In particular, if dim M = n is odd, then

log
T
(2)
RS (M̃, F, g′TM, g′F )
T
(2)
RS (M̃, F, gTM, gF )

= 0. (3.16)

Theorem 3.4 will be proved in the next subsection.

Remark 3.5. Eq. (3.15) generalizes the anomaly formula of Bismut–Zhang[4, Theorem 0.1]to the
infinite covering space case. Also, when(gF ,∇F ) and(g′F ,∇F ) are unimodular, (3.16) is a special case
of [6, Theorem 13.8].

3.4. A proof of Theorem 3.4

We first give a slightly more flexible formula of theL2-Ray–Singer torsion elementT (2)
RS (M̃, F,

gTM, gF ) defined in (3.8).
Foranya >0, let(C∗, dF̃ )beafinite lengthN(�)-Hilbert cochainsubcomplexof(L2(
∗(M̃, F̃ )), dF̃ )

such that(L2[0,a](
∗(M̃, F̃ )), dF̃ ) is a subcomplex of(C∗, dF̃ ). That is, asN(�)-Hilbert cochain com-
plexes, one has

(L2[0,a](
∗(M̃, F̃ )), dF̃ ) ⊆ (C∗, dF̃ ). (3.17)

Let dF̃∗C∗ : C∗ → C∗ be the formal adjoint ofdF̃ : C∗ → C∗ with respect to the induced Hilbert metric
onC∗ from that ofL2(
∗(M̃, F̃ )). Set

DC∗ = dF̃ + dF̃∗C∗ , D2
C∗ = (dF̃ + dF̃∗C∗ )

2= dF̃∗C∗ d
F̃ + dF̃ dF̃∗C∗ : C∗ → C∗. (3.18)

ThenD2
C∗ preserves theZ-grading ofC

∗. Moreover, one has

D2
C∗ = D̃2 : L2[0,a](
∗(M̃, F̃ ))→ L2[0,a](
∗(M̃, F̃ )). (3.19)
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For any 0�i�n, letD2
Ci denote the restriction ofD

2
C∗ onC

i .

By (3.17) it is clear that the extended cohomology of(C∗, dF̃ ) is identical to that of(L2[0,a]
(
∗(M̃, F̃ )), dF̃ ). That is, one has

H∗(C∗, dF̃ ) ≡H
(2)
dR(


∗(M̃, F̃ ), dF̃ ). (3.20)

From (3.20), one sees that(C∗, dF̃ ) induces canonically anL2-torsion element in detH(2)
dR

(
∗(M̃, F̃ ), dF̃ ). We denote it by

T
(C∗,dF̃ ) ∈ detH(2)

dR(

∗(M̃, F̃ ), dF̃ ). (3.21)

For anys ∈ C with Re(s)>n/2 and for 0�i�n, set

�iC∗,⊥(s)=
1

�(s)

∫ +∞

0
t s−1(TrN[exp(−tD̃2|L2(
i (M̃,F̃ ))))]

− TrN[exp(−tD2
Ci )])dt . (3.22)

If we rewrite the right-hand side of (3.22) as

1

�(s)

∫ +∞

0
t s−1(TrN[exp(−tD̃2|L2(
i (M̃,F̃ )))] − TrN[exp(−tD̃2|L2[0,a](
i (M̃,F̃ )))])dt

+ 1

�(s)

∫ +∞

0
t s−1(TrN[exp(−tD̃2|L2[0,a](
i (M̃,F̃ )))] − TrN[exp(−tD2

Ci )])dt , (3.23)

then in view of (3.17) and (3.19), one sees that each�iC∗,⊥(s), 0�i�n, is a holomorphic function for
Re(s)>n/2 and can be extended to a meromorphic function onC which is holomorphic ats = 0. Let
T
(C∗,dF̃ ),⊥ ∈ R+ be defined by

logT
(C∗,dF̃ ),⊥ =

1

2

n∑
i=0

(−1)ii ��iC∗,⊥(s)
�s

∣∣∣∣∣
s=0

. (3.24)

Proposition 3.6. The following identity holds indetH(2)
dR(


∗(M̃, F̃ ), dF̃ ):

T
(2)
RS (M̃, F, gTM, gF )= T

(C∗,dF̃ ) · T(C∗,dF̃ ),⊥. (3.25)

Proof. By (3.17), one cansplit the cochain complex(C∗, dF̃ ) to thedirect sumof(L2[0,a](
∗(M̃, F̃ )), dF̃ )

and its orthogonal complement, which is clearly acyclic. Proposition 3.6 then follows easily from Propo-
sition 2.8, Definition 3.3 and formulas (3.6), (3.7) and (3.21)–(3.24).�

We now come to the proof of Theorem 3.4.
Let gTMu (resp.gFu ), 0�u�1, be a smooth path of metrics onTM (resp.F) such thatgTM0 = gTM ,

gTM1 = g′TM (resp.gF0 = gF , gF1 = g′F ).
When dealing with objects associated with(gTMu , gFu ), we will use a subscript “u” to indicate. While

atu= 0 we usually omit this subscript indication.
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Proposition 3.7. For anyu ∈ [0,1], one can construct a finite lengthN(�)-Hilbert cochain subcomplex
(C∗(u), dF̃ ) of (L2

u(

∗(M̃, F̃ )), dF̃ ) such that

(i) One has the inclusion relation of cochain complexes

(L2
u,[0,1](
∗(M̃, F̃ )), dF̃ ) ⊆ (C∗(u), dF̃ ). (3.26)

(ii) The cochain complex(C∗(u), dF̃ ) depends smoothly onu ∈ [0,1].
Proof. We will use a trick due to Fangbing Wu[36] (cf. [18, Section 2.4]).
For anyk >0 and 0�u�1, let P[0,k],u denote the orthogonal projection fromL2

u(

∗(M̃, F̃ )) onto

L2[0,k](
∗(M̃, F̃ )) ⊂ L2
u(


∗(M̃, F̃ )), where we viewL2[0,k](
∗(M̃, F̃ )) ⊂ L2(
∗(M̃, F̃ )) as a (closed)

subspace inL2
u(


∗(M̃, F̃ )).
It is clear that for any fixedk >0,P[0,k],u depends smoothly onu ∈ [0,1].
Let � : R→ [0,1] be a smooth function such that�(t)= 0 if t�2 while�(t)= 1 if t�5.
Then�(D̃2

u) : L2
u(


∗(M̃, F̃ ))→ L2
u(


∗(M̃, F̃ )) depends smoothly onu ∈ [0,1]. Moreover, for any
0�u�1, in view of Theorem 3.1, one sees easily that the closure of the image of

Id − �(D̃2
u) : L2

u(

∗(M̃, F̃ ))→ L2

u(

∗(M̃, F̃ ))

is a finitely generatedN(�)-Hilbert module.
One then checks easily that ask→+∞,

(Id − �(D̃2
u))P[0,k],u → Id − �(D̃2

u) (3.27)

in the operator norm. Moreover, the convergence is uniform with respect tou ∈ [0,1].
Let nowk >10 be fixed such that for anyu ∈ [0,1], one has
‖(Id − �(D̃2

u))P[0,k],u − (Id − �(D̃2
u))‖0,u < 1

2, (3.28)

where in the subscript of the left-hand side, “0” indicates theL2-norm, while “u” indicates the parameter
u ∈ [0,1].
Rewrite (3.28) as

‖(Id − P[0,k],u)− �(D̃2
u)(Id − P[0,k],u)‖0,u < 1

2. (3.29)

Now we apply[36, Lemma 2.4](recalled in[18, Lemma 5 in Section 2.4]), which can be thought of
as a noncommutative generalization of[24, Lemma 1].
For any u ∈ [0,1], we denoteP[0,k],u(�) the orthogonal projection fromL2

u(

∗(M̃, F̃ )) onto

Im(�(D̃2
u)(Id−P[0,k],u)), which byWu[36, Lemma 2.4]is closed. From[36, Lemma 2.4], one knows that

P[0,k],u(�) is smooth with respect tou ∈ [0,1].
For anyu ∈ [0,1], set

C∗(u)= (Im(P[0,k],u(�)))⊥ = (Im(�(D̃2
u)(Id − P[0,k],u)))⊥ ⊂ L2

u(

∗(M̃, F̃ )). (3.30)

We first observe that all the operators appeared above are�-equivariant and preserve the obvious
Z-grading through out the context. ThenC∗(u) admits an obviousZ-grading.
We now show thatdF̃ preservesC∗(u) for anyu ∈ [0,1].
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Take anyx ∈ C∗(u), by definition, we know that for anyy ∈ L2
u(


∗(M̃)), one has

〈�(D̃2
u)(Id − P[0,k],u)y, x〉u = 0. (3.31)

Let dF̃∗u denote the adjoint ofdF̃ with respect to the inner product onL2
u(


∗(M̃, F̃ )).
From the obvious identity

dF̃ P[0,k],u = P[0,k],udF̃ P[0,k],u, (3.32)

one gets

P[0,k],udF̃∗u P[0,k],u = P[0,k],udF̃∗u , (3.33)

which implies

dF̃∗u (Id − P[0,k],u)= (Id − P[0,k],u)dF̃∗u (Id − P[0,k],u). (3.34)

From (3.31) and (3.34) one deduces that for anyx ∈ C∗(u) andy ∈ L2
u(


∗(M̃)), one has

〈�(D̃2
u)(Id − P[0,k],u)y, dF̃ x〉u = 〈�(D̃2

u)d
F̃∗
u (Id − P[0,k],u)y, x〉u

= 〈�(D̃2
u)(Id − P[0,k],u)dF̃∗u (Id − P[0,k],u)y, x〉u = 0, (3.35)

which implies thatdF̃ x ∈ C∗(u).
Thus, for anyu ∈ [0,1], (C∗(u), dF̃ ) is a cochain subcomplex ofL2

u(

∗(M̃, F̃ )). From (3.30), one

sees it depends smoothly onu ∈ [0,1], which proves the second part of the proposition.
On the other hand, by the definition of� and by (3.30), one gets (3.26) immediately.
It remains to show that as anN(�)-Hilbert module,C∗(u) is finitely generated. By Theorem 3.1, this

follows from the following result.

Lemma 3.8. There existsK >k such that for anyu ∈ [0,1], one has
L2
u,[K,+∞)(


∗(M̃, F̃ )) ⊆ Im(P[0,k],u(�)). (3.36)

Proof. Let P[K,+∞)(u) denote the orthogonal projection fromL2
u(


∗(M̃, F̃ )) onto L2
u,[K,+∞)

(
∗(M̃, F̃ )).
Sincek >10, by the definition of�, we need only to show that

L2
u,[K,+∞)(


∗(M̃, F̃ ))= Im(P[K,+∞)(u)P[0,k],u(�))
= Im(P[K,+∞)(u)(Id − P[0,k],u)). (3.37)

In order to prove (3.37), observe first that there exist constantsA>0,B >0 andC >0 such that for
anyu ∈ [0,1], one has that (cf. with (3.28) for subscript notation convention)

1

C
‖ · ‖0,u�‖ · ‖0�C‖ · ‖0,u, (3.38)

and that for anyx ∈ 
∗(M̃, F̃ ), one has

‖D̃ux‖0,u�A(‖D̃x‖0+ B‖x‖0). (3.39)
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Now assume that (3.37) does not hold forK >k and someu ∈ [0,1], then there exists a nonzero
elementx ∈ L2

u,[K,+∞)(

∗(M̃, F̃ )) such that for anyy ∈ L2

u(

∗(M̃, F̃ )), one has

〈P[K,+∞)(u)(Id − P[0,k],u)y, x〉u = 〈(Id − P[0,k],u)y, x〉u = 0. (3.40)

From (3.40), one sees thatx ∈ Im(P[0,k],u)= L2[0,k](
∗(M̃, F̃ )). Thus, one has

‖D̃x‖0�
√
k‖x‖0. (3.41)

From (3.38), (3.39) and (3.41), one gets

‖D̃ux‖0,u�C(A
√
k + B)‖x‖0. (3.42)

On the other hand, sincex ∈ L2
u,[K,+∞)(


∗(M̃, F̃ )), by (3.38) one has

‖D̃ux‖0,u�
√
K‖x‖0,u�

√
K

C
‖x‖0. (3.43)

From (3.42), (3.43) and the assumption thatx �= 0, one finds

K�(C2(A
√
k + B))2. (3.44)

Thus (3.36) holds whenK >k + (C2(A
√
k + B))2.

The proof of Lemma 3.8 is completed.�

The proof of Proposition 3.7 is thus also completed.�

Remark 3.9. The method in the proof of Lemma 3.8 can also be used to give a direct analytic proof
of (3.27).

We now come back to the proof of Theorem 3.4.
By (3.25) and Proposition 3.7, one gets that for any 0�u�1,

T
(2)
RS (M̃, F, gTMu , gFu )= T

(C∗(u),dF̃ ) · T(C∗(u),dF̃ ),⊥. (3.45)

For anys ∈ C with Re(s)>n/2 and 0�u�1, set


u(s)=
n∑

i=0
(−1)ii�iC∗(u),⊥(s). (3.46)

LetN denote the number operator on
∗(M̃, F̃ ) acting by multiplication byi on
i(M̃, F̃ ). It extends
to obvious actions onL2-completions.
From (3.22) and (3.46), one can rewrite
u(s) as


u(s)= 1

�(s)

∫ +∞

0
t s−1(TrN,s[N exp(−tD̃2

u)] − TrN,s[N exp(−tD2
C∗(u))])dt , (3.47)

where TrN,s[·] = TrN[(−1)N ·] is the supertrace in the sense of Quillen[30], taking on boundedN(�)-
linear operators acting on
∗(M̃, F̃ ) as well as theirL2-completions. In what follows we will also adopt
the notation in[30] of supercommutators.
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Byproceeding as in[19, Lemma8], one gets the following analogue of[19, (35)]in the current situation

�

�u
TrN,s[N exp(−tD̃2

u)] = −tTrN,s

[
N

�D̃2
u

�u
exp(−tD̃2

u)

]
. (3.48)

We now proceed similarly as in[31] and[2, Theorem 1.18].
Let∗F̃u denote the Hodge star operator mapping from
∗(M̃, F̃ ) to
∗(M̃, F̃ ⊗o(T M̃))with respect to

gTM andgF , whereo(T M̃) is the orientation bundle ofo(T M̃). Let∗u be the usual Hodge star operator
associated togTM for theF = C case (cf.[37, Chapter 4]). Then one has

Qu := (∗F̃u )−1
� ∗ F̃

u

�u
= (∗u)−1� ∗ u

�u
+ (gF̃u )

−1�gF̃u
�u

. (3.49)

A direct verification shows that, when acting on
i(M̃, F̃ ), one has

dF̃∗u = (−1)i(∗F̃u )−1dF̃⊗o(T M̃) ∗ F̃
u . (3.50)

From (3.49) and (3.50), one gets

�

�u
dF̃∗u = [dF̃∗u ,Qu]. (3.51)

On the other hand, by (3.3) one verifies directly that

[D̃u,N ] = −dF̃ + dF̃∗u . (3.52)

From (3.3) one deduces that

TrN,s

[
N

�D̃2
u

�u
exp(−tD̃2

u)

]
= TrN,s

[
N

[
D̃u,

�

�u
dF̃∗u

]
exp(−tD̃2

u)

]

=TrN,s

[
N

[
D̃u,

�dF̃∗u

�u
exp(−tD̃2

u)

]]

=TrN,s

[
[N, D̃u]�d

F̃∗
u

�u
exp(−tD̃2

u)

]

+ TrN,s

[
D̃u,N

�dF̃∗u

�u
exp(−tD̃2

u)

]
. (3.53)

Clearly,

TrN,s

[
D̃u,N

�dF̃∗u

�u
exp(−tD̃2

u)

]
= TrN,s

[
exp

(
− t

2
D̃2

u

)
D̃u,N

�dF̃∗u

�u
exp

(
− t

2
D̃2

u

)]
= 0. (3.54)
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Using the fact thatdF̃∗u commutes with̃D2
u, by (3.51) and (3.52), one deduces that

TrN,s

[
[N, D̃u]�d

F̃∗
u

�u
exp(−tD̃2

u)

]
= TrN,s[(dF̃ − dF̃∗u )[dF̃∗u ,Qu]exp(−tD̃2

u)]
= TrN,s

[
exp

(
− t

2
D̃2

u

)
(dF̃ dF̃∗u Qu − dF̃Qud

F̃∗
u + dF̃∗u Qud

F̃∗
u )exp

(
− t

2
D̃2

u

)]
= TrN,s[Qu(d

F̃ dF̃∗u + dF̃∗u dF̃ )exp(−tD̃2
u)]. (3.55)

From (3.3), (3.48) and (3.53)–(3.55), one gets

�

�u
TrN,s[N exp(−tD̃2

u)] = t
�

�t
TrN,s[Qu exp(−tD̃2

u)] (3.56)

(cf. [2, (1.113)]).
On the other hand, for any 0�u�1, letPC∗(u) denote the orthogonal projection fromL2

u(

∗(M̃, F̃ ))

ontoC∗(u). Then by Proposition 3.7,PC∗(u) depends smoothly onu ∈ [0,1]. Moreover, one has
dF̃ PC∗(u) = PC∗(u)d

F̃ PC∗(u). (3.57)

Let dF̃∗C∗(u) : C∗(u)→ C∗(u) be the formal adjoint of

dF̃C∗(u) = PC∗(u)d
F̃
u PC∗(u) : C∗(u)→ C∗(u). (3.58)

Then in view of (3.57), one has

dF̃∗C∗(u) = PC∗(u)d
F̃∗
u PC∗(u) = PC∗(u)d

F̃∗
u . (3.59)

Set

D̃C∗(u) = dF̃C∗(u) + dF̃∗C∗(u). (3.60)

One has, similar as in (3.52), that

[D̃C∗(u), N ] = −dF̃C∗(u) + dF̃∗C∗(u). (3.61)

In order to have a formula for(�/�u)dF̃∗C∗(u) similar to (3.51), by using (3.51) and (3.59), we compute

�

�u
dF̃∗C∗(u) =

�

�u
(PC∗(u)d

F̃∗
u )=

(
�

�u
PC∗(u)

)
dF̃∗u + PC∗(u)

�

�u
dF̃∗u

=
(

�

�u
PC∗(u)

)
dF̃∗u + PC∗(u)[dF̃∗u ,Qu]

=
(

�

�u
PC∗(u)

)
dF̃∗u + PC∗(u)d

F̃∗
u Qu − PC∗(u)Qud

F̃∗
u

= [dF̃∗C∗(u),Qu] +
(

�

�u
PC∗(u)

)
dF̃∗u +QuPC∗(u)d

F̃∗
u − PC∗(u)Qud

F̃∗
u . (3.62)
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SinceC∗(u), 0�u�1, are finitely generatedHilbert modules, one sees easily that an analogue of (3.48)
holds forD̃2

C∗(u). Thus, by using (3.61), (3.62) and proceeding as in (3.53)–(3.56), one deduces

�

�u
TrN,s[N exp(−tD̃2

C∗(u))] = − tTrN,s

[
N

�D̃2
C∗(u)
�u

exp(−tD̃2
C∗(u))

]

= − tTrN,s

[N, D̃C∗(u)]
�dF̃∗C∗(u)

�u
exp(−tD̃2

C∗(u))


= t

�

�t
TrN,s[Qu exp(−tD̃2

C∗(u))]

− tTrN,s

[
(dF̃C∗(u) − dF̃∗C∗(u))

(
�PC∗(u)

�u
dF̃∗u +QuPC∗(u)d

F̃∗
u − PC∗(u)Qud

F̃∗
u

)
exp(−tD̃2

C∗(u))

]
= t

�

�t
TrN,s[Qu exp(−tD̃2

C∗(u))]

− tTrN,s

[
(dF̃C∗(u) − dF̃∗C∗(u))

(
PC∗(u)

�PC∗(u)
�u

dF̃∗u PC∗(u) +Qu[PC∗(u), d
F̃∗
u ]

)
exp(−tD̃2

C∗(u))

]
.

(3.63)

Denote for 0�u�1 that

f (u)= (dF̃C∗(u) − dF̃∗C∗(u))

(
PC∗(u)

�PC∗(u)
�u

dF̃∗u PC∗(u) +Qu[PC∗(u), d
F̃∗
u ]

)
. (3.64)

SinceC∗(u) containsL2
u,[0,1](
∗(M̃, F̃ )) for 0�u�1 (cf. (3.26)), one sees that whent →+∞,

TrN,s[Qu exp(−tD̃2
u)] − TrN,s[Qu exp(−tD̃2

C∗(u))]
is of exponential decay.
On the other hand, since, when restricted to the subcomplex(L2

u,[0,1](
∗(M̃, F̃ )), dF̃ ) of (C∗(u), dF̃ ),
dF̃∗u commutes withPC∗(u), while

PC∗(u)
�PC∗(u)

�u
PC∗(u) = 0, (3.65)

from (3.64), (3.65) one gets

f (u)|L2
u,[0,1](
∗(M̃,F̃ )) = 0. (3.66)

From (3.26) and (3.66), one sees that ast →+∞,

TrN,s[f (u)exp(−tD̃2
C∗(u))]

is of exponential decay.
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By (3.47), (3.56), (3.63), (3.64) and (3.66), we have for Re(s) large enough that

�
u(s)

�u
= 1

�(s)

∫ +∞

0
t s

�

�t
(TrN,s[Qu exp(−tD̃2

u)] − TrN,s[Qu exp(−tD̃2
C∗(u))])dt

− 1

�(s)

∫ +∞

0
t sTrN,s[f (u)exp(−tD̃2

C∗(u))]dt

= −s
�(s)

∫ +∞

0
t s−1(TrN,s[Qu exp(−tD̃2

u)] − TrN,s[Qu exp(−tD̃2
C∗(u))])dt

− 1

�(s)

∫ +∞

0
t sTrN,s[f (u)exp(−tD̃2

C∗(u))]dt . (3.67)

Now by proceeding as in[19, Lemma 4], and using the standard heat kernel asymptotic expansion
on the closed manifoldM, one sees that ast → 0+, for any positive integerl one has an asymptotic
expansion

TrN,s[Qu exp(−tD̃2
u)] =

l∑
j=−n/2

Mj,ut
j + o(t l). (3.68)

From (3.67) and (3.68), one finds that for any 0�u�1, one has

�

�u

(
�
u(s)

�s

∣∣∣∣
s=0

)
= −M0,u + TrN,s[QuPC∗(u)]

−
∫ +∞

0
TrN,s[f (u)exp(−tD̃2

C∗(u))]dt . (3.69)

Now observe that atu= 0, by (3.30), one has

(C∗(0), dF̃ )= (L2[0,k](
∗(M̃, F̃ )), dF̃ ). (3.70)

Thus one again has the fact thatdF̃∗u commutes withPC∗(u), which, together with (3.65), implies that

f (0)= 0. (3.71)

From (3.24), (3.46), (3.69) and (3.71), one finds

� logT
(C∗(u),dF̃ ),⊥
�u

∣∣∣∣∣
u=0
=−M0,0

2
+ 1

2
TrN,s[Q0PC∗(0)]. (3.72)

Now let us consider the variation ofT
(C∗(u),dF̃ ) nearu= 0.

Observe that for any�, �′ ∈ C∗(0)= L2[0,k](
∗(M̃, F̃ )), the induced inner product of them inC∗(u)
is given by

〈PC∗(u)�, PC∗(u)�
′〉u = 〈�, PC∗(u)�

′〉u =
∫
M̃

〈� ∧ ∗F̃u PC∗(u)�
′〉F̃

= 〈�, (∗F̃ )−1 ∗ F̃
u PC∗(u)�

′〉. (3.73)
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Set for 0�u�1 that

Au = PC∗(0)(∗F̃ )−1 ∗ F̃
u PC∗(u)PC∗(0) : C∗(0)→ C∗(0). (3.74)

From (2.25)–(2.27), (3.21), (3.73) and (3.74), one finds,

log
T
(C∗(u),dF̃ )

T
(C∗(0),dF̃ )

=−1
2

n∑
i=0

(−1)i log Det�N(�) (Au|Ci(0)). (3.75)

From (2.16) and (3.75), one deduces

�

�u
log

T
(C∗(u),dF̃ )

T
(C∗(0),dF̃ )

=−1
2
TrN,s

[
A−1u

�Au

�u

]
. (3.76)

By (3.74), one sees directly that

Au|u=0= Id|C∗(0). (3.77)

From (3.49), (3.65), (3.74), (3.76) and (3.77), one finds

�

�u

∣∣∣∣
u=0

log
T
(C∗(u),dF̃ )

T
(C∗(0),dF̃ )

= − 1

2
TrN,s

[
PC∗(0)(∗F̃ )−1 � ∗ F̃

u

�u

∣∣∣∣∣
u=0

PC∗(0)

]
= − 1

2
TrN,s[Q0PC∗(0)]. (3.78)

From (3.45), (3.72) and (3.78), one gets

�

�u

∣∣∣∣
u=0

log
T
(2)
RS (M̃, F, gTMu , gFu )

T
(2)
RS (M̃, F, gTM, gF )

=−M0,0

2
. (3.79)

Since (3.79) holds for arbitrary(gTM, gF ), one gets indeed that for any 0�u�1,

�

�u
log

T
(2)
RS (M̃, F, gTMu , gFu )

T
(2)
RS (M̃, F, gTM, gF )

=−M0,u

2
. (3.80)

Now by using[19, Lemma 4]again, one sees that for any 0�u�1,M0,u is exactly the same quantity
appears in[4, Theorem 4.14], where a similar result is proved for the usual Ray–Singer metrics.
Formula (3.15) then follows from the evaluation of thisM0,u, 0�u�1, in [4, Theorem 4.20], and an

integration from 0 to 1 of the obtained result.
The proof of Theorem 3.4 is completed.�

Remark 3.10. As was mentioned in Remark 2.3, the “torsion element” dealt with here is dual to the
Ray–Singer metric discussed in[4], at least in the�= {e} case. This explains that the right-hand side of
(3.15) differs from that of[4, (4.13)]by a factor of−1

2.

Remark 3.11. If for any u ∈ [0,1], Spec(D̃2
u) contains a nonempty gap, then the proof of Theorem 3.4

can be simplified a lot. Here we did not make this assumption as usually Spec(D̃2
u), u ∈ [0,1], may not

be discrete when� is an infinite group.
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4. Infinite covering spaces and a formula relatingL2-Milnor torsion element to L2-Ray–Singer
torsion element

In this section, we state the main result of this paper, which is an extension of[4, Theorem 0.2]in the
infinite covering space case, and prove it modulus two intermediate results.
This section is organized as follows. In Section 4.1, we recall Shubin’s de Rham theorem for extended

cohomologies. In Section 4.2, we state the above mentioned main result of this paper as Theorem 4.2. In
Section 4.3, we state two intermediate results and prove Theorem 4.2.

4.1. An extended de Rham theorem

We assume that we are in the same situation as in Section 2.4.
By a simple argument of Helffer–Sjöstrand[16, Proposition 5.1](cf. [4, Section 7b]), we may and we

well assume thatgTM there satisfies the following property without altering theL2-Thom–Smale cochain
complex(C∗(Wu, F̃ ), �̃),
(∗) For anyx ∈ B, there is a system of coordinatesy = (y1, . . . , yn) centered atx such that nearx,

gTM =
n∑

i=1
|dyi |2, f (y)= f (x)− 1

2

ind(x)∑
i=1

|yi |2+ 1

2

n∑
i=ind(x)+1

|yi |2. (4.1)

By a result of Laudenbach[17], {Wu(x) : x ∈ B} form a CW decomposition ofM. As a consequence,
{Wu(̃x) : x̃ ∈ B̃} form a (�-equivariant) CW decomposition of̃M.
For anỹx ∈ B̃, F̃ is canonically trivialized over each cellWu(̃x).
Let P̃∞ be the de Rham map defined by

	 ∈ 
∗(M̃, F̃ ) ∩ L2(
∗(M̃, F̃ ))→ P̃∞	=
∑
x̃∈B̃

Wu(̃x)∗
∫
Wu(̃x)

	 ∈ C∗(Wu, F̃ ). (4.2)

LetH1(M̃, F̃ ) denote the first Sobolev space with respect to a (fixed,�-invariant) first Sobolev norm
on 
∗(M̃, F̃ ). By Stokes theorem, one verifies that when acting on
∗(M̃, F̃ )∩H1(
∗(M̃, F̃ )), one has

�̃P̃∞ = P̃∞dF̃ . (4.3)

From (4.3), one deduces easily thatP̃∞ induces aZ-grading preserving homomorphism̃PH∞ between the
extended cohomologies (cf.[6,13,33]),

P̃H∞ :H(2)
dR(


∗(M̃, F̃ ), dF̃ )→H∗(C∗(Wu, F̃ ), �̃). (4.4)

The following theorem has been proved by Shubin ([33, Theorem 3.1]).

Theorem 4.1. The canonical homomorphism̃PH∞ in (4.4) is an isomorphism.

By Theorem 4.1, the isomorphism̃PH∞ in (4.4) induces a natural isomorphism between the determinant
lines,

P̃ detH∞ : detH(2)
dR(


∗(M̃, F̃ ), dF̃ )→ detH∗(C∗(Wu, F̃ ), �̃). (4.5)
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4.2. An extended Cheeger–Müller theorem

Let hTM be an arbitrary smooth metric onTM. Then by Definition 3.3, one has an associated
L2-Ray–Singer torsion element

T
(2)
RS (M̃, F, hTM, gF ) ∈ detH(2)

dR(

∗(M̃, F̃ ), dF̃ ). (4.6)

From (4.5) and (4.6), one gets a well-defined element

P̃ detH∞ (T
(2)
RS (M̃, F, hTM, gF )) ∈ detH∗(C∗(Wu, F̃ ), �̃). (4.7)

On the other hand, by Definition 2.9, one has a well-definedL2-Milnor torsion element

�(M̃,F,gF ,−X) ∈ detH∗(C∗(Wu, F̃ ), �̃), (4.8)

whereX = ∇f is the gradient vector field off associated togTM .
Let �(TM,∇TM) be the Mathai–Quillen current[23] over TM, associated tohTM , defined in[4,

Definition 3.6]. As indicated in[4, Remark 3.8], the pull-back currentX∗�(TM,∇TM) is well-defined
overM.
The main result of this paper, which extends[4, Theorem 0.2]to the infinite covering spaces case, can

be stated as follows.

Theorem 4.2. The following identity inR holds:

log
P̃ detH∞ (T

(2)
RS (M̃, F, hTM, gF ))

�(M̃,F,gF ,−X)

= 1

2

∫
M


(F, hF )X∗�(TM,∇TM). (4.9)

Remark 4.3. If � = {e} is trivial, then (4.9) reduces to[4, Theorem 0.2], which generalizes the
Cheeger–Müller theorem (cf.[12,26,27]) to the case of general flat vector bundles. It is interesting
to observe that the right-hand side of (4.9) does not depend on�.

Remark 4.4. When� is infinite, n = dim M is odd and∇F preserves the volume form determined
by gF on det(F ), Theorem 4.2 was proved in[6, Theorem 13.8]. When� is infinite and(M̃, F ) is of
determinant class (cf.[8]), Theorem 4.2 was proved in[7] (cf. [7, Remark to Theorem 1.1 in Section 6.1])
as an extension of the main result of[8] to the nonunitary case. Both proofs in[7,6] use essentially the
concept of “relative torsion” introduced in[11]. In what follows, we will give a direct heat kernel proof
of Theorem 4.2 in the spirit of[4].

4.3. Witten deformation and a proof of Theorem 4.2

First of all, in view of Proposition 2.10 and Theorem 3.4, by proceeding as in[4, Section 7b], in order
to prove Theorem 4.2, we need only to prove it in the case wherehTM = gTM . Moreover, we may well
assume thatgF is flat nearB. From now on, we will make these assumptions.
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Let TRS(M,F, gTM, gF ) (resp.�(M,F,gF ,−X)) be the Ray–Singer (resp. Milnor) torsion element cor-
responding to the�= {e} case. Then[4, Theorem 0.2], in the above choice of metrics, takes the form

log
P det H∞ (TRS(M,F, gTM, gF ))

�(M,F,gF ,−X)

= 1

2

∫
M


(F, hF )X∗�(TM,∇TM). (4.10)

Thus, in order to prove Theorem 4.2, we need only to prove the following identity inR+:

P̃ detH∞ (T
(2)
RS (M̃, F, gTM, gF ))

�(M̃,F,gF ,−X)

= P det H∞ (TRS(M,F, gTM, gF ))

�(M,F,gF ,−X)

. (4.11)

In what follows, as above, whenever we do something onM̃, we will assume the same thing has been
done onM also, and the results onM will be formulated through the corresponding results onM̃ by
simply withdraw the “̃ ” notation. Also, while onM̃ we use “H” to denote the extended cohomology,
we use “H” to denote the cohomology onM.
As in [4,8,7], we will use the deformation associated to the Morse functionf introduced byWitten[35]

to prove (4.11).
Recall from[4, Section 5b]that theWitten deformation is equivalent to a deformation of the metric on

the flat vector bundleF. Thus, following[4, Definition 5.1], for anyT �0, letgFT be the smooth metric
onF given by

gFT = e−2Tf gF . (4.12)

LetL2
T (


∗(M̃, F̃ )) be the associated Hilbert space. LetdF̃∗T be the corresponding formal adjoint ofdF̃ .
Recall thatf̃ denotes the lifting off on M̃. Then one has

dF̃∗T = e2T f̃ dF̃∗e−2T f̃ : 
∗(M̃, F̃ )→ 
∗(M̃, F̃ ). (4.13)

Set

D̃T = dF̃ + dF̃∗T , D̃2
T = (dF̃ + dF̃∗T )2= dF̃∗T dF̃ + dF̃ dF̃∗T . (4.14)

ThenD̃2
T preserves theZ-grading of
∗(M̃, F̃ ). Let

(L2
T (


∗(M̃, F̃ )), dF̃ ) : 0→ L2
T (


0(M̃, F̃ ))
dF̃→L2

T (

1(M̃, F̃ ))

→ · · · dF̃→L2
T (


n(M̃, F̃ ))→ 0 (4.15)

denote the corresponding deformed complex of(L2(
∗(M̃, F̃ )), dF̃ ) in (3.2).
By [8, Proposition 5.2]and [32], one knows that there existC′>0, C′′>0 andT0>0 such that

wheneverT �T0, one has

Spec(D̃2
T ) ∩ (e−C′T , C′′T )= ∅. (4.16)

We may well assume that theT0 above can be chosen so that 1/∈ (e−C′T , C′′T ) for T �T0. Then (4.16)
allows us to split the deformed complex(L2

T (

∗(M̃, F̃ )), dF̃ ) into an orthogonal direct sum of two

subcomplexes,

(L2
T (


∗(M̃, F̃ )), dF̃ )= (L2
T ,[0,1](
∗(M̃, F̃ )), dF̃ )⊕ (L2

T ,[1,+∞)(

∗(M̃, F̃ )), dF̃ ), (4.17)
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whereL2
T ,[0,1](
∗(M̃, F̃ )) (resp.L2

T ,[1,+∞)(

∗(M̃, F̃ ))) is the image of the spectral projection of̃D2

T

corresponding to the spectral interval[0,1] (resp.[1,+∞)).
It is clear that splitting (4.17) is�-equivariant.
For anyT �T0, let P̃∞,T denote the restriction of̃P∞ onL2

T ,[0,1](
∗(M̃, F̃ )),

P̃∞,T = P̃∞ : L2
T ,[0,1](
∗(M̃, F̃ ))→ C∗(Wu, F̃ ). (4.18)

By (4.3), one has

�̃P̃∞,T = P̃∞,T d
F̃ . (4.19)

By Theorem 4.1,̃P∞,T induces an isomorphism between the extended de Rham cohomology and
H∗(C∗(Wu, F̃ ), �̃). Thus it induces an isomorphism between the determinant lines

P̃ detH∞,T : detH(2)
dR(


∗(M̃, F̃ ), dF̃ ) � detH∗(L2
T ,[0,1](
∗(M̃, F̃ )), dF̃ )

→ detH∗(C∗(Wu, F̃ ), �̃). (4.20)

Clearly, by choosingT0 sufficiently large, all these discussions also hold onM.
By Theorem 3.4[4, Theorem 0.1]and using the notation in Definition 3.3, one sees that (4.11) is

equivalent to

P̃ detH∞,T (T[0,1](M̃, F, gTM, gFT ))

�(M̃,F,gF ,−X)

·T[1,+∞)(M̃, F, gTM, gFT )

= P det H∞,T (T[0,1](M,F, gTM, gFT ))

�(M,F,gF ,−X)

·T[1,+∞)(M, F, gTM, gFT ), (4.21)

where we use the notationT for torsion elements, in order to avoid possible confusions with the notation
T for the deformed parameter.
We now state two intermediate results which will be proved in the next two sections.

Theorem 4.5. The following identity holds:

lim
T→+∞

(
log

P̃ detH∞,T (T[0,1](M̃, F, gTM, gFT ))

�(M̃,F,gF ,−X)

− log
P det H∞,T (T[0,1](M,F, gTM, gFT ))

�(M,F,gF ,−X)

)
= 0.

(4.22)

Theorem 4.6. The following identity holds:

lim
T→+∞(logT[1,+∞)(M̃, F, gTM, gFT )− logT[1,+∞)(M, F, gTM, gFT ))= 0. (4.23)

Proof of Theorem 4.2. By Theorem 3.4 and[4, Theorem 0.1], one knows that

P̃ detH∞,T (T[0,1](M̃, F, gTM, gFT ))

�(M̃,F,gF ,−X)

P det H∞,T (T[0,1](M,F, gTM, gFT ))

�(M,F,gF ,−X)

· T[1,+∞)(M̃, F, gTM, gFT )

T[1,+∞)(M, F, gTM, gFT )
(4.24)
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does not depend onT �0. By Theorems 4.5 and 4.6, one sees that it equals to 1. Thus, one gets (4.21)
which implies (4.11).
From (4.10) and (4.11), one gets (4.9).
The proof of Theorem 4.2 is completed.�

Remark 4.7. It is clear that the strategy of the above proof is similar to those in[4,7,8], where one uses
the Witten deformation and studies the asymptotic properties of the small and large eigen-complexes. A
notable point here is that by Theorem 4.6, one is able to avoid the repeat of the local index computations
in [4, Sections 12–15]. Moreover, as one compares directly with the usual Ray–Singer torsion element,
one is able to avoid the comparison arguments in[7,8], and thus able to prove Theorem 4.2 directly.

5. A proof of Theorem 4.5

In this section, we prove Theorem 4.5. Recall that an asymptotic formula for

log
P det H∞,T (T[0,1](M,F, gTM, gFT ))

�(M,F,gF ,−X)

, asT →+∞,

has been established in[4, Theorem 7.6]. Thus, we need only to show that a similar asymptotic formula
holds for

log
P̃ detH∞,T (T[0,1](M̃, F, gTM, gFT ))

�(M̃,F,gF ,−X)

.

While such an asymptotic formula can be proved by using theL2-Helffer–Sjöstrand–Witten theory
developed in[8], we will use anL2-generalization of the arguments in[5, Section 6]to prove it (the
idea of using an extension of the arguments in[5, Section 6]to prove anL2-Cheeger–Müller theorem
first appeared in[15], where Gong dealt with the case where∇F preservesgF and the Novikov–Shubin
invariants associated to(M̃, F ) are all positive).
We continue the discussion in Section 4.3.
For anyT �0, following Witten[35], set

dF̃T = e−T f̃ dF̃eT f̃ , �F̃∗T = eT f̃ dF̃∗e−T f̃ : 
∗(M̃, F̃ )→ 
∗(M̃, F̃ ). (5.1)

Then�F̃∗T is the formal adjoint ofdF̃T with respect to the usual inner product (associated to(gTM, gF ))
onL2(
∗(M̃, F̃ )). Set

D̃′T = dF̃T + �F̃∗T , D̃′2T = (dF̃T + �F̃∗T )2= �F̃∗T dF̃ + dF̃ �F̃∗T . (5.2)

ThenD̃′2T preserves theZ-grading of
∗(M̃, F̃ ).
The following formula is clear (cf.[4, Proposition 5.4]),

D̃′T = e−T f̃ D̃T e
T f̃ , D̃′2T = e−T f̃ D̃2

T e
T f̃ . (5.3)
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Let

(L2(
∗(M̃, F̃ )), dF̃T ) : 0→ L2(
0(M̃, F̃ ))
dF̃T→L2(
1(M̃, F̃ ))

→ · · · d
F̃
T→L2(
n(M̃, F̃ ))→ 0 (5.4)

denote the corresponding deformed complex of(L2(
∗(M̃, F̃ )), dF̃ ) in (3.2).
From (4.16) and (5.3), one sees that asT >0 is sufficiently large,(L2(
∗(M̃, F̃ )), dF̃T ) decomposes

to an orthogonal direct sum of two subcomplexes,

(L2(
∗(M̃, F̃ )), dF̃T )= (L2[0,1],T (
∗(M̃, F̃ )), dF̃T )⊕ (L2
[1,+∞),T (


∗(M̃, F̃ )), dF̃T ), (5.5)

whereL2[0,1],T (
∗(M̃, F̃ )) (resp.L2
[1,+∞),T (


∗(M̃, F̃ ))) is the image of the spectral projection of̃D′2T
corresponding to the spectral interval[0,1] (resp.[1,+∞)).
LetP̃[0,1],T (resp.P̃ ′[0,1],T ) denote theorthogonal projection fromL2

T (

∗(M̃, F̃ )) (resp.L2(
∗(M̃, F̃ )))

ontoL2
T ,[0,1](
∗(M̃, F̃ )) (resp.L2[0,1],T (
∗(M̃, F̃ ))). Then by (5.3), one has

P̃ ′[0,1],T = e−T f̃ P̃[0,1],T eT f̃ . (5.6)

Thus, the linear maps → e−T f̃ s identifiesL2
T ,[0,1](
∗(M̃, F̃ )) isometrically withL2[0,1],T (
∗(M̃, F̃ )).

Let ε >0 be such that for anyx ∈ B, (4.1) holds on

BM(x, ε)= {y ∈ M : dgTM (x, y)�ε},
and thatgF is flat onBM(x, ε). Such anε >0 clearly exists.
For anỹx ∈ B̃, we use the local coordinate system(ỹ1, . . . , ỹn) lifted from (4.1) nearx = �(̃x) ∈ B.

In particular,Rind(̃x) � Tx̃W
u(̃x) inherits an orientation from the orientation ofWu(̃x). Let �x̃ be the

volume form on the oriented vector spaceRind(̃x). One can assume thatỹ1, . . . , ỹ ind(x) are such that

�x̃ = d̃y1 ∧ · · · ∧ d̃y ind(x). (5.7)

Let � : R→ [0,1] be a smooth function such that
�(a)= 1 if a < 1

2, while �(a)= 0 if a >1. (5.8)

If ỹ ∈ Rn, set

�(ỹ)= �

( |̃y|
ε

)
. (5.9)

We can consider� as a smooth function defined oñM with nonnegative values, which vanishes on
M̃\BM̃ (̃x, ε).
For anyT >0, set

	T =
∫
Rn

�2(ỹ)exp(−T |̃y|2) d̃y. (5.10)
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Clearly, there isc >0 such that asT →+∞,

	T =
( �

T

)n/2+O(e−cT ). (5.11)

Following[4, Definition 8.7; 5, Definition 6.5], for anyT >0, letJ̃T be the linearmap fromC∗(Wu, F̃ )

intoL2(
∗(M̃, F̃ )) such that if̃x ∈ B̃, h ∈ F̃x̃ , ỹ ∈ BM̃ (̃x, ε),

J̃T (W
u(̃x)∗ ⊗ h)(ỹ)= �(ỹ)

(	T )
1/2 exp

(−T |̃y|2
2

)
�x̃ ⊗ h. (5.12)

Clearly,J̃T is an isometry fromC∗(Wu, F̃ ) intoL2(
∗(M̃, F̃ )), which preserves theZ-grading.
Let ẽ′T : C∗(Wu, F̃ )→ L2[0,1],T (
∗(M̃, F̃ )) be defined by

ẽ′T = P̃ ′[0,1],T J̃T . (5.13)

The followingL2-extension of[4, Theorem 8.8; 5, Theorem 6.7]can be proved by an easy adaptation
of the arguments in[4, Theorem 8.8; 5, Theorem 6.7]to theL2-setting (cf.[8, Proposition 5.4; 15, Lemma
3.6]).

Proposition 5.1. There existsc >0 such that asT →+∞, for anys ∈ C∗(Wu, F̃ ),

(̃e′T − J̃T )s =O(e−cT )s uniformly on M̃. (5.14)

Let ẽT : C∗(Wu, F̃ )→ L2
T ,[0,1](
∗(M̃, F̃ )) be defined by

ẽT = eT f̃ ẽ′T . (5.15)

Using Proposition 5.1, the followingL2-extension of[5, Theorem 6.9]can be proved by an easy
adaptation of the arguments in[5, Theorem 6.9]to theL2-setting (cf.[15, Lemma 3.6]).

Proposition 5.2. There existsc >0 such that asT →+∞,

ẽ∗T ẽT = 1+O(e−cT ). (5.16)

Moreover, for T >0 large enough, ẽT : C∗(Wu, F̃ )→ L2
T ,[0,1](
∗(M̃, F̃ )) is anN(�)-linear isomor-

phism between theZ-gradedN(�)-Hilbert modules.

Proof. Formula (5.16) can be proved in the same way as in[5, Theorem 6.9](cf. [15, Lemma 3.6]).
Moreover, an easy argument (cf.[15, pp. 75–76]) shows that

Im(̃eT )= L2
T ,[0,1](
∗(M̃, F̃ )). (5.17)

The proof of Proposition 5.2 is completed.�

Recall that the map̃P∞,T : L2
T ,[0,1](
∗(M̃, F̃ ))→ C∗(Wu, F̃ ) has been defined in (4.18).

Let F̃ : C∗(Wu, F̃ )→ C∗(Wu, F̃ ) be acting onWu(̃x)⊗ F̃x̃ , x̃ ∈ B̃, by multiplication byf̃ (̃x). Also,
we still denote byN : C∗(Wu, F̃ ) → C∗(Wu, F̃ ) the operator acting onCi(Wu, F̃ ) by multiplication
by i.
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The followingL2-extension of[5, Theorem 6.11]can be proved by exactly the same arguments as in
[5, Theorem 6.11](cf. [15, Lemma 4.2]).

Proposition 5.3. There existsc >0 such that asT →+∞,

P̃∞,T ẽT = eT F̃
( �

T

)N/2−n/4
(1+O(e−cT )). (5.18)

In particular, for T >0 large enough, P̃∞,T ẽT : C∗(Wu, F̃ )→ C∗(Wu, F̃ ) is anN(�)-linear isomor-
phism betweenZ-gradedN(�)-Hilbert modules.

From (4.19) and Propositions 5.2, 5.3, one sees that whenT >0 is large enough,

P̃∞,T : L2
T ,[0,1](
∗(M̃, F̃ ))→ C∗(Wu, F̃ ) (5.19)

is a cochain isomorphism between finite length cochain complexes ofN(�)-Hilbert modules.
From Proposition 2.7, one deduces easily that

P̃ detH∞,T (T[0,1](M̃, F, gTM, gFT ))

�(M̃,F,gF ,−X)

=
n∏

i=0
Det�N(�) (P̃

∗∞,T P̃∞,T |L2
T ,[0,1](
i (M̃,F̃ )))

(−1)i/2, (5.20)

which can be thought of as anL2-extension of[5, Theorem 6.17].
Now for any 0�i�n, by Propositions 2.1, 5.2 and 5.3, one computes that whenT >0 is large enough,

Det�N(�) (P̃
∗∞,T P̃∞,T |L2

T ,[0,1](
i (M̃,F̃ )))

= Det�N(�) (̃eT ẽ
∗
T P̃

∗∞,T P̃∞,T |L2
T ,[0,1](
i (M̃,F̃ )))

· Det−1�N(�)
(̃eT ẽ

∗
T |L2

T ,[0,1](
i (M̃,F̃ )))

= Det�N(�) ((P̃∞,T ẽT )
∗P̃∞,T ẽT |Ci(Wu,F̃ )) · Det−1�N(�)

(̃e∗T ẽT |Ci(Wu,F̃ ))

= Det�N(�)

(
(1+O(e−cT ))∗

( �

T

)N−n/2
e2T F̃(1+O(e−cT ))|Ci(Wu,F̃ )

)
· Det−1�N(�)

((1+O(e−cT ))|Ci(Wu,F̃ ))

= Det�N(�)

(( �

T

)N−n/2
e2T F̃(1+O(e−cT ))(1+O(e−cT ))∗

∣∣∣∣
Ci(Wu,F̃ )

)
· Det−1�N(�)

((1+O(e−cT ))|Ci(Wu,F̃ )). (5.21)

From Proposition 2.1 and (5.21), one deduces that asT →+∞,

log Det�N(�) (P̃
∗∞,T P̃∞,T |L2

T ,[0,1](
i (M̃,F̃ )))= rk(F )
(
i − n

2

)
log

( �

T

)
+ 2T rk(F )

∑
x∈B,ind(x)=i

f (x)+ o(1). (5.22)
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Following [4, (7.13)–(7.15)], we introduce the notations

�(F )=
dim M∑
i=0

(−1)i dim Hi(M,F)= rk(F )
∑
x∈B

(−1)ind(x),

�̃′(F )= rk(F )
∑
x∈B

(−1)ind(x)ind(x),

TrBs [f ] =
∑
x∈B

(−1)ind(x)f (x). (5.23)

From (5.20), (5.22) and (5.23), one gets that asT →+∞,

log
P̃ detH∞,T (T[0,1](M̃, F, gTM, gFT ))

�(M̃,F,gF ,−X)

− T rk(F )TrBs [f ] −
(
n

4
�(F )− �̃′(F )

2

)
log

(
T

�

)
→ 0. (5.24)

On the other hand, in using our notation, one sees that[4, Theorem 7.6]is equivalent to the following
formula:

log
P det H∞,T (T[0,1](M,F, gTM, gFT ))

�(M,F,gF ,−X)

− T rk(F )TrBs [f ] −
(
n

4
�(F )− �̃′(F )

2

)
log

(
T

�

)
→ 0. (5.25)

From (5.24) and (5.25), one gets (4.22).
The proof of Theorem 4.5 is completed.�

6. A proof of Theorem 4.6

In this section, we prove Theorem 4.6. The method of finite propagation speed will play an essential
role in the proof.
This section is organized as follows. In Section 6.1, we give an explicit expression ofT[1,+∞)

(M̃, F, gTM, gFT ) and decompose it into two parts: a part involving the integration from 0 to 1 and
the other from 1 to+∞. In Section 6.2, we show that the part involving the integration from 1 to+∞
tends to zero asT →+∞. In Section 6.3, we deal with the part involving the integration from 0 to 1.We
show that this part can be further decomposed into two parts and one of them tends to zero asT →+∞.
In Section 6.4, we complete the proof of Theorem 4.6.

6.1. An expression ofT[1,+∞)(M̃, F, gTM, gFT )

We continue the discussion in Section 5.
Recall that whenT >0 is large enough, 1/∈Spec(D̃2

T ) andT[1,+∞)(M̃, F, gTM, gFT ) can be defined
as in (3.7) by settingε = 1 and by replacinggF there bygFT .
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More precisely, forT >0 large enough ands ∈ C with Re(s)>n/2, set (cf. (3.6) and (3.47)),


T (s)= 1

�(s)

∫ +∞

0
t s−1TrN,s[N exp(−tD̃2

T |L2
T ,[1,+∞)

(
∗(M̃,F̃ )))]dt . (6.1)

Then
T (s) can be extended as a meromorphic function onC which is holomorphic ats = 0, and

logT[1,+∞)(M̃, F, gTM, gFT )=
1

2

�
T (s)

�s

∣∣∣∣
s=0

. (6.2)

Now by Lott [19, Lemma 4]and Bismut and Zhang[4, Theorem 7.10], one sees that for anyT �0,
whent → 0+, one has the asymptotic expansion

TrN,s[N exp(−tD̃2
T )] =

a−1√
t
+ a0+O(

√
t), (6.3)

wherea−1, a0 are defined in[4, (7.55)]and do not depend onT as well as�.
Also, sinceL2

T ,[0,1)(
∗(M̃, F̃ )) is a finitely generatedN(�)-Hilbert module and isN(�)-isomorphic

to C∗(Wu, F̃ ) when T >0 is large enough, one sees that whenT >0 is large enough, one has the
asymptotic expansion

TrN,s

[
N exp

(
−tD̃2

T |L2
T ,[0,1)(
∗(M̃,F̃ ))

)]
= �̃′(F )+O(

√
t). (6.4)

From (6.1), (6.3) and (6.4), one can rewrite (6.1) as


T (s)= 1

�(s)

∫ 1

0
t s−1

(
TrN,s[N exp(−tD̃2

T |L2
T ,[1,+∞)

(
∗(M̃,F̃ )))] −
a−1√
t
− a0+ �̃′(F )

)
dt

+ 1

�(s)

∫ +∞

1
t s−1TrN,s[N exp(−tD̃2

T |L2
T ,[1,+∞)

(
∗(M̃,F̃ )))]dt

+ a−1
�(s)(s − 1

2)
+ a0− �̃′(F )

�(s + 1)
. (6.5)

From (6.3) to (6.5), we get

�
T (s)

�s

∣∣∣∣
s=0
=
∫ 1

0

(
TrN,s[N exp(−tD̃2

T |L2
T ,[1,+∞)

(
∗(M̃,F̃ )))] −
a−1√
t
− a0+ �̃′(F )

)
dt

t

+
∫ +∞

1
TrN,s[N exp(−tD̃2

T |L2
T ,[1,+∞)

(
∗(M̃,F̃ )))]
dt

t

− 2a−1− �′(1)(a0− �̃′(F )). (6.6)

Set


̃1(T )=
∫ 1

0

(
TrN,s[N exp(−tD̃2

T |L2
T ,[1,+∞)

(
∗(M̃,F̃ )))] −
a−1√
t
− a0+ �̃′(F )

)
dt

t
, (6.7)


̃2(T )=
∫ +∞

1
TrN,s[N exp(−tD̃2

T |L2
T ,[1,+∞)

(
∗(M̃,F̃ )))]
dt

t
. (6.8)

In the next subsections, we will study the behavior asT →+∞ of 
̃1(T ) and̃
2(T ) separately.
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6.2. The behavior of̃
2(T ) asT →+∞

In this subsection, we prove the following result.

Proposition 6.1. The following identity holds:

lim
T→+∞ 
̃2(T )= 0. (6.9)

Proof. We first prove the followingL2-analogue of[4, Theorem 7.8].

Lemma 6.2. For anyt >0,

lim
T→+∞ TrN,s[N exp(−tD̃2

T |L2
T ,[1,+∞)

(
∗(M̃,F̃ )))] = 0. (6.10)

Moreover, there existC >0, c >0 andT1>0 such that fort�1, T �T1, one has

|TrN,s[N exp(−tD̃2
T |L2

T ,[1,+∞)
(
∗(M̃,F̃ )))]|�c exp(−Ct). (6.11)

Proof. Let J̃T : C∗(Wu, F̃ )→ L2(
∗(M̃, F̃ )) be the map defined in (5.12). Let

ẼT = J̃T (C
∗(Wu, F̃ )) (6.12)

be the image of̃JT . SinceJ̃T is an isometry,̃ET ⊂ L2(
∗(M̃, F̃ )) is closed.
Let Ẽ⊥T denote the orthogonal complement ofẼT in L2(
∗(M̃, F̃ )), that is,

L2(
∗(M̃, F̃ ))= ẼT ⊕ Ẽ⊥T . (6.13)

Let P̃T (resp.P̃⊥T ) denote the orthogonal projection fromL2(
∗(M̃, F̃ )) ontoẼT (resp.Ẽ⊥T ).
Recall thatD̃′T has been defined in (5.3).
Following Bismut–Lebeau[3, Section 9], we define

D̃′T ,1= P̃T D̃
′
T P̃T , D̃′T ,2= P̃T D̃

′
T P̃

⊥
T ,

D̃′T ,3= P̃⊥T D̃′T P̃T , D̃′T ,4= P̃⊥T D̃′T P̃⊥T . (6.14)

Recall thatH1(M̃, F̃ )denotes the first Sobolev spacewith respect to a (fixed,�-invariant) first Sobolev
norm on
∗(M̃, F̃ ).
By proceeding as in[3, Section 9b], which can be made much simpler in the current situation (cf.[37,

Proposition 5.2]), one deduces that
(i) The following identity holds:

D̃′T ,1= 0. (6.15)

(ii) There existsT2>0 such that for anys ∈ Ẽ⊥T ∩ H1(M̃, F̃ ), s′ ∈ ẼT ∩ H1(M̃, F̃ ) andT �T2, one
has

‖D̃′T ,2s‖0�
‖s‖0
T

and ‖D̃′T ,3s′‖0�
‖s′‖0
T

. (6.16)
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(iii) There existT3>0 andC′>0 such that for anys ∈ Ẽ⊥T ∩ H1(M̃, F̃ ) andT �T3, one has

‖D̃′T ,4s‖0�C′
√
T ‖s‖0. (6.17)

Following [3, (9.113)], for T �1, set

UT =
{

� ∈ C : 1� |�|�C′
√
T

4

}
. (6.18)

From (6.15) to (6.18), one can proceed as in[3, Section 9e]to show that there existsT4�1 such that
for anyT �T4, � ∈ UT , �− D̃′T is invertible. For any positive integerp�n+ 2, there existsC′′>0 such
that if T �T4, � ∈ UT , the followingL2-analogue of[3, (9.142)]in our current situation holds,

|TrN,s[N(�− D̃′T )−p] − �−p�̃′(F )|� C′′√
T
(1+ |�|)p+1. (6.19)

From (6.19), one can then proceed as in[4, Section 10c], with an obviousL2-modification, to complete
the proof of Lemma 6.2. �

From (5.3), (6.8), Lemma 6.2 and the dominate convergence theorem, one gets (6.9).
The proof of Proposition 6.1 is completed.�

Remark 6.3. Alternatively, one can proceed as in[8, Corollary 6.9], which works equally in the nonuni-
tary case, to get the following analogue of[8, (6.75)]: there existT5>0, c′>0, c′′>0 such that ift�1,
T �T5, then

|TrN,s[N exp(−tD̃′2T |L2[1,+∞),T
(
∗(M̃,F̃ )))]|�c′ exp(−c′′tT ). (6.20)

From (5.3) and (6.20), one also gets Lemma 6.2.

6.3. A behavior of̃
1(T ) asT →+∞

From (5.3) and (6.7), one can rewritẽ
1(T ) as


̃1(T )=
∫ 1

0

(
TrN,s[N exp(−tD̃′2T |L2[1,+∞),T

(
∗(M̃,F̃ )))] −
a−1√
t
− a0+ �̃′(F )

)
dt

t

= 2
∫ 1

0

(
TrN,s[N exp(−t2D̃′2T |L2[1,+∞),T

(
∗(M̃,F̃ )))] −
a−1
t
− a0+ �̃′(F )

) dt
t
. (6.21)

We now proceed as in[3, Section 13b].
Let 	>0 be a positive constant. Leth : R→ [0,1] be a smooth function such that

h(t)= 1 if |t |� 	

2
, h(t)= 0 if |t |�	. (6.22)

Set

g(t)= 1− h(t). (6.23)
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Following [3, (13.9)], if t ∈ (0,1], a ∈ C, set

Ht(a)=
∫ +∞

−∞
exp(iu

√
2a)exp

(
−u2

2

)
h(ut)

du√
2�

.

Gt(a)=
∫ +∞

−∞
exp(iu

√
2a)exp

(
−u2

2

)
g(ut)

du√
2�

. (6.24)

Then

exp(−a2)=Ht(a)+Gt(a). (6.25)

Sinceh is even,Ht andGt are even functions, which takes values inR. Moreover,Ht andGt lie in the
Schwartz spaceS(R).
For simplicity, denote

D̃′′T = D̃′T |L2[1,+∞),T
(
∗(M̃,F̃ )). (6.26)

From (6.25), (6.26), one deduces that

exp(−t2D̃′′2T )=Ht(tD̃
′′
T )+Gt(tD̃

′′
T ). (6.27)

SinceHt , Gt ∈ S(R) and sincetD̃′T verifies the elliptic estimate, one verifies easily thatHt(tD̃
′′
T ) and

Gt(tD̃
′′
T ) are given by smooth kernels, and so are of trace class with respect to TrN (cf. [1]).

The main result of this section can be stated as follows. It can be thought of as anL2-analogue of
[3, Theorem 13.4]in our situation.

Proposition 6.4. There existc >0,C >0, T0>0 such that for anyt ∈ (0,1], T �T0,

|TrN,s[NGt (tD̃
′′
T )]|�

c√
T
exp

(
−C

t2

)
. (6.28)

Proof. Set

It (a)=
∫ +∞

−∞
exp(iu

√
2a)exp

(
− u2

2t2

)
g(u)

du

t
√
2�

. (6.29)

Then

Gt(a)= It

(a
t

)
. (6.30)

Observe thatg(t)= 0 neart = 0. Forp ∈ N, set as in[3, (13.15)]

It,p(a)= (p − 1)!
∫ +∞

−∞
exp(iu

√
2a)exp

(
− u2

2t2

)
g(u)

(iu
√
2)p−1

du

t
√
2�

. (6.31)

Clearly,

I
(p−1)
t,p (a)

(p − 1)! = It (a). (6.32)
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Thena ∈ C → It,p(a) is holomorphic. Moreover, for anyc >0, if |Im(a)|�c, as|a| → +∞, It,p(a)
decay faster than any|a|−m.
Let �= �+ ∪ �− ⊂ C be the contour considered in[4, Section 10c]. That is

�+ = {x + iy : x = 1,−1�y�1} ∪ {x + iy : x�1, y = 1} ∪ {x + iy : x�1, y =−1},
�− = {x + iy : x =−1,−1�y�1} ∪ {x + iy : x� − 1, y = 1} ∪ {x + iy : x� − 1, y =−1}.

We orient�± in counter clockwise manner. Then for anya ∈ R with |a|>1,

It (a)= 1

2�i

∫
�
It (�)(�− a)−1 d�. (6.33)

Equivalently,

It (a)= 1

2�i

∫
�
It,p(�)(�− a)−p d� (6.34)

for anyp ∈ N.
From (6.30), one has

Gt(tD̃
′′
T )= It (D̃

′′
T ). (6.35)

We now takep� dim M + 2. From (6.34) and (6.35), one gets

Gt(tD̃
′′
T )=

1

2�i

∫
�
It,p(�)(�− D̃′′T )−p d�. (6.36)

For T >0, letUT ⊂ C be defined as in (6.18). Recall that ifT >0 is large enough, if� ∈ UT , then
(6.19) holds.
Also, sinceg(t) vanishes neart =0, we deduce from (6.31) that for anym ∈ N, there existcm,Cm>0

such that if� ∈ �,

|�mIt,p(�)|�cm exp

(
−Cm

t2

)
(6.37)

(cf. [3, (13.23)]).
From (6.19), (6.37), it is clearly that whenT >0 is large enough,∣∣∣∣TrN,s

[
N

1

2�i

∫
�∩UT

It,p(�)(�− D̃′T )−p
]
d�− �̃′(F )

1

2�i

∫
�∩UT

It,p(�)�
−p d�

∣∣∣∣
�

c√
T
exp

(
−C

t2

)
(6.38)

for some positive constantsc, C >0.
On the other hand, forT >0 large enough, if� ∈ �∩cUT , by proceeding as in[3, Section 9e], one

deduces that the followingL2-analogue of[3, (9.170)]holds,

|TrN,s[N(�− D̃′T )−p]|�c′(1+ |�|)p (6.39)

for some constantc′>0.
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From (6.37) and (6.39), one finds that for anym ∈ N, if T >0 is large enough, then∣∣∣∣TrN,s

[
N

1

2�i

∫
�∩cUT

It,p(�)(�− D̃′T )−p
]
d�

∣∣∣∣ �c′m
(
1

T

)m

exp

(
−C′m

t2

)
, (6.40)

for some positive constantsc′m, C′m >0. Also, by (6.37), one has∣∣∣∣ 1

2�i

∫
�∩cUT

It,p(�)�
−p d�

∣∣∣∣ �c′′m
(
1

T

)m

exp

(
−C′′m

t2

)
(6.41)

for some positive constantsc′′m, C′′m >0.
From (6.36), (6.38), (6.40), (6.41) and the obvious identity

1

2�i

∫
�
It,p(�)�

−p d�= 0, (6.42)

one gets (6.28).
The proof of Proposition 6.4 is completed.�

6.4. A Proof of Theorem 4.6

It is clear that all the above analysis works equally well for the�= {e} case. As was indicated earlier,
we will use notations without “∼” to denote the corresponding quantities for the�= {e} case.
We now will comparẽ
1(T ) defined in (6.21) with
1(T ) which corresponds to the�= {e} case. That

is,


1(T )= 2
∫ 1

0

(
Trs[N exp(−t2D′2T |L2[1,+∞),T

(
∗(M,F )))] −
a−1
t
− a0+ �̃′(F )

) dt
t
. (6.43)

From (6.21), (6.26), (6.27) and (6.43), one finds that whenT >0 is large enough,


̃1(T )− 
1(T )= 2
∫ 1

0
(TrN,s[N exp(−t2D̃′′2T )] − Trs[N exp(−t2D′′2T )]) dt

t

= 2
∫ 1

0
(TrN,s[NGt (tD̃

′′
T )] − Trs[NGt (tD

′′
T )])

dt

t

+ 2
∫ 1

0
(TrN,s[NHt (tD̃

′′
T )] − Trs[NHt (tD

′′
T )])

dt

t
. (6.44)

Now we write

TrN,s[NHt (tD̃
′′
T )] − Trs[NHt (tD

′′
T )] = TrN,s[NHt (tD̃

′
T )] − Trs[NHt (tD

′
T )]

− (TrN,s[NHt (tD̃
′
T |L2[0,1),T (
∗(M̃,F̃ )))]

− Trs[NHt (tD
′
T |L2[0,1),T (
∗(M,F )))]). (6.45)

Let Ht(tD̃
′
T )(̃x, x̃

′) (resp.Ht(tD
′
T )(x, x

′)) denote the smooth kernel associated toHt(tD̃
′
T ) (resp.

Ht(tD
′
T )) on M̃ × M̃ (resp.M ×M) with respect to dvol

gT M̃
(resp. dvolgTM ).
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LetWbe a fundamental domain of the covering space�→ M̃
�→M. Then one has (cf.[1])

TrN,s[NHt (tD̃
′
T )] =

∫
W

Trs[NHt (tD̃
′
T )(̃x, x̃)]dvol(̃x). (6.46)

By proceeding in exactly the same way as in[3, Remark 13.5], which uses in an essential way the
finite propagation speed property of hyperbolic equations, one sees that one can choose	>0 in Section
6.3 small enough (but still fixed) so that for anyx̃ ∈ M̃,Ht(tD̃

′
T )(̃x, x̃) depends only on the behavior of

D̃′T in a sufficiently small neighborhood of̃x in M̃.
In particular, one gets

Trs[NHt (tD̃
′
T )(̃x, x̃)] = Trs[NHt (tD

′
T )(�(̃x), �(̃x))]. (6.47)

From (6.46), (6.47), one gets

TrN,s[NHt (tD̃
′
T )] =

∫
M

Trs[NHt (tD
′
T )(x, x)]dvol(x)= Trs[NHt (tD

′
T )]. (6.48)

On the other hand, by (4.16) and (6.4), one deduces easily that whenT >0 is large enough,

|TrN,s[NHt (tD̃
′
T |L2[0,1),T (
∗(M̃,F̃ )))] − Trs[NHt (tD

′
T |L2[0,1),T (
∗(M,F )))]|�c

√
te−CT (6.49)

for some constantsc, C >0.
From (6.28), (6.44), (6.45), (6.48), (6.49) and the dominant convergence theorem, one gets

lim
T→+∞(̃
1(T )− 
1(T ))= 0. (6.50)

From (6.9) and (6.50), one gets

lim
T→+∞(̃
1(T )+ 
̃2(T )− (
1(T )+ 
2(T )))= 0. (6.51)

From (6.2), (6.6), (6.7) and (6.51), one gets (4.23).
The proof of Theorem 4.6 is completed.�
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