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Abstract

We extend our earlier work in [TiZ1], where an analytic approach
to the Guillemin-Sternberg geometric quantization conjecture [GuSt]
was developed, to the case of manifolds with boundary. We also
give a general quantization formula that works for both regular and
singular reductions. As simple applications, we prove an analytic
analogue of the relative residue formula of Guillemin-Kalkman [GuK]
and Martin [M], as well as a Guillemin-Sternberg type formula for
singular reductions under circle actions.

0 Introduction

In a previous paper [TiZ1], we have developed a direct analytic approach to
the Guillemin-Sternberg geometric quantization conjecture [GuSt], which
has been proved in various generalities in [DuGMW], [Gu], [GuSt], [JKi],
[Me1,2], [V]. The purpose of this paper is to extend this quantization for-
mula to manifolds with boundary by using the methods in [TiZ1].

Let (M,ω) be a compact symplectic manifold with boundary ∂M such
that there is a Hermitian line bundle L over M admitting a Hermitian
connection ∇L with the property that

√
−1

2π (∇L)2 = ω. Let J be an al-
most complex structure on TM such that gTM (u, v) = ω(u, Jv) defines a
Riemannian metric on TM . With these data in hand, one can construct
canonically a Spinc-Dirac operator

DL
+ : Ω0,even(M,L)→ Ω0,odd(M,L) , (0.1)

and thus also a canonically induced formally self-adjoint Spinc-Dirac oper-
ator

DL
∂M,+ : Ω0,even(M,L)|∂M → Ω0,even(M,L)|∂M (0.2)
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on ∂M (cf. [APS1], [G]). One can use DL
∂M,+ to impose the Atiyah-Patodi-

Singer boundary condition [APS1] to get an elliptic operatorDL
+,APS , which

gives rise to the finite dimensional virtual vector space

QAPS(M,L) = kerDL
+,APS − cokerDL

+,APS . (0.3)

Suppose (M,ω) admits a Hamiltonian action of a compact connected
Lie group G with Lie algebra g. Clearly, this action preserves the boundary
∂M . Let µ : M → g∗ be the corresponding moment map. A formula due to
Kostant [Ko] (cf. [TiZ1, (1.13)]) induces a natural g action on L. One makes
the basic assumption that this g action can be lifted to a G action on L.
Then this G action preserves ∇L. One can also assume, after an integration
over G if necessary, that G preserves the Hermitian metric on L, the almost
complex structure J and thus also the Riemannian metric gTM .

Now we make the assumption that 0 ∈ g∗ is a regular value of µ, and,
for simplicity, that G acts freely on µ−1(0). Furthermore, we assume in this
paper that µ−1(0) ∩ ∂M = ∅. Then MG = µ−1(0)/G is a smooth closed
symplectic manifold on which one can construct the virtual vector space
Q(MG, LG) (cf. e.g. [TiZ1]).

Since G preserves everything, it commutes with DL
+ and DL

∂M,+. Thus
QAPS(M,L) is a virtual G representation. Denote by QAPS(M,L)G its
G-trivial component.

Let g (and thus g∗ also) be equipped with an AdG invariant metric.
Let H = |µ|2 be the norm square of the moment map µ. We denote by XH

the Hamiltonian vector field associated to H. Then one verifies easily that
XH|∂M ∈ Γ(T∂M).

If X ∈ Γ(T∂M), we use the notation c̃(X) to denote the canonical
Clifford action of X on Ω0,even(M,L)|∂M . Also we identify T ∗(∂M) with
T∂M by using the metric gT∂M = gTM |∂M .

For any T ∈ R, we define an odd dimensional analogue of the deforma-
tion introduced in [TiZ1, Definition 1.2] as

DL
∂M,+,T = DL

∂M,+ +
√
−1T
2

c̃(XH) . (0.4)

It is again a formally self-adjoint elliptic operator.
Let em, m = dimM , be the inward unit normal vector field perpendic-

ular to ∂M . Let ym be the associated geodesic distance coordinate to ∂M .
Let d∂M be the exterior derivation on ∂M .

Denote by B ⊂M the set of critical points of H. Set B = B ∩ ∂M .
We can now state the main result of this paper as follows.
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Theorem 0.1. If the following inequality holds on B,

4πH−
√
−1
2 c̃

(
d∂M ∂H

∂ym

)
c̃(Jem) > 0 , (0.5)

then there exists T0 > 0 such that for any T ≥ T0,

(i) when restricted to the G-invariant subspace of Ω0,even(M,L)|∂M ,
DL
∂M,+,T is invertible;

(ii) the following identity holds,

dimQ(MG, LG) = dimQAPS(M,L)G−sfG{DL
∂M,+,D

L
∂M,+,T } , (0.6)

where sfG{DL
∂M,+,D

L
∂M,+,T } is a G-invariant version of the spectral

flow associated to the linear path {(1− u)DL
∂M,+ + uDL

∂M,+,T }0≤u≤1.

The condition (0.5) holds when G = S1 (see section 3 for more details).
Also, it is clear that when ∂M = ∅, (0.6) reduces to the Guillemin-Sternberg
conjecture [GuSt].

The basic strategy of the proof of Theorem 0.1 is the same as that in
[TiZ1]. That is, we deform the Spinc-Dirac operator DL by using the Clif-
ford action of XH, and then apply the methods and techniques of Bismut-
Lebeau [BLe] to complete the proof. The analysis outside of ∂M is the
same as that in [TiZ1]. While near ∂M , we encounter extra difficulties
arising from the non-product nature of the metrics on TM , L, etc. near
the boundary. Here we rely on the refined analysis contained in [G]. On
the other hand, a G-invariant version of a result of Dai and Zhang [DZ,
Theorem 1.1] also plays an important role in obtaining (0.6).

We want to emphasize that in obtaining the localization estimates the
situation is quite different depending on whetherB = ∅ or not. IfB = ∅, the
localization estimates can be proved quite easily. Otherwise, the analysis
near ∂M is by no means trivial. As a manifestation, the condition (0.5)
emerges naturally through the process. Since in this paper we only present
applications in situations where B = ∅, we give separate proofs of these
two cases in sections 2 and 3 respectively.

The ideas and methods in the proof of Theorem 0.1 have further im-
plications. In one of the two applications given in this paper, we establish
a general quantization formula that works for both regular and singular
reductions. To be more specific, consider the situation that M is closed
and that 0 ∈ g∗ may not be a regular value of µ. Let c > 0 be a regular
value of H so that the preimage M c

+ under H of [0, c] contains no critical
points ofH other than µ−1(0). Then our second main result is the following
universal asymptotic quantization formula.
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Theorem 0.2. There exists T0 > 0 such that for any T ≥ T0,
1◦. when restricted to the G-invariant subspace of Ω0,even(M c

+, L)|∂Mc
+

,
DL
∂Mc

+,T
is invertible;

2◦. the following identity holds,
dimQ(M,L)G = dimQAPS,T (M c

+, L|Mc
+

)G . (0.7)
This theorem allows us to prove a Guillemin-Sternberg type formula

for singular reductions under circle actions. When L is twisted by a S1-
equivariant Hermitian vector bundle, we get a similar asymptotic quantiza-
tion formula. As an interesting phenomenon, a nontrivial correction term
naturally arises in our formula, see section 6c) for more details. In the other
application, we prove an analytic analogue of the relative residue formula
of Guillemin-Kalkman [GuK] and Martin [M].

This paper is organized as follows. In section 1, we recall the construc-
tion of Spinc-Dirac operators on symplectic manifolds and the key deforma-
tion under the appearance of Hamiltonian group actions. We also introduce
the corresponding Atiyah-Patodi-Singer type boundary value problems. In
section 2, we prove part (i) of Theorem 0.1, as well as an estimate which
enables us to localize the problem of proving (0.6) to sufficiently small
neighborhoods of µ−1(0), under an extra assumption that B = ∅. This is
sufficient for our applications in sections 5 and 6. In section 3, we analyze
carefully the general case where B is not empty. We prove the first part of
Theorem 0.1 and establish the crucial estimates needed for the localization
procedure. The arguments involved here are more delicate than those in sec-
tion 2. In section 4, we introduce the concept of invariant spectral flow and
complete the proof of (0.6). Section 5 contains the applications leading to
an analytic analogue of the relative residue formula of Guillemin-Kalkman
[GuK] and Martin [M]. In section 6, we present the proof of Theorem 0.2
as well as a Guillemin-Sternberg type formula for singular reductions under
circle actions. There is also an Appendix in which we give precise forms of
the fixed point set contributions appearing in sections 5 and 6.

We are indebted to Guofang Wang who made the suggestion to consider
the case of manifolds with boundary seriously. Part of this work was done
while the second author was visiting the Courant Institute of Mathemati-
cal Sciences. He would like to thank the Courant Institute for hospitality.
We also thank the referees for very careful readings and helpful comments,
in particular, for finding out a mistake in section 4b) in a previous ver-
sion. Finally, part of the revision of this paper was done while the second
author was visiting IHES. He would like to thank Professor Jean-Pierre
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Bourguignon and IHES for hospitality.

1 Spinc-Dirac Operators and Their Deformations on
Symplectic Manifolds with Boundary

In this section, we recall the basic properties of Spinc-Dirac operators on
symplectic manifolds with boundary and the associated generalized Atiyah-
Patodi-Singer boundary conditions [APS1]. In particular, in dealing with
the case of non-product metric near boundary, we will follow the analysis
in [G]. We also recall a deformation introduced in [TiZ1] and consider the
corresponding generalized Atiyah-Patodi-Singer boundary condition.

This section is organized as follows. In a), we review the construction of
Spinc-Dirac operators on symplectic manifolds. In b), following [APS1] and
[G], we examine the generalized Atiyah-Patodi-Singer type boundary con-
ditions for the Spinc-Dirac operators constructed in a). In c), we examine
the above mentioned deformation and the associated generalized Atiyah-
Patodi-Singer type boundary problem.

a) Spinc-Dirac operators on symplectic manifolds. Let (M,ω) be
a compact symplectic manifold with boundary ∂M . Let J be an almost
complex structure on TM such that

gTM(v,w) = ω(v, Jw) (1.1)
defines a Riemannian metric on TM . Let TMC = TM ⊗ C denote the
complexification of the tangent bundle TM . Then one has the canonical
splittings

TMC = T (1,0)M ⊕ T (0,1)M ,

∧∗,∗(T ∗M) =
dimCM⊕
i,j=0

∧i,j(T ∗M) , (1.2)

where
T (1,0)M =

{
z ∈ TMC;Jz =

√
−1z

}
,

T (0,1)M =
{
z ∈ TMC;Jz = −

√
−1z

}
,

∧i,j (T ∗M) = ∧i(T (1,0)∗M)⊗∧j(T (0,1)∗M) , (1.3)
and dimCM = 1

2 dimM is the complex dimension of M .
The almost complex structure J determines a canonical Spinc-structure

on TM (cf. [LMi, Appendix D]). Furthermore, with gTM , the fundamental
Z2-graded Spinc-bundle is given by

∧0,∗(T ∗M) = ∧0,even(T ∗M)⊕ ∧0,odd(T ∗M) . (1.4)
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For any X ∈ TM whose complexification has the decomposition X =
X1 +X2 ∈ T (1,0)M ⊕T (0,1)M , let X1

∗ ∈ T (0,1)∗M be the metric dual of X1
(cf. [BLe, Sect. 5]). Then c(X) =

√
2X1

∗ ∧ −
√

2iX2 defines the canonical
Clifford action of X on ∧0,∗(T ∗M) (cf. [LMi, Appendix D]). It interchanges
∧0,even(T ∗M) and ∧0,odd(T ∗M).

Let λ be the complex line bundle

λ = det(T (1,0)M) . (1.5)

We now temporarily assume that M is spin. In this case one can con-
struct a square root λ1/2 of λ, which together with the canonically in-
duced Spinc-structure on TM determine a Spin structure on TM . Let
S(TM) = S+(TM) ⊕ S−(TM) be the corresponding Z2-graded bundle of
spinors associated to (M,gTM ). Then, one has the following canonical
identifications of Clifford modules (cf. [LMi, Appendix D]),

S+(TM)⊗ λ1/2 = ∧0,even(T ∗M) ,

S−(TM)⊗ λ1/2 = ∧0,odd(T ∗M) ,

S(TM)⊗ λ1/2 = ∧0,∗(T ∗M) . (1.6)

Let ∇TM be the Levi-Civita connection of gTM . Then ∇TM together
with the almost complex structure J induce via projection a canonical Her-
mitian connection ∇T (1,0)M on T (1,0)M . This, in turn, induces a Hermitian
connection ∇λ on λ and thus a Hermitian connection ∇λ1/2

on λ1/2.
Also, ∇TM lifts to a Hermitian connection ∇S(TM) on S(TM) pre-

serving S±(TM). Let ∇S(TM)⊗λ1/2
be the tensor product connection on

S(TM)⊗ λ1/2 defined by

∇S(TM)⊗λ1/2
= ∇S(TM) ⊗ Idλ1/2 + IdS(TM) ⊗∇λ

1/2
. (1.7)

Then ∇S(TM)⊗λ1/2
is a well-defined Hermitian connection on ∧0,∗(T ∗M) =

S(TM) ⊗ λ1/2 and preserves the Z2-grading. We will also denote this
connection by ∇∧0,∗(T ∗M).

For the general case without the assumption that M is spin, it is well-
known that although λ1/2 and S(TM) might not exist, one can still con-
struct their product which does exist (cf. [LMi, Appendix D]). Furthermore,
one can still construct the tensor product connection as above locally and
get in fact a globally well-defined connection ∇∧0,∗(T ∗M) on ∧0,∗(T ∗M). In
particular, when doing local computations, one can use the above iden-
tifications just as in the spin case. From now on, we will drop the spin
condition on M and adopt the above convention.



602 Y. TIAN AND W. ZHANG GAFA

Now assume that there is a Hermitian line bundle L over M with a
Hermitian connection ∇L such that

√
−1

2π (∇L)2 = ω . (1.8)

The tensor product connection

∇∧0,∗(T ∗M)⊗L = ∇∧0,∗(T ∗M) ⊗ IdL + Id∧0,∗(T ∗M) ⊗∇L (1.9)

defines a Hermitian connection on ∧0,∗(T ∗M) ⊗ L. Denote by Ω0,∗(M,L)
the set of smooth sections of ∧0,∗(T ∗M)⊗ L.

Let e1, . . . , edimM be an oriented orthonormal base of TM .

Definition 1.1. The Spinc-Dirac operator DL is defined by

DL =
dimM∑
i=1

c(ei)∇∧
0,∗(T ∗M)⊗L

ei : Ω0,∗(M,L)→ Ω0,∗(M,L) . (1.10)

Also denote by DL
+ (resp. DL

−) the restriction of DL on Ω0,even(M,L) (resp.
Ω0,odd(M,L)).

Clearly, DL is a formally self-adjoint operator. However, when ∂M 6= ∅,
it is not elliptic. To get an elliptic operator, one should impose the bound-
ary conditions of Atiyah-Patodi-Singer [APS1] type. This will be examined
in the next subsection.

b) Geometry near the boundary. We follow the convention as in the
paper of Gilkey [G].

Let ε0 > 0 be less than the injectivity radius of gTM . We use the
inward geodesic flow to identify a neighborhood of the boundary with the
collar ∂M × [0, ε0). Let edimM be the inward unit normal vector field
perpendicular to ∂M . Let e1, . . . , edimM−1 be an oriented orthonormal base
of T∂M so that e1, . . . , edimM−1, edimM is an oriented orthonormal base of
TM |∂M . Then using parallel transport with respect to ∇TM along the
unit speed geodesics perpendicular to ∂M , e1, . . . , edimM forms an oriented
orthonormal base of TM over ∂M × [0, ε0).

Let
πij = 〈∇TMei ej , edimM 〉

∣∣
∂M

(1.11)
be the second fundamental form of the isometric embedding i∂M : ∂M↪→M .

Definition 1.2. Let DL
∂M : Ω0,∗(M,L)|∂M → Ω0,∗(M,L)|∂M be the dif-

ferential operator on ∂M defined by

DL
∂M = −

dimM−1∑
i=1

c(edimM )c(ei)∇∧
0,∗(T ∗M)⊗L

ei +
1
2

dimM−1∑
i=1

πii . (1.12)
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Let DL
∂M,+ (resp. DL

∂M,−) be the restriction of DL
∂M to Ω0,even(M,L)|∂M

(resp. Ω0,odd(M,L)|∂M ).
By [G, Lemmas 2.1 and 2.2], DL

∂M is a formally self-adjoint first order
elliptic differential operator intrinsically defined on ∂M . Also, it preserves
the natural Z2-grading of Ω0,∗(M,L)|∂M .

For any λ ∈ Sp{DL
∂M}, the spectrum of DL

∂M , denote by Eλ the eigen-
space corresponding to λ. For any a ∈ R, let P≥a (resp. P>a) be the or-
thogonal projection from the L2-completion of Ω0,∗(M,L)|∂M onto ⊕λ≥aEλ
(resp. ⊕λ>aEλ). Let P≥a,± (resp. P>a,±) be the restrictions of P≥a (resp.
P>a) on the L2-completions of Ω0,even(M,L)|∂M and Ω0,odd(M,L)|∂M re-
spectively.

From [APS1], [G], one knows that (DL
+, P≥0,+) defines an elliptic bound-

ary value problem whose adjoint is (DL
−, P>0,−).

Definition 1.3. Let QAPS(M,L) be the finite dimensional virtual vector
space

QAPS(M,L) = ker(DL
+, P≥0,+)− ker(DL

−, P>0,−) . (1.13)

c) Hamiltonian group action and the deformation of the general-
ized Atiyah-Patodi-Singer problem. From now on, we suppose that
(M,ω) admits a Hamiltonian action of a compact connected Lie group G
with Lie algebra g. Clearly, this G action preserves ∂M .

Denote by
µ : M → g∗ (1.14)

the associated moment map. Let g (and thus g∗ also) be equipped with an
AdG invariant metric. A formula due to Kostant [Ko] (cf. [TiZ1, (1.13)])
induces a natural g action on L. We make the assumption that this g action
can be lifted to a G action on L. Then one verifies easily that this G action
preserves ∇L. We also assume, after an integration over G if necessary,
that G preserves the Hermitian metric on L, the almost complex structure
J and thus also the Riemannian metric gTM .

Let h1, . . . , hdimG be an orthonormal base of g∗. Then µ has the ex-
pression

µ =
dimG∑
i=1

µihi , (1.15)

where each µi is a real function on M . Denote by Vi the Killing vector field
on M induced by the dual of hi. Then one verifies easily that (cf. [TiZ1,
(1.18)])

J(dµi)∗ = −Vi . (1.16)
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Thus, denoting by H = |µ|2 the norm square of µ and XH its associated
Hamiltonian vector field, one has (cf. [TiZ1, (1.19)])

XH = −2J
dimG∑
i=1

µi(dµi)∗ = 2
dimG∑
i=1

µiVi . (1.17)

As G preserves ∂M , one gets the important fact that
XH

∣∣
∂M
∈ T∂M . (1.18)

By (1.18) and following [TiZ1, Definition 1.2] and [G, Lemma 2.2], we
set, for any T ∈ R,

DL
+,T = DL

+ +
√
−1T
2

c(XH) : Ω0,even(M,L)→ Ω0,odd(M,L) ,

DL
−,T = DL

− +
√
−1T
2

c(XH) : Ω0,odd(M,L)→ Ω0,even(M,L) ,

DL
T = DL +

√
−1T
2

c(XH) : Ω0,∗(M,L)→ Ω0,∗(M,L) (1.19)

and

DL
∂M,+,T = DL

∂M,+ −
√
−1T
2

c(edimM )c(XH) :

Ω0,even(M,L)|∂M → Ω0,even(M,L)|∂M ;

DL
∂M,−,T = DL

∂M,− −
√
−1T
2

c(edimM )c(XH) :

Ω0,odd(M,L)|∂M → Ω0,odd(M,L)|∂M ;

DL
∂M,T = DL

∂M −
√
−1T
2

c(edimM )c(XH) :

Ω0,∗(M,L)|∂M → Ω0,∗(M,L)|∂M . (1.20)
One verifies easily that DL

∂M,T is also formally self-adjoint on ∂M . For
any λ ∈ Sp{DL

∂M,T }, let Eλ,T be the corresponding eigenspace. For any
a ∈ R, denote by P≥a,T (resp. P>a,T ) the orthogonal projection from the
L2-completion of Ω0,∗(M,L)|∂M onto ⊕λ≥aEλ,T (resp. ⊕λ>aEλ,T ). Let
P≥a,±,T (resp. P>a,±,T ) be the restrictions of P≥a,T (resp. P>a,T ) on the
L2-completions of Ω0,even(M,L)|∂M and Ω0,odd(M,L)|∂M respectively.

Definition 1.4. For any T ∈ R, let (DL
+,T , P≥0,+,T ) (resp. (DL

−,T , P>0,−,T ))
be the natural deformation of the boundary value problem (DL

+, P≥0,+)
(resp. (DL

−, P>0,−)).
One verifies easily again that both (DL

+,T , P≥0,+,T ) and (DL
−,T , P>0,−,T )

are elliptic, and that (DL
−,T , P>0,−,T ) is the adjoint of (DL

+,T , P≥0,+,T )
(cf. [G]).
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Definition 1.5. For any T ∈ R, set

QAPS,T (M,L) = ker(DL
+,T , P≥0,+,T )− ker(DL

−,T , P>0,−,T ) . (1.21)

Since G preserves everything, QAPS,T (M,L) is a finite dimensional vir-
tual G representation. We denote by QAPS,T (M,L)G its G-trivial compo-
nent.

2 Localization to Neighborhoods of µ−1(0): the Easy Case

In what follows, we assume that µ−1(0) ∩ ∂M = ∅. We further assume in
this section that ∂M contains no critical points of H = |µ|2, that is, the
subset B ⊂ ∂M defined in the Introduction is empty.

The purpose of this section is first to prove the part (i) of Theorem 0.1,
and then to show that the proof of (0.6) can be localized to sufficiently
small neighborhoods of µ−1(0). The basic idea in this section is the same
as in [TiZ1, Sect. 2] where we treated the ∂M = ∅ case. What we still need
to do is to carry out the analysis near the boundary.

This section is organized as follows. In a), we prove the first part of
Theorem 0.1, that is, the invertibility of the restriction of DL

∂M,T to the
G-invariant subspace, when T > 0 is sufficiently large. In b), we carry out
the localization principle near the boundary. In c), we glue the obtained
results to get the localization principle outside of µ−1(0). We will use the
same assumptions and notation as in section 1.

a) The invertibility of DL
∂M,T as T → +∞. In this subsection, we

prove the following result which implies the invertibility of DL
∂M,T for suf-

ficiently large T .

Theorem 2.1. There exist C > 0, b > 0 such that for any T ≥ 1 and any
G-invariant element s of Ω0,∗(M,L)|∂M , the following estimate holds,

‖DL
∂M,T s‖2∂M,0 ≥ C

(
‖s‖2∂M,1 + (T − b)‖s‖2∂M,0

)
. (2.1)

Proof. By (1.17), one knows that XH is nowhere zero on ∂M . So (2.1)
follows easily from an odd dimensional analogue of [TiZ1, Sect. 2]. The
main observation here is that, when regarded as a Spinc-Dirac operator,
DL
∂M is exactly the intrinsic Spinc-Dirac operator on ∂M associated to

(gTM |∂M ,∇L|∂M ,∇λ|∂M , J) (cf. [G]). While the operator DL
∂M,T is exactly

the odd dimensional analogue of the deformation used in [TiZ1]. A simple
computation of DL,2

∂M,T , along with the fact that XH is nowhere zero on
∂M , then gives (2.1). �
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Remark 2.2. In section 3, we will deal with the more delicate case that
∂M may contain critical points of H and prove the corresponding extension
of Theorem 2.1. In particular, an explicit Bochner type formula for DL,2

∂M,T

will be given.

Corollary 2.3. There exists T0 > 0 such that for any T ≥ T0, the restric-
tion of DL

∂M,T to the G-invariant subspace of Ω0,∗(M,L)|∂M is invertible.

b) An estimate near ∂M . The purpose of this subsection is to prove
the following estimate near ∂M .

Proposition 2.4. There exists an open neighborhood U of ∂M and pos-
itive constants T0, C and b such that for any T ≥ T0 and G-invariant
element s of Ω0,∗(M,L) with Supp s ⊂ U and P≥0,T s|∂M = 0, the following
inequality holds,

‖DL
T s‖2M,0 ≥ C

(
‖s‖2M,1 + (T − b)‖s‖2M,0

)
. (2.2)

Proof. Let dvM (resp. dv∂M ) be the volume element on M (resp. ∂M) of
gTM (resp. gTM |∂M ). From Green’s formula (cf. [G, (2.28)]), one has

‖DL
T s‖2M,0 =

∫
M
〈DL

T s,D
L
T s〉dvM

=
∫
M
〈s,DL,2

T s〉dvM+
∫
∂M

〈
s, c(edimM )DL

T s
〉
dv∂M . (2.3)

From (1.18), one knows that c(XH) anti-commutes with c(edimM ). Thus
following [G, (2.26), (2.27)], one verifies that on the boundary ∂M ,

c(edimM )DL
T = −∇∧0,∗(T ∗M)⊗L

edimM
−DL

∂M,T +
1
2

dimM−1∑
i=1

πii . (2.4)

From (2.3) and (2.4), one gets

‖DL
T s‖2M,0 = −

∫
∂M
〈s,DL

∂M,T s〉dv∂M +
1
2

∫
∂M

〈
s,

dimM−1∑
i=1

πiis

〉
dv∂M

−
∫
∂M

〈
s,∇∧0,∗(T ∗M)⊗L

edimM
s
〉
dv∂M +

∫
M

〈
s,DL,2

T s
〉
dvM . (2.5)

We now recall from [TiZ1, Theorem 1.6] the following Bochner type
formula for DL,2

T ,

DL,2
T = DL,2 +

√
−1T
4

dimM∑
j=1

c(ej)c(∇TMej XH)−
√
−1T
2

Tr[∇T (1,0)M
. XH]

+
T

2

dimG∑
i=1

(√
−1c(JVi)c(Vi)+|Vi|2

)
+4πTH−2

√
−1T

dimG∑
i=1

µiLVi+
T 2

4
|XH|2 ,

(2.6)
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where LVi is the infinitesimal action of the Killing vector field Vi on
Ω0,∗(M,L). As in [TiZ1, Definition 1.8], set

FLT = DL,2
T + 2T

√
−1

dimG∑
i=1

µiLVi . (2.7)

We now prove the following simple estimate.

Lemma 2.5. There exists an open neighborhood U1 of ∂M and T0 > 0,
C1 > 0, b1 > 0 such that for any s ∈ Ω0,∗(M,L) with Supp s ⊂ U1 and
T ≥ T0, one has∫

M
〈s, FLT s〉dvM −

∫
∂M

〈
s,∇∧0,∗(T ∗M)⊗L

edimM
s
〉
dv∂M

≥ C1
(
‖s‖2M,1 + (T − b1)‖s‖2M,0

)
. (2.8)

Proof. Let

∆ =
dimM∑
i=1

(
(∇∧0,∗(T ∗M)⊗L

ei )2 −∇∧
0,∗(T ∗M)⊗L
∇TMei ei

)
(2.9)

be the Bochner Laplacian. Then for any s ∈ Ω0,∗(M,L) which is supported
near ∂M , one has by Green’s formula that∫

M
〈s,−∆s〉dvM −

∫
∂M

〈
s,∇∧0,∗(T ∗M)⊗L

edimM
s
〉
dv∂M

=
dimM∑
i=1

∫
M

〈
∇∧0,∗(T ∗M)⊗L
ei s,∇∧0,∗(T ∗M)⊗L

ei s
〉
dvM . (2.10)

From (2.6), (2.7), (2.10) and the Lichnerowicz formula (cf. [LMi, Ap-
pendix D], [TiZ1, (2.5)])

DL,2 = −∆ +O(1) , (2.11)
one deduces that∫

M
〈s, FLT s〉dvM −

∫
∂M

〈
s,∇∧0,∗(T ∗M)⊗L

edimM
s
〉
dv∂M

=
∫
M

dimM∑
i=1

〈
∇∧0,∗(T ∗M)⊗L
ei s,∇∧0,∗(T ∗M)⊗L

ei s
〉
dvM +

∫
M
〈AT s, s〉dvM ,

(2.12)
where

AT =
√
−1T
4

dimM∑
j=1

c(ej)c(∇TMej XH)−
√
−1T
2

Tr[∇T (1,0)M
. XH]

+
T

2

dimG∑
i=1

(√
−1c(JVi)c(Vi) + |Vi|2

)
+ 4πTH+

T 2

4
|XH|2 +O(1) . (2.13)



608 Y. TIAN AND W. ZHANG GAFA

Since ∂M contains no critical point of H, by (1.17), one knows that
there exists a constant A1 > 0 such that on ∂M ,

|XH|2 ≥ 8A1 . (2.14)

From (2.13) and (2.14), one deduces that there exists an open neigh-
borhood U1 of ∂M and constants A2 > 0, A3 > 0 such that on U1,

AT ≥ A1T
2 −A2T −A3 . (2.15)

From (2.12) and (2.15), one gets∫
M
〈s, FLT s〉dvM −

∫
∂M

〈
s,∇∧0,∗(T ∗M)⊗L

edimM
s
〉
dv∂M

≥
∫
M

dimM∑
i=0

〈
∇∧0,∗(T ∗M)⊗L
ei s,∇∧0,∗(T ∗M)⊗L

ei s
〉
dvM

+ (A1T
2 −A2T −A3)

∫
M
〈s, s〉dvM , (2.16)

from which (2.8) follows. �

We now complete the proof of Proposition 2.4 by establishing an es-
timate for the remaining boundary contribution on the right hand side
of (2.5).

Since s satisfies
P≥0,T s|∂M = 0 , (2.17)

one sees from Corollary 2.3 that for T large enough,∫
∂M
〈s,−DL

∂M,T s〉dv∂M ≥ −λ1,T

∫
∂M
〈s, s〉dv∂M , (2.18)

where λ1,T is the first negative eigenvalue of DL
∂M,T . Now by Theorem 2.1,

one finds easily that there exist constants T1 > 0, A4 > 0 such that for any
T ≥ T1,

λ1,T ≤ −A4
√
T . (2.19)

From (2.18) and (2.19), one gets for T ≥ T1 that, Ml∫
∂M
〈s,−DL

∂M,T s〉dv∂M ≥ A4
√
T

∫
∂M
〈s, s〉dv∂M . (2.20)

On the other hand,
∑dimM−1

i=1 πii is clearly a bounded function on ∂M .
Thus by (2.20), one sees that there exists T2 > 0 such that for any T ≥ T2,∫

∂M
〈s,−DL

∂M,T s〉dv∂M +
1
2

∫
∂M

〈
s,

dimM−1∑
i=1

πiis

〉
dv∂M ≥ 0 . (2.21)

Formula (2.2) follows from (2.5), (2.7), (2.8) and (2.21). �
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c) An estimate outside of µ−1(0). In this subsection we prove the
following result which will play a role analogous to what [TiZ1, Theorem
2.1] plays in [TiZ1].

Theorem 2.6. For any open neighborhood U of µ−1(0) with U ∩∂M = ∅,
there exist T0 > 0, C > 0, b > 0 such that for any T ≥ T0 and any G-
invariant element s of Ω0,∗(M,L) with Supp s ⊂M \U and P≥0,T s|∂M = 0,
one has

‖DL
T s‖2M,0 ≥ C

(
‖s‖2M,1 + (T − b)‖s‖2M,0

)
. (2.22)

Proof. The critical observation is, as in [TiZ1], that on the G-invariant
subspace Ω0,∗(M,L)G of Ω0,∗(M,L), one has by (2.7) that

DL,2
T = FLT . (2.23)

Now since the estimate in Proposition 2.4 holds on a (fixed) open neigh-
borhood U1 of ∂M , by a simple gluing procedure as in [TiZ1, Sect. 2c)] and
[BLe, pp. 115–117], which can be adapted here easily, one only needs to
prove Theorem 2.6 on M \ (U ∪ U1).

Clearly, the local estimate established in [TiZ1, Prop. 2.2] still holds at
every point x ∈M \ (U ∪U1). The proof of Theorem 2.6 then follows from
the compactness of M \ (U ∪ U1) and the gluing procedure. �

3 Localization to Neighborhoods of µ−1(0): The General
Case

In this section, we extend the result in section 2 to the case where ∂M
might contain critical points of H. The results of this section are not used
in the applications given in sections 5 and 6.

Clearly, the main difficulty in this general situation appears near the
boundary. As before, let ym, m = dimM , be the geodesic distance coordi-
nate to the boundary. Recall that the subset B ⊂ ∂M of the critical points
of H has been defined in the Introduction.

We first state a natural condition under which the principal estimates
in this section will hold.

Condition 3.0. We assume that the following inequality holds on B,

4πH−
√
−1
2

c

(
d∂M

∂H
∂ym

)
c(Jem) > 0 , (3.0)

where d∂M is the exterior derivation on ∂M , and T ∗(∂M) is identified with
T∂M via the metric gT∂M = gTM |∂M .
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The geometric meaning of this condition will be discussed briefly at the
end of this section.

Recall that Ω0,∗(M,L)G is the notation for the G-invariant subspace of
Ω0,∗(M,L).

We state the main estimate near ∂M as follows.

Theorem 3.1. If Condition 3.0 holds, then there exists an open neighbor-
hood U of ∂M and positive constants T0, C and b such that for any T ≥ T0
and s ∈ Ω0,∗(M,L)G with Supp s ⊂ U and P≥0,T s|∂M = 0, one has

‖DL
T s‖2M,0 ≥ C

(
‖s‖2M,1 + (T − b)‖s‖2M,0

)
. (3.1)

We have seen in section 2 that Theorem 3.1 holds when ∂M contains
no critical points of H. In order to deal with the general situation, we shall
take a closer look at the behavior of H near ∂M .

First of all, near ∂M , XH has the following unique (local) decomposi-
tion:

XH = −2
m∑
j=1

fjJej . (3.2)

In particular,
fm|∂M = −1

2〈X
H, Jem〉

∣∣
∂M

(3.3)
is a globally defined function on ∂M .

Clearly, x ∈ B if and only if fj(x) = 0 for all 1 ≤ j ≤ m.
Let α > 0 be defined by

α = max
{
ρ : 2πH−

√
−1
4

c

(
d∂M

∂H
∂ym

)
c(Jem) ≥ ρ IdΩ0,∗(M,L)|∂M on B

}
,

under Condition 3.0.
In order to prove Theorem 3.1 in general, we need the following refine-

ment of Theorem 2.1. It implies part (i) of Theorem 0.1 as a consequence.

Theorem 3.2. If Condition 3.0 holds, then there exists a G-invariant open
neighborhood U(B) of B in ∂M and positive constants T0, C such that for
any T ≥ T0 and s ∈ Ω0,∗(M,L)G|∂M ,

‖DL
∂M,T s‖2∂M,0 ≥ C‖s‖2∂M,1 + 1

2αT‖s‖
2
∂M,0 + T 2

∫
U(B)

〈
s, |fm|2s

〉
dv∂M .

(3.4)

Proof. The difference of (3.4) in comparing with (2.1) is the extra term
T 2
∫
U(B)〈s, |fm|2s〉dv∂M which requires a detailed treatment.

Following [G], for any X ∈ Γ(T∂M), set

c̃(X) = −c(em)c(X) . (3.5)
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Then by (1.20), one can write DL
∂M,T as

DL
∂M,T = DL

∂M +
√
−1T
2

c̃(XH) , (3.6)

From (1.12), (3.5), (3.6) and by proceeding similarly as in the proof of [TiZ1,
Theorem 1.6], one gets the following Bochner type formula for DL,2

∂M,T .

Theorem 3.3. The following identity holds on ∂M ,

DL,2
∂M,T = DL,2

∂M +
√
−1T
2

m−1∑
j=1

dimG∑
i=1

c̃(ej)c̃
(
∇TMej (µ̃iVi)

)
−
√
−1T
2

dimG∑
i=1

c̃(em)c̃(µi∇TMem Vi)

−
√
−1T

dimG∑
i=1

Tr
[
∇T (1,0)M
. (µ̃iVi)

]
+
T

2

dimG∑
i=1

(√
−1c̃(d∂Mµi)c̃(Vi)+ |d∂Mµi|2

)
+ 4πTH+

√
−1T
2

(m−1∑
j=1

πjj

)
c̃(XH)− 2

√
−1T

dimG∑
i=1

µiLVi +
T 2

4
|XH|2 ,

(3.7)
where by µ̃i we mean that it is the restriction of µi on ∂M with the obvious
convention that the directional derivative em(µ̃i) = 0.

Set

F̃LT = DL,2
∂M,T + 2T

√
−1

dimG∑
i=1

µiLVi (3.8)

on ∂M . The following pointwise estimate follows immediately from (3.7),
(3.8) and the argument in section 2.

Lemma 3.4. If x ∈ ∂M \B, then there exists an open neighborhood Ux of x
in ∂M and Tx > 0, Cx > 0 such that for any T ≥ Tx and s ∈ Ω0,∗(M,L)|∂M
with Supp s ⊂ Ux, one has∫

∂M
〈s, F̃LT s〉dv∂M ≥ Cx‖s‖2∂M,1 + αT‖s‖2∂M,0 . (3.9)

Now we establish the pointwise estimates around each critical point of
H contained in ∂M .

Proposition 3.5. If (3.0) holds at x ∈ B, then there exists an open
neighborhood Ux of x in ∂M and Tx > 0, Cx > 0 such that for any T ≥ Tx
and s ∈ Ω0,∗(M,L)|∂M with Supp s ⊂ Ux, one has∫

∂M
〈s, F̃LT s〉dv∂M ≥ Cx‖s‖2∂M,1 + αT‖s‖2∂M,0 + T 2

∫
Ux

〈
s, |fm|2s

〉
dv∂M .

(3.10)
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Proof. Since x is a critical point of H, one can choose an orthonormal
base e1, . . . , em−1 of T∂M near x so that if (y1, . . . , ym−1) is the normal
coordinate system associated to e1, . . . , em−1, then in a sufficiently small
open neighborhood of x in M one has that

H(y) = H(x) +
m∑
j=1

ajy
2
j +

m−1∑
j=1

bjyjym +O
(
|y|3
)
, (3.11)

where the aj ’s and bj ’s may possibly be zero. From (1.17) and (3.11), one
verifies easily that

XH(y) = −2
m∑
j=1

fj(y)Jej (3.12)

with
fj(y) = ajyj + 1

2bjym +O
(
|y|2) , 1 ≤ j ≤ m− 1 (3.13)

and

fm(y) = amym +
1
2

m−1∑
j=1

bjyj +O
(
|y|2
)
. (3.14)

For clarity, we shall sometimes write
f̃j(y) = fj(y)

∣∣
∂M

(3.15)
near x ∈ ∂M for 1 ≤ j ≤ m, y ∈ ∂M . Thus, near x,

f̃j(y) = ajyj +O
(
|y|2
)
, 1 ≤ j ≤ m− 1 (3.16)

and

f̃m(y) =
1
2

m−1∑
j=1

bjyj +O
(
|y|2
)
. (3.17)

We now state an odd dimensional analogue of [TiZ1, Lemma 2.3].

Lemma 3.6. The following inequality holds at x ∈ B,
√
−1
2

m−1∑
j=1

dimG∑
i=1

c̃(ej)c̃
(
∇TMej (µ̃iVi)

)
−
√
−1
2

dimG∑
i=1

c̃(em)c̃(µi∇TMem Vi)

−
√
−1

dimG∑
i=1

Tr
[
∇T (1,0)M
. (µ̃iVi)

]
+

1
2

dimG∑
i=1

(√
−1c̃(d∂Mµi)c̃(Vi)+|d∂Mµi|2

)
≥ −

m−1∑
j=1

|aj | −
√
−1
2

c̃

(
d∂M

∂H
∂ym

)
c̃(Jem) , (3.18)

where the inequality is strict if and only if at least one of the aj , 1 ≤ j ≤
m− 1, is negative.
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Proof. From (3.12)–(3.17), one deduces directly that
√
−1
2

m−1∑
j=1

dimG∑
i=1

c̃(ej)c̃
(
∇TMej (µ̃iVi)

)
= −
√
−1
2

m−1∑
j=1

aj c̃(ej)c̃(Jej)

−
√
−1
4

m−1∑
j=1

c̃(bjej)c̃(Jem) (3.19)

and that

−
√
−1

dimG∑
i=1

Tr
[
∇T (1,0)M
. (µ̃iVi)

]
= −1

2

m−1∑
j=1

aj +
√
−1
4

〈m−1∑
j=1

bjej , Jem

〉

−
√
−1

dimG∑
i=1

〈
µi∇TMem Vi,

1
2

(
1 +

J√
−1

)
em

〉
. (3.20)

One also verifies that
1
2

dimG∑
i=1

(√
−1c̃(d∂Mµi)c̃(Vi) + |d∂Mµi|2

)
=

1
2

dimG∑
i=1

(
−
√
−1c̃(d∂Mµi)c̃(Jd∂Mµi) + |d∂Mµi|2

)
−
√
−1
2

dimG∑
i=1

c̃

(
∂µi
∂ym

d∂Mµi

)
c̃(Jem) . (3.21)

Now a direct calculation shows that for each 1 ≤ j ≤ m− 1,

−
√
−1
2 aj c̃(ej)c̃(Jej)− 1

2aj ≥ −|aj | , (3.22)
where the inequality is strict if and only if aj is negative, and that

−
√
−1c̃(d∂Mµi)c̃(Jd∂Mµi) + |d∂Mµi|2 ≥ 0 . (3.23)

On the other hand, by (3.11) one deduces that, at x,
dimG∑
i=1

∂µi
∂ym

d∂Mµi =
1
2
d∂M

∂H
∂ym

−
dimG∑
i=1

µid
∂M ∂µi

∂ym

=
1
2

m−1∑
j=1

bjdyj −
dimG∑
i=1

µid
∂M ∂µi

∂ym
. (3.24)

Formula (3.18) will follow from (3.19)–(3.24) and the following lemma.

Lemma 3.7. The following identities hold at x ∈ B,
dimG∑
i=1

µid
∂M ∂µi

∂ym
= 0 , (3.25)
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dimG∑
i=1

µi∇TMem Vi = 0 (2.25)′

and 〈
d∂M ∂H

∂ym
, Jem

〉
= 0 . (3.26)

Proof. Clearly, the left-hand side of (3.25) does not depend on the choice
of the base hi, 1 ≤ i ≤ dimG, of g∗. Since µ(x) 6= 0, one can choose

h1 = µ(x)
|µ(x)| . (3.27)

Thus, evaluated at x,
dimG∑
i=1

µid
∂M ∂µi

∂ym
= µ1d

∂M ∂µ1

∂ym
. (3.28)

By a result of Kirwan [Ki, 3.7, 3.10], one knows that x is a fixed point
of the action of the torus generated by h1. In other words, x is a zero point
of the Killing vector field V1 = −J(dµ1)∗.

Since V1|∂M ∈ Γ(T∂M), one sees easily that em(x) lies in the tangent
space at x of the zero set of V1, and so does Jem(x). Thus, one gets (3.25)′

and that, near x,
∂µ1(y)
∂ym

= −
〈
V1(y), Jem

〉
= O(|y|2) . (3.29)

Formula (3.25) follows from (3.28) and (3.29).
Now since 〈Vi, em〉 = 0 on ∂M , by (1.16) one verifies that

〈d∂Mµi, Jem〉 = 0 . (3.30)
Formula (3.26) follows from (3.24), (3.25) and (3.30). �
The proof of Lemma 3.6 is completed. �
Now from (1.12) one deduces easily that, near x,

DL,2
∂M =

m−1∑
j=1

(∇∧0,∗(T ∗M)⊗L
ej )∗∇∧0,∗(T ∗M)⊗L

ej +O(∂∂M + 1) , (3.31)

where (∇∧0,∗(T ∗M)⊗L)∗ is the formal adjoint of ∇∧0,∗(T ∗M)⊗L, while
O(∂∂M ) (3.32)

is the notation for the first order differential operators on ∂M with coeffi-
cients of type O(1). For any 1 ≤ j ≤ m − 1, set εj = sgn(aj). Then from
(3.0), (3.7), (3.8), (3.12), (3.31) and Lemma 3.6, one deduces that, near x,

F̃LT =
m−1∑
j=1

(
(∇∧0,∗(T ∗M)⊗L

ej )∗ + Tεj f̃j
)
(∇∧0,∗(T ∗M)⊗L

ej + Tεj f̃j) + 4πTH
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−
√
−1T
2

c̃

(
d∂M

∂H
∂ym

)
c̃(Jem) + T 2f̃2

m +O
(
∂∂M + 1 + T |y|

)
≥ 1
k

m−1∑
j=1

(
(∇∧0,∗(T ∗M)⊗L

ej )∗ + Tεj f̃j
)
(∇∧0,∗(T ∗M)⊗L

ej + Tεj f̃j)

+ 2αT + T 2f̃2
m +O

(
∂∂M + 1 + T |y|

)
(3.33)

for k ≥ 1.
Taking k large enough, one sees easily that Proposition 3.5 holds (Com-

pare with [TiZ1, Sect. 2b)]). �

From Proposition 3.5, the fact that f̃m is globally defined on ∂M , and
from the gluing arguments similar to those in [BLe, pp. 115–117], one de-
duces the following estimate which holds globally around B ⊂ ∂M .

Proposition 3.8. If Condition 3.0 holds, then there exists a G-invariant
open neighborhood U(B) of B in ∂M and TB > 0, CB > 0 such that for
any T ≥ TB and s ∈ Ω0,∗(M,L)|∂M with Supp s ⊂ U(B), one has∫
∂M
〈s, F̃LT s〉dv∂M ≥ CB‖s‖2∂M,1 + 2

3αT‖s‖
2
∂M,0 +T 2

∫
U(B)

〈
s, |fm|2s

〉
dv∂M .

(3.34)

Since ∂M is compact, by Lemma 3.4 and Proposition 3.8 one can pro-
ceed as in [BLe, pp. 115–117] to show, after shrinking U(B) a little bit
if necessary, that there exist T0 > 0, C > 0 such that for any T ≥ T0,
s ∈ Ω0,∗(M,L)|∂M , one has∫
∂M
〈s, F̃LT s〉dv∂M ≥ C‖s‖2∂M,1 +

1
2
αT‖s‖2∂M,0 + T 2

∫
U(B)

〈
s, |fm|2s

〉
dv∂M .

(3.35)
By (3.8), one has the following identity on Ω0,∗(M,L)G|∂M ,

F̃LT = DL,2
∂M,T . (3.36)

Formula (3.4) follows from (3.35) and (3.36). This completes the proof of
Theorem 3.2. �

Part (i) of Theorem 0.1 follows.
In view of (2.5) and (3.4), to prove Theorem 3.1 one also needs the

following estimate.

Proposition 3.9. If Condition 3.0 holds, then there exists a G-invariant
open neighborhood U(B) of B in ∂M , which can be made arbitrarily small,
an open neighborhood U of ∂M in M , and T0 > 0, C > 0, b > 0 such that
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for any T ≥ T0, s ∈ Ω0,∗(M,L) with Supp s ⊂ U , one has∫
M
〈s, FLT s〉dvM −

∫
∂M
〈s,∇∧0,∗(T ∗M)⊗L

em s〉dv∂M

≥ C
(
‖s‖2M,1 + (T − b)‖s‖2M,0

)
− T

∫
U(B)

〈
s, |fm|s

〉
dv∂M . (3.37)

Proof. As it is clear by now, one should first establish the following esti-
mates, the first of which follows directly from the arguments in the proof
of Lemma 2.5.

Lemma 3.10. For any open neighborhood U ⊂ M of B, there exists an
open neighborhood U ′ of ∂M and T0 > 0, C > 0, b > 0 such that for any
T ≥ T0 and s ∈ Ω0,∗(M,L) with Supp s ⊂ U ′ \ U , one has∫

M
〈s, FLT s〉dvM −

∫
∂M
〈s,∇∧0,∗(T ∗M)⊗L

em s〉dv∂M

≥ C
(
‖s‖2M,1 + (T − b)‖s‖2M,0

)
. (3.38)

Lemma 3.11. If x ∈ B verifies Condition 3.0, then there exists an open
neighborhood Ux of x in M , which can be made arbitrarily small, and
T0 > 0, C > 0, b > 0 such that for any T ≥ T0 and s ∈ Ω0,∗(M,L) with
Supp s ⊂ Ux, one has∫

M
〈s, FLT s〉dvM −

∫
∂M
〈s,∇∧0,∗(T ∗M)⊗L

em s〉dv∂M

≥ C
(
‖s‖2M,1 + (T − b)‖s‖2M,0

)
− T

∫
∂M

〈
s, |fm|s

〉
dv∂M . (3.39)

Proof. Without loss of generality we assume that H is of the form (3.11)
near x ∈ M . Then by (3.12)–(3.14) and (3.26), one verifies easily the
following formula at x for the corresponding terms appearing on the right-
hand side of (2.13),
√
−1
4

m∑
j=1

c(ej)c(∇TMej XH)−
√
−1
2

Tr[∇T (1,0)M
. XH]

= −
√
−1
2

m∑
j=1

ajc(ej)c(Jej)−
1
2

m∑
j=1

aj −
√
−1
4

m−1∑
j=1

c(bjej)c(Jem)

−
√
−1
4

m−1∑
j=1

c(em)c(bjJej)

≥ −
m∑
j=1

|aj | −
√
−1
4

m−1∑
j=1

c(bjej)c(Jem)−
√
−1
4

m−1∑
j=1

c(em)c(bjJej) . (3.40)
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For ease of notation, we shall also use J to denote the natural ex-
tension of the almost complex structure J to a unitary automorphism on
Ω0,∗(M,L). Then by (3.26) again, one verifies that, at x,

m−1∑
j=1

c(em)c(bjJej) = J−1
m−1∑
j=1

c(bjej)c(Jem)J . (3.41)

From (3.41) and the definition of α > 0, one deduces that, at x,

2πH−
√
−1
4

m−1∑
j=1

c(em)c(bjJej) = J−1
(

2πH−
√
−1
4

m−1∑
j=1

c(bjej)c(Jem)
)
J

≥ α . (3.42)
From (2.12), (2.13), (3.11), (3.13), (3.14), (3.40), (3.42) and the calcu-

lations in [TiZ1, Sect. 2b)], one deduces easily that there is an open neigh-
borhood Ux of x in M such that for any s ∈ Ω0,∗(M,L) with Supp s ⊂ Ux,
one has∫

M
〈s, FLT s〉dvM−

∫
∂M
〈s,∇∧0,∗(T ∗M)⊗L

em s〉dv∂M ≥
m∑
j=1

‖∇∧0,∗(T ∗M)⊗L
ej s‖2M,0

− T
( m∑
j=1

|aj |
)
‖s‖2M,0 + T 2

m∑
j=1

‖fjs‖2M,0 + 4πTH(x)‖s‖2M,0

−
√
−1
4

m−1∑
j=1

〈
s, (c(bjej)c(Jem) + c(em)c(bjJej))s

〉
M

+
〈
s,O(1 + T |y|)s

〉
M

≥
m∑
j=1

∥∥∇∧0,∗(T ∗M)⊗L
ej s+ T (sgn aj)fjs

∥∥2
M,0 + 2αT‖s‖2M,0

+ T

∫
∂M

〈
s, (sgn am)fms

〉
dv∂M +

〈
s,O(1 + T |y|)s

〉
M

≥ 1
k

m∑
j=1

∥∥∇∧0,∗(T ∗M)⊗L
ej s+ T (sgn aj)fjs

∥∥2
M,0 + 2αT‖s‖2M,0

+ T

∫
∂M

〈
s, (sgn am)fms

〉
dv∂M +

〈
s,O(1 + T |y|)s

〉
M

(3.43)

for k ≥ 1.
By making k sufficiently large, one obtains Lemma 3.11 from (3.43)

easily (compare with [TiZ1, Sect. 2b)]). �
Following the arguments in [BLe, pp. 115–116], we now glue together

the pointwise estimates in Lemma 3.11 to an estimate valid on sufficiently
small open neighborhoods of B.
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Lemma 3.12. Assume that Condition 3.0 holds, then there exists an open
neighborhood U ⊂ M of B, which can be made arbitrarily small, and
positive constants T0, C, b such that for any T ≥ T0 and s ∈ Ω0,∗(M,L)
with Supp s ⊂ U , the estimate (3.39) holds.

Proof. Let U1, U2 be two open subsets of M , on which the estimate (3.39)
holds. Following [BLe, pp. 115], one can construct two nonnegative smooth
functions τ1, τ2 on M such that Supp τj ⊂ Uj , j = 1, 2, and that τ2

1 +τ2
2 = 1

on U1 ∪ U2.
Now let s∈Ω0,∗(M,L) be such that Supp s⊂U1∪U2, then Supp(τjs)⊂Uj ,

j = 1, 2. Thus, sj = τjs, j = 1, 2, verify the estimate (3.39).
Using (2.12), (2.13) and adopting the notation there, one deduces that∫
M
〈s, FLT s〉dvM −

∫
∂M
〈s,∇∧0,∗(T ∗M)⊗L

edimM
s〉dv∂M

=
2∑
j=1

(∫
M

dimM∑
i=1

〈τj∇∧
0,∗(T ∗M)⊗L

ei s, τj∇∧
0,∗(T ∗M)⊗L

ei s〉dvM

+
∫
M
〈AT τjs, τjs〉dvM

)
=

2∑
j=1

(∫
M
〈sj , FLT sj〉dvM −

∫
∂M
〈sj ,∇∧

0,∗(T ∗M)⊗L
edimM

sj〉dv∂M
)

−
2∑
j=1

dimM∑
i=1

∫
M

(
〈ei(τj)s, ei(τj)s〉+ 2〈τjei(τj)s,∇∧

0,∗(T ∗M)⊗L
ei s〉

)
dvM .

(3.44)
It is clear that for any η > 0, there exists Cη > 0 such that
2∑
j=1

dimM∑
i=1

∣∣∣∣ ∫
M

(
〈ei(τj)s, ei(τj)s〉+ 2〈τjei(τj)s,∇∧

0,∗(T ∗M)⊗L
ei s〉

)
dvM

∣∣∣∣
≤ η‖s‖2M,1 + Cη‖s‖2M,0 . (3.45)

Since sj , j = 1, 2, verify the estimate (3.39), by (3.44), (3.45) and taking
η small enough, one deduces easily that s also verifies the estimate (3.39).

Now as B is compact, by using Lemma 3.11 and the above arguments,
one can perform a finite number of gluings to get Lemma 3.12. �

By proceeding as in the proof of Lemma 3.12, one can glue the estimates
in Lemmas 3.10 and 3.12 together to get Proposition 3.9. �

Proof of Theorem 3.1. Clearly, we can choose U(B) and U to satisfy both
Propositions 3.8 and 3.9. From (2.5), (2.7) and Proposition 3.9, one verifies
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that for any G-invariant element s ∈ Ω0,∗(M,L) with Supp s ⊂ U ,

‖DL
T s‖2M,0 ≥ −

∫
∂M
〈s,DL

∂M,T s〉dv∂M +
1
2

∫
∂M

〈
s,

(m−1∑
j=1

πjj

)
s

〉
dv∂M

+ C
(
‖s‖2M,1 + (T − b)‖s‖2M,0

)
− T

∫
U(B)

〈
s, |fm|s

〉
dv∂M . (3.46)

We now estimate the term

−
∫
∂M
〈s,DL

∂M,T s〉dv∂M +
1
2

∫
∂M

〈
s,

(m−1∑
j=1

πjj

)
s

〉
dv∂M

− T
∫
U(B)

〈
s, |fm|s

〉
dv∂M (3.47)

under the condition
P≥0,T s|∂M = 0 . (3.48)

For any G-invariant element s ∈ Ω0,∗(M,L) verifying condition (3.48),
one has

−
∫
∂M
〈s,DL

∂M,T s〉dv∂M =
∫
∂M

〈
s, |DL

∂M,T |s
〉
dv∂M . (3.49)

Set

β = sup
x∈∂M

{
1
2

∣∣∣∣m−1∑
j=1

πjj(x)
∣∣∣∣} ,

γ = sup
x∈U(B)

{
|fm(x)|

}
. (3.50)

Let GU(B) be the bounded operator acting on L2(Ω0,∗(M,L)|∂M ), the
L2-completion of Ω0,∗(M,L)|∂M , defined by

GU(B)s = ψU(B)|fm|s, s ∈ L2(Ω0,∗(M,L)|∂M
)
, (3.51)

where

ψU(B) =

{
1 on U(B)
0 on ∂M \ U(B)

(3.52)

is the characteristic function of the subset U(B) ⊂ ∂M . Clearly, GU(B)
preserves the G invariant subspace of L2(Ω0,∗(M,L)|∂M ).

From Theorem 3.2, one knows that for T0 large enough and T ≥ T0,

‖DL
∂M,T s‖2∂M,0 ≥ αT

2 ‖s‖
2
∂M,0 + T 2‖GU(B)s‖2∂M,0 . (3.53)

That is,∫
∂M
〈s,DL,2

∂M,T s〉dv∂M ≥
∫
∂M

〈
s,
(
αT
2 + T 2G2

U(B)

)
s
〉
dv∂M . (3.54)
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Thus we have the following inequality between positive operators on the
G-invariant subspace of L2(Ω0,∗(M,L)|∂M ),

DL,2
∂M,T ≥ αT

2 + T 2G2
U(B) , (3.55)

which implies that

|DL
∂M,T | ≥

√
αT
2 + T 2G2

U(B) . (3.56)

Now observe that since fm|B = 0, we can take U(B) in Proposition 3.8
small enough so that γ verifies that

βγ ≤ α
6 . (3.57)

From (3.57), one deduces easily that for T0 > 0 large enough, one has
for any T ≥ T0 the following inequality√

αT
2 + T 2G2

U(B) ≥ β + TGU(B) . (3.58)

By (3.46), (3.49) through (3.52), (3.56) and (3.58), one can complete the
proof of Theorem 3.1 easily. �

Theorem 3.1 gives the crucial estimate for the localization procedure
near the boundary. Combining this with the pointwise estimates on
M \ (∂M ∪ µ−1(0)), which hold by [TiZ1, Prop. 2.2], a simple gluing ar-
gument gives the following main result of this section, which extends The-
orem 2.6 to the general case.

Theorem 3.13. If Condition 3.0 holds, then for any open neighborhood
U of µ−1(0) such that U ∩ ∂M = ∅, there exist T0 > 0, C > 0, b > 0
such that for any T ≥ T0 and s ∈ Ω0,∗(M,L)G with Supp s ⊂ M \ U and
P≥0,T s|∂M = 0, one has

‖DL
T s‖2M,0 ≥ C

(
‖s‖2M,1 + (T − b)‖s‖2M,0

)
. (3.59)

We conclude this section with the following result, which shows that
Condition 3.0 holds when G is the circle.

Proposition 3.14. If G = S1, then the following identity holds on B,
d∂M ∂H

∂ym
= 0 . (3.60)

Proof. Take x ∈ B. Since µ(x) 6= 0, by (1.16), (1.17) one deduces that
d∂Mµ = 0 (3.61)

at x.
Formula (3.60) follows from (3.24), (3.25) and (3.61). �

Remark 3.15. Formula (3.60) is equivalent to the condition that em is
an eigenvector of the Hessian of H at x ∈ B.
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4 Invariant Spectral Flow and the Quantization Formula

In this section, we introduce an invariant version of the Atiyah-Patodi-
Singer concept of spectral flow [APS2], which appears in our quantization
formula, and examine its basic properties. These properties are invariant
versions of the corresponding properties of the usual spectral flow and can
be proved by entirely the same methods. We also prove the quantization
formulae for symplectic manifolds with boundary, which are the main re-
sults of this paper, including both an asymptotic quantization formula and
the formula stated in Theorem 0.1.

As in [TiZ1], the methods and techniques of Bismut and Lebeau [BLe,
Sects. 8, 9] are essential to this section.

This section is organized as follows. In a), we introduce the invariant
version of the spectral flow for our specific symplectic situation and consider
its basic properties. In b), we state and prove an asymptotic quantization
formula. In c), we give a proof of the second part of Theorem 0.1.

a) Invariant spectral flow. For simplicity and especially for the exclu-
sive use in this paper, we will only consider operators acting on
Ω0,even(M,L)|∂M .

By a Dirac type operator acting on Ω0,even(M,L)|∂M we will mean
a first order elliptic differential operator which has the same symbol as
that of DL

∂M,+. For any G-equivariant Dirac type operator D, we denote
by DG its restriction to Ω0,even(M,L)G|∂M , the G-invariant subspace of
Ω0,even(M,L)|∂M . Clearly, if D is (formally) self-adjoint, so is DG.

Definition 4.1. Let {Dt, 0 ≤ t ≤ 1} be a one parameter family of
self-adjoint G-equivariant Dirac type operators acting on Ω0,even(M,L)|∂M .
The G-invariant spectral flow of {Dt, 0 ≤ t ≤ 1}, denoted by sfG{Dt, 0 ≤
t ≤ 1}, is defined to be the spectral flow of the family of self-adjoint
Fredholm operators {DG

t , 0 ≤ t ≤ 1} in the sense of Atiyah-Patodi-Singer
[APS2].

As it should be clear from the above definition, many properties satisfied
by the usual spectral flow still hold for the invariant spectral flow. For the
use of this paper, in what follows we shall state an invariant version of a
result of Dai and Zhang [DZ, Theorem 1.1].

Let {D̃t : Ω0,even(M,L)→ Ω0,odd(M,L), 0 ≤ t ≤ 1} be a one parameter
family of G-equivariant Dirac type operators (that is, the symbol of each
D̃t is the same as that of DL

+), with the canonically associated boundary
operators {Dt, 0 ≤ t ≤ 1} acting on Ω0,even(M,L)|∂M (cf. [APS1], [G]). Let



622 Y. TIAN AND W. ZHANG GAFA

Qt be the Atiyah-Patodi-Singer projection produced in [APS1] associated
to Dt. That is, Qt is the orthogonal projection from the L2-completion
of Ω0,even(M,L)|∂M to the space of direct sum of nonnegative eigenspaces
of Dt.

Let D̃G
t and QGt be the restrictions of D̃t and Qt to the corresponding

G-invariant subspaces respectively. Then since each (D̃t, Qt) is an elliptic
boundary value problem ([APS1], [G]), (D̃G

t , Q
G
t ) satisfies all the properties

an elliptic boundary value problem verifies. In particular, it has a well-
defined index, denoted by ind(D̃G

t , Q
G
t ).

We can now state the followingG-invariant version of [DZ, Theorem 1.1].

Theorem 4.2. The following identity holds,
ind(D̃G

1 , Q
G
1 )− ind(D̃G

0 , Q
G
0 ) = −sfG{Dt, 0 ≤ t ≤ 1} . (4.1)

Proof. Theorem 4.2 can be proved in the same way as in [DZ, Theorem 1.1].
The only thing to be noted is that in [DZ, Theorem 1.1], Dai and Zhang
only stated their result for the situation that the metric near the boundary
is a product metric. However, as already explained in [APS1], the non-
product metric nature near the boundary has no effect on the Fredholm
nature of the problem. Therefore, the proof of (4.1) type formulas can be
easily reduced to the product metric situation near the boundary. We leave
the details to the interested reader. �

b) An asymptotic quantization formula. Recall from the Introduc-
tion the assumption that 0 ∈ g∗ is a regular value of µ and that µ−1(0) ∩ ∂M
= ∅. For simplicity, we have also assumed that G acts on µ−1(0) freely.
Thus one can construct the Marsden-Weinstein symplectic reduction
(MG, ωG), where MG = µ−1(0)/G is smooth and ωG is the symplectic
form on MG induced naturally from ω. One also has the corresponding
virtual vector space Q(MG, LG) as is explained in the Introduction.

The main result of this subsection can be stated as follows.

Theorem 4.3. If Condition 3.0 holds, then there exists T0 > 0 such that
(i) dimQAPS,T (M,L)G does not depend on T ≥ T0;

(ii) the following identity holds for T ≥ T0,
dimQAPS,T (M,L)G = dimQ(MG, LG) . (4.2)

Proof. (i) Recall that DL
∂M,+,T is the canonical boundary operator asso-

ciated to DL
+,T , and that P≥0,+,T is the Atiyah-Patodi-Singer projection

associated to DL
∂M,+,T . In particular, one has obviously that

dimQAPS,T (M,L)G = ind
(
(DL

+,T )G, PG≥0,+,T
)
. (4.3)
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On the other hand, from Theorem 3.21 one knows that there exists T0 > 0
such that for any T ≥ T0, the restriction of DL

∂M,+,T to the G-invariant
subspace of Ω0,even(M,L)|∂M is invertible. Thus for any T ≥ T0, the G-
invariant spectral flow associated to the natural path {DL

∂M,+,t, T0 ≤ t ≤ T}
vanishes,

sfG{DL
∂M,+,t, T0 ≤ t ≤ T} = 0 . (4.4)

From Theorem 4.2, (4.3) and (4.4), one sees that dimQAPS,T (M,L)G

is constant for T ≥ T0.
(ii) We proceed as in [TiZ1, Sect. 3], which in turn relies heavily on

[BLe, Sects. 8, 9]. Since [BLe] and [TiZ1] only deal with the boundaryless
case, we shall now discuss the modifications needed to fit to our situation.

Let
DL
T,APS = (DL

+,T , P≥0,+,T ) + (DL
−,T , P>0,−,T ) (4.5)

be the Spinc-Dirac operator with the specified boundary condition. Then
DL
T,APS is elliptic and self-adjoint (cf. [G]).

We now apply the analysis and methods in [TiZ1], [BLe] to DL,G
T,APS , the

restriction of DL
T,APS to the G-invariant part of its domain.

Since µ−1(0) ∩ ∂M = ∅, one sees that the analysis near µ−1(0) is the
same as those in [TiZ1], [BLe]. In particular, one constructs the Dirac type
operator DLG

Q on MG as in [TiZ1, Definition 3.12].
On the other hand, the analysis outside of µ−1(0) is certainly different

from that in [TiZ1] and [BLe] due to the appearance of the boundary ∂M .
Thus, to ensure that everything still works, one must examine carefully
each of the steps involved. In doing so, we find that all those to be checked
beyond [BLe] and [TiZ1] are concerned with the following two ingredients.

The first one is exactly Theorem 3.132, which can be viewed as the ana-
logue of [BLe, Prop. 9.13] and [TiZ1, Theorem 2.1]. It enables us to localize
the problem to arbitrary small neighborhoods of µ−1(0). Furthermore, af-
ter proving Theorem 3.13, we find that all the elliptic estimates needed in
order to apply the techniques of [BLe] can either be covered by Theorem
3.13, or be reduced to the elliptic estimates, which hold clearly, on sections
with compact support lying outside of an open neighborhood (fixed by The-
orem 3.13) of ∂M . In particular, from Theorem 3.13 and the analysis near
µ−1(0), one can apply the gluing arguments in [BLe, pp. 115–116] easily to
obtain an analogue of [BLe, Theorem 9.14].

1Or Corollary 2.3, if B = ∅.
2Or Theorem 2.6, if B = ∅.



624 Y. TIAN AND W. ZHANG GAFA

The second one comes up when we need to modify the formal arguments
in [BLe, Sect. 9c)–f)]. Here, as one of the referees pointed out, one does
not obtain the analogue of the second inequality in [BLe, (9.110)] as easily
as there. However, since we are only interested in the small eigenvalues in-
volved, we actually need not pursue the full analogue of [BLe, Sect. 9c)–f)].
In what follows we will present an analogue of a simplified version of [BLe,
Sect. 9c)–f)] in some detail. The main purpose is to prove the following
analogue of [TiZ1, Theorem 3.13] and/or [BLe, (9.156)].

Proposition 4.4. If Condition 3.0 holds, then there exist c > 0, T0 > 0
such that there are no nonzero eigenvalues of DLG,2

Q in [0, c], and that for

any T ≥ T0, the number of eigenvalues in [0, c] of (DL,G
T,APS)2 is equal to

dim(kerDLG
Q ).

Proof. As in [BLe], we first introduce some notation of Sobolev spaces. For
q ≥ 0, let Eq (resp. F q) be the set of sections of ∧0,∗(T ∗M) ⊗ L over M
(resp. ∧0,∗(T ∗MG)⊗ LG over MG) which lie in the q-th Sobolev space. As
before, we always use ‖ · ‖0 as the notation for the standard L2-norms. We
will denote the G-invariant part of Eq by Eq,G. For any T ≥ 0, set

E1,G(T ) = {s ∈ E1,G : P≥0,T s|∂M = 0} . (4.6)

Then E1,G(T ) is a Hilbert space with respect to ‖ · ‖1. Also, since when T
is large enough the G-invariant restriction of DL

∂M,T is invertible, one sees
that E1,G(T ) is the exactly the domain of DL,G

T,APS for sufficiently large T .
Following the discussions above, we now combine the results in sections

2, 3 as well as the analysis near µ−1(0), which is the same as in [TiZ1,
Sect. 3] and [BLe, Sect. 9], to obtain the following assertions.

There exists a sufficiently small G-invariant open neighborhood U ⊂M
of µ−1(0) with U ∩ ∂M = ∅, and a linear map JT : F q → Eq,G for T > 0,
which is the analogue of the map defined in [BLe, Definition 9.4]3, such that
for any u ∈ Ω0,∗(MG, LG), one has JTu ∈ Ω0,∗(M,L)G with Supp JTu ⊂ U .
Let Eq,GT be the image of F q in Eq,G by JT . Then JT : F 0 → E0,G

T is an
isometry. It is clear that

E1,G
T ⊂ E1,G(T ) .

Let E0,G
T,⊥ be the orthogonal space to E0,G

T in E0,G. Set

E1,G
⊥ (T ) = E1,G(T ) ∩E0,G

T,⊥ .

3Clearly, one should use [TiZ1, Theorem 3.10(i)] to replace [BLe, Theorem 7.4] when
constructing JT in our context.
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Let pT , pT,⊥ be the orthogonal projection operators from E0,G to E0,G
T ,

E0,G
T,⊥ respectively. Then we have the following decomposition of DL,G

T,APS :

DL,G
T,APS =

4∑
i=1

DT,i (4.7)

with
DT,1 = pTD

L,G
T,APSpT , DT,2 = pTD

L,G
T,APSpT,⊥ ,

DT,3 = pT,⊥D
L,G
T,APSpT , DT,4 = pT,⊥D

L,G
T,APSpT,⊥ . (4.8)

By summarizing the preceding arguments, we get the following proposi-
tion, which consists of the analogues of [BLe, Theorems 9.8, 9.10 and 9.14]
in our situation.

Proposition 4.5. a) As T → +∞,
J−1
T DT,1JT = DLG

Q +O
( 1√

T

)
; (4.9)

b) there exist C1 > 0, C2 > 0 and T0 > 0 such that for any T ≥ T0, any
s ∈ E1,G

⊥ (T ), s′ ∈ E1,G
T , then

‖DT,2s‖0 ≤ C1

(
‖s‖1√
T

+ ‖s‖0
)
,

‖DT,3s
′‖0 ≤ C1

(
‖s′‖1√
T

+ ‖s′‖0
)

(4.10)

and
‖DT,4s‖0 ≥ C2

(
‖s‖1 +

√
T‖s‖0

)
. (4.11)

We will now proceed to prove Proposition 4.4 by using Proposition 4.5.
Let c > 0 be such that

Sp(DLG
Q ) ∩ [−2c, 2c] = {0} . (4.12)

Let δ = {λ ∈ C : |λ| = c} be counter-clockwise oriented.
By using Proposition 4.5 and proceeding similarly as in [BLe, Sect. 9c)–

e)], one proves easily that when T is large enough, both λ − DL,G
T,APS and

λ−DT,4 are invertible for λ ∈ δ.
Let EGc (T ) denote the direct sum of the eigenspaces of DL,G

T,APS associ-
ated with the eigenvalues lying in [−c, c]. Then EGc (T ) is a finite dimen-
sional subspace of E0,G. Let PT,c denote the orthogonal projection operator
from E0,G to EGc (T ).

Lemma 4.6. There exist C3 > 0, T1 > 0 such that for any T ≥ T1 and
σ ∈ ker(DLG

Q ),
‖PT,cJTσ − JTσ‖0 ≤ C3√

T
‖σ‖0 . (4.13)
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Proof. Clearly, one has for T large enough that

PT,cJTσ − JTσ =
1

2π
√
−1

∫
δ

(
(λ−DL,G

T,APS)−1 − λ−1)JTσdλ . (4.14)

As in [BLe, Definition 9.20], let MT (λ), λ ∈ δ, be the map from E1,G
T

to E0,G
T defined by

MT (λ) = λ−DT,1 −DT,2(λ−DT,4)−1DT,3 . (4.15)

By proceeding as in [BLe, Theorem 9.21], one proves easily that when T
is large enough, MT (λ), λ ∈ δ, is invertible. Furthermore, the norm of its
inverse, M−1

T (λ), is uniformly4 bounded from above (compare with the first
formula in [BLe, (9.124)]).

Now one verifies directly that (cf. [BLe, (12.3)])(
(λ−DL,G

T,APS)−1 − λ−1)JTσ =
(
M−1
T (λ)− λ−1)JTσ

+ (λ−DT,4)−1DT,3M
−1
T (λ)JTσ . (4.16)

As an analogue of the second inequality with j = 3 in [BLe, (9.140)], one
proves easily that∥∥(λ−DT,4)−1DT,3M

−1
T (λ)JTσ

∥∥
0 ≤

C4√
T
‖JTσ‖0 (4.17)

for λ ∈ δ, T large enough and some constant C4 > 0.
On the other hand, since

M−1
T (λ)− λ−1 =

M−1
T (λ)
λ

(
DT,1 +DT,2(λ−DT,4)−1DT,3

)
, (4.18)

by using the easy analogues of [BLe, (9.125), (9.128) and (9.129)], as well as
the uniformly boundedness of M−1

T (λ), one deduces from the assumption
DLG
Q σ = 0 that ∥∥(M−1

T (λ)− λ−1)JTσ
∥∥

0 ≤
C5√
T
‖JTσ‖0 (4.19)

for λ ∈ δ, T large enough and some constant C5 > 0.
Formula (4.13) follows from (4.14), (4.16), (4.17) and (4.19). �

By taking T1 large enough in Lemma 4.6, one deduces easily that for
any T ≥ T1,

dimEGc (T ) ≥ dim(kerDLG
Q ) . (4.20)

Now let E1,G
0,⊥(T ) denote the orthogonal space to JT (kerDLG

Q ) in E1,G(T )

with respect to ‖ · ‖0. Clearly, E1,G
0,⊥(T ) is closed with respect to ‖ · ‖1 in

E1,G(T ).

4That is, not depending on T .
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Lemma 4.7. There exists T2 > 0 such that for any T ≥ T2, any s ∈ E1,G
0,⊥(T ),

then ∥∥DL,G
T,APSs

∥∥
0 ≥

3c
2 ‖s‖0 . (4.21)

Proof. Write s as s = s′ + s′′ with s′ ∈ E1,G
T and s′′ ∈ E1,G

⊥ (T ). Then one
has ∥∥DL,G

T,APSs
∥∥2

0 = ‖DT,1s
′ +DT,2s

′′‖20 + ‖DT,3s
′ +DT,4s

′′‖20 , (4.22)

from which it follows that for any sufficiently small η > 0, one has∥∥DL,G
T,APSs

∥∥
0 ≥

7
8‖DT,1s

′ +DT,2s
′′‖0 + η‖DT,3s

′ +DT,4s
′′‖0

≥ 7
8‖DT,1s

′‖0 − 7
8‖DT,2s

′′‖0 + η‖DT,4s
′′‖0 − η‖DT,3s

′‖0 . (4.23)

In view of (4.12), one sees easily that

‖JTDLG
Q J−1

T s′‖0 ≥ 2c‖s′‖0 . (4.24)

From (4.24) and Proposition 4.5a), one deduces that there exists C6 > 0
such that when T is sufficiently large, one has
7
8‖DT,1s

′‖0 ≥ 3c
2 ‖s

′‖0 + 1
8‖JTD

LG
Q J−1

T s′‖0 − C6√
T

(
‖JTDLG

Q J−1
T s′‖0 + ‖s′‖0

)
.

(4.25)
From (4.24), (4.25) one finds that when T is sufficiently large,

7
8‖DT,1s

′‖0 ≥ 3c
2 ‖s

′‖0 + 1
16‖JTD

LG
Q J−1

T s′‖0 . (4.26)

On the other hand, by standard elliptic estimates as well as an obvious
analogue of [BLe, (9.7)], there exists constant C7 > 0 such that

‖s′‖1 ≤ C7
(
‖JTDLG

Q J−1
T s′‖0 +

√
T‖s′‖0

)
. (4.27)

By (4.23)–(4.27) and Proposition 4.5b), one deduces that when T is
sufficiently large,

‖DL,G
T,APSs‖0≥

3c
2
‖s′‖0+

1
32
‖JTDLG

Q J−1
T s′‖0+

c

16
‖s′‖0−

7C1

8

(
‖s′′‖1√
T

+‖s′′‖0
)

+ηC2
(
‖s′′‖1 +

√
T‖s′′‖0

)
− ηC1

(
C7‖JTDLG

Q J−1
T s′‖0√

T
+ (C7 + 1)‖s′‖0

)

≥ 3c
2
‖s′+s′′‖0+

(
1
32
−ηC1C7√

T

)
‖JTDLG

Q J−1
T s′‖0+

( c
16
−ηC1(C7+1)

)
‖s′‖0

+
(
ηC2−

7C1

8
√
T

)
‖s′′‖1+

(
ηC2
√
T−7C1

8
−3c

2

)
‖s′′‖0 .

(4.28)

Now if we choose η > 0 so that one also has
c

16 − ηC1(C7 + 1) ≥ 0 , (4.29)
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then from (4.28) one deduces easily that when T is sufficiently large, (4.21)
holds.

The proof of Lemma 4.7 is completed. �
From Lemma 4.7, one deduces easily that for T large enough,

dimEGc (T ) ≤ dim(kerDLG
Q ) . (4.30)

By (4.20) and (4.30), the proof of Proposition 4.4 is completed. �
Formula (4.2) follows from Proposition 4.4 through an easy parity con-

sideration. �

c) Proof of (0.6) We can now complete the proof of the second part of
Theorem 0.1. In fact, by Theorem 4.2 and (4.3), one has

dimQAPS,T (M,L)G − dimQAPS(M,L)G = −sfG{DL
∂M,+,t, 0 ≤ t ≤ T} .

(4.31)
Formula (0.6) then follows from (4.2) and (4.31) when T is large enough. �

5 Applications to Circle Actions

In this section we specify to the case where G = S1. Our main concern
is to apply the basic ideas and methods in the previous sections to prove
an analytic analogue of a relative residue formula of Guillemin-Kalkman
[GuK] and Martin [M]. As we will see, to obtain such a formula we need
only to consider a very special case of quantization formulas. In particular,
one no longer needs the existence of the prequantized line bundle L and
the final formula in fact holds for any auxiliary bundle. This also fits with
the argument in [GuK] where the symplectic form does not appear in the
forms to be evaluated over the symplectic quotient.

This section is organized as follows. In a), we prove a very special quan-
tization formula which holds for any auxiliary bundle. In b), we introduce
a trick which reduces the calculation of the analytic index on the symplec-
tic quotient to a certain kind of invariant spectral flow which no longer
involves the symplectic conditions. In c), we identify the above invariant
spectral flow in a specific situation which implies the analytic analogue
of the Guillemin-Kalkman-Martin ([GuK], [M]) relative residue formula.
There is also an appendix to this section after section 6 in which we ex-
plain certain operators on the fixed point set of the S1 action appearing in
the relative index formula proved in c).

a) A simple quantization formula for manifolds with boundary.
Results in this subsection are not restricted to the case that G = S1.
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We assume that (M,ω) is a compact symplectic manifold with boundary
∂M which admits a Hamiltonian G action such that 0 ∈ g∗ is a regular
value of the moment map µ with µ−1(0)∩∂M = ∅ and, for simplicity, that
G acts on µ−1(0) freely as before.

Let E be a G-equivariant Hermitian vector bundle over M , admitting
a G-equivariant Hermitian connection ∇E. Then (E,∇E) induces a corre-
sponding Hermitian vector bundle with a Hermitian connection (EG,∇EG)
over MG. Replacing L by E in section 1, we can define the virtual vector
spaces QAPS,T (M,E)G, Q(MG, EG), etc.

The main result of this subsection is as follows.

Theorem 5.1. If no critical point of H = |µ|2 is contained in M \ µ−1(0),
then there exists T0 ≥ 0 such that for any T ≥ T0,

dimQAPS,T (M,E)G = dimQ(MG, EG) . (5.1)

Proof. Since now XH is never zero on M \µ−1(0), the same arguments as in
section 2 show that the the problem can be localized directly to arbitrary
small neighborhoods of µ−1(0), while the analysis near µ−1(0) is the same
as that in [TiZ1, Sects. 3, 4a)]. One can then proceed as in section 4b) to
complete the proof of (5.1). �

b) Specialization to G = S1 case. We now consider the special case
where G = S1. Note that µ is now a real function on M . We have clearly

d|µ|2 = 2µdµ ,

XH = −2J(µdµ)∗ = 2µV , (5.2)

where we use V to denote the Killing vector field generated by the unit
base of the Lie algebra of S1.

For any T ∈ R, set

D̃E
T = DE +

√
−1Tc(V ) : Ω0,∗(M,E)→ Ω0,∗(M,E) ,

D̃E
∂M,T = DE

∂M +
√
−1T c̃(V ) : Ω0,∗(M,E)|∂M → Ω0,∗(M,E)|∂M . (5.3)

It is straightforward to define the generalized Atiyah-Patodi-Singer bound-
ary value problem for D̃E

T and the associated virtual vector space which
we shall denote by Q∼APS,T (M,E). Let Q∼APS,T (M,E)G be its G-invariant
part. We then have the following easy result.

Proposition 5.2. Under the same condition as in Theorem 5.1 for the
G = S1 case, there exists T0 > 0 such that for any T ∈ R with |T | ≥ T0,

dimQ∼APS,T (M,E)G = 0 . (5.4)
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Proof. Since 0 ∈ R = g∗ is a regular value of µ, one sees that V has no zero
point on µ−1(0). Thus from (5.2) and the condition of the proposition, one
sees that V has no zero point on the whole M . For any T ∈ R, one verifies
that

D̃E,2
T = DE,2 + 2

√
−1TrEV + T 2|V |2

+
√
−1T

(
1
2

dimM∑
j=1

c(ej)c(∇ejV )−Tr
[
∇T (1,0)M
. V |T (1,0)M

]
− 2LV

)
, (5.5)

where LV is the infinitesimal action of V on Ω0,∗(M,E) and rEV = LEV −∇EV
with LEV the infinitesimal action of V on E.

Now using the obvious fact that LV vanishes when acting on the G-
invariant subspace of Ω0,∗(M,E), that V is never zero on M , and following
the arguments in section 2, one sees easily that there exists T0 > 0 such
that for any |T | ≥ T0,

Q∼APS,T (M,E)G = {0} . (5.6)

The proof of Proposition 5.2 is completed. �

Theorems 4.2, 5.1 and Proposition 5.2 have the following important
consequence.

Corollary 5.3. Under the assumption of Theorem 5.1 and that G = S1,
there exists T0 > 0 such that for any T ≥ T0, one has

dimQ(MG, EG) = −sfG{ĎE
∂M,u, 0 ≤ u ≤ 1}

= −sfG{D̂E
∂M,u, 0 ≤ u ≤ 1} , (5.7)

with
D̂E
∂M,u = (1− u)D̃E

∂M,+,T + uDE
∂M,+,T , (5.8)

and
ĎE
∂M,u = (1− u)D̃E

∂M,+,−T + uDE
∂M,+,T , (5.9)

where D̃E
∂M,+,T and DE

∂M,+,T are the restrictions of D̃E
∂M,T and DE

∂M,T to
Ω0,even(M,L)|∂M respectively.

Rewriting (5.8) and (5.9) more explicitly, one has

D̂E
∂M,u = DE

∂M,+ +
√
−1T (1− u+ uµ)c̃(V ) , (5.10)

and
ĎE
∂M,u = DE

∂M,+ +
√
−1T (u− 1 + uµ)c̃(V ) . (5.11)

We now decompose ∂M into two disjoint parts:

∂M = (∂M)+ ∪ (∂M)− (5.12)
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such that
µ|(∂M)+ > 0 , µ|(∂M)− < 0 . (5.13)

Obviously, one has that

1− u+ uµ > 0 on (∂M)+ ,

u− 1 + uµ < 0 on (∂M)− (5.14)

for any u ∈ [0, 1].
From (5.14) and from the fact that LV |∂M vanishes on the G-invariant

subspace of Ω0,∗(M,E)|∂M , one deduces easily the following result just by
a simple calculation of D̂E,2

∂M,u and ĎE,2
∂M,u.

Lemma 5.4. There exists T0 > 0 such that for any T ≥ T0 and u ∈ [0, 1],
when restricted to the G-invariant subspace, D̂E

∂M,u (resp. ĎE
∂M,u) is invert-

ible on (∂M)+ (resp. (∂M)−).
From Corollary 5.3 and Lemma 5.4, we get the main result of this

subsection as follows.

Theorem 5.5. Under the same condition as in Theorem 5.1 and that
G = S1, there exists T0 > 0 such that for any T ≥ T0,

dimQ(MG, EG) = −sfG(∂M)+
{D̃E

∂M,+,t,−T≤t≤T}

= −sfG(∂M)−{D̃
E
∂M,+,t, T≥t≥− T} . (5.15)

Remark 5.6. A remarkable feature of Theorem 5.5 is that it expresses the
quantities on the symplectic quotients through quantities on the boundary
involving no symplectic nature at all. Another feature of this formula is
that it works for any auxiliary bundle E.

c) A relative index theorem for symplectic quotients of circle ac-
tions. In this subsection, we assume again that G = S1 but we no longer
assume that M is compact. However, we will assume that the moment map
µ : M → R is proper.

From the Hamiltonian action condition

iV ω = dµ , (5.16)
one sees that for any number c ∈ R, µ − c is also a moment map for
the S1 action. The point here is that we do not assume the existence
of the prequantized line bundle L so that we need not make prequantized
restriction on the moment map. So any c ∈ R can be chosen. Thus, for any
regular value c ∈ R of µ one can construct the symplectic quotient (Mc =
µ−1(c)/S1, ωc). Here for simplicity we shall still make the assumption that
S1 acts on µ−1(c) freely.
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Let a < b be two regular values of µ and assume that S1 acts on both
µ−1(a) and µ−1(b) freely. Let Ea and Eb be the induced Hermitian vector
bundles over Ma and Mb respectively. In what follows, we want to express
the difference dimQ(Mb, Eb) − dimQ(Ma, Ea) through quantities on the
S1-fixed point set in µ−1([a, b]).

Since µ is proper, one knows that µ−1([a, b]) is compact. One also knows
that µ−1(a), µ−1(b) are connected (cf. [A]). Let F1(a, b), · · · , Fq(a, b) be the
connected components of the fixed point set F (a, b) of the S1-action in
µ−1([a, b]). In other words, Fi(a, b), 1 ≤ i ≤ q, are the connected com-
ponents of the zero set F (a, b) of the Killing vector field V . According to
Appendix, to any Fi(a, b) one can associate two naturally constructed el-
liptic differential operators DE

Fi(a,b),+
(V ) and DE

Fi(a,b),+
(−V ) which give the

local contributions of Fi(a, b) to the S1-invariant index. Here DE
Fi(a,b),+

(V )
(resp. DE

Fi(a,b),+
(−V )) is obtained from the deformation DE

+ +
√
−1Tc(V )

by letting T → +∞ (resp. T → −∞) (see the Appendix for more details).
We can now state the main result of this subsection.

Theorem 5.7. The following identity holds,

dimQ(Mb, Eb)− dimQ(Ma, Ea)

=
q∑
i=1

ind
(
DE
Fi(a,b),+(V )

)
−

q∑
i=1

ind
(
DE
Fi(a,b),+(−V )

)
. (5.17)

Proof. Without loss of generality we assume that a (resp. b) is not the
minimal (resp. the maximal) value of µ on M . Thus there exists a suf-
ficiently small ε > 0 such that no critical value of µ lies in [a − ε, a + ε]
(resp. [b − ε, b + ε]), and that µ−1(a − ε) (resp. µ−1(b + ε)) is nonempty.
By applying Theorem 5.5 to µ−1([a− ε, a+ ε]) and µ−1([b− ε, b+ ε]), and
by viewing µ − a and µ − b as the moment maps respectively, one derives
easily the following equalities for any T ≥ T0 with T0 > 0 large enough,

dimQ(Ma, Ea) = −sfGµ−1(a−ε){D̃
E
µ−1(a−ε),+,t, T≥t≥− T} ,

dimQ(Mb, Eb) = −sfGµ−1(b+ε){D̃E
µ−1(b+ε),+,t,−T≤t≤T} . (5.18)

Thus one gets

dimQ(Mb, Eb)− dimQ(Ma, Ea)

= −sfGµ−1(b+ε){D̃
E
µ−1(b+ε),+,t,−T ≤ t ≤ T}

+ sfGµ−1(a−ε){D̃E
µ−1(a−ε),+,t, T ≥ t ≥ −T}
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= −sfGµ−1(b+ε){D̃
E
µ−1(b+ε),+,t,−T ≤ t ≤ T}

− sfGµ−1(a−ε){D̃
E
µ−1(a−ε),+,t,−T ≤ t ≤ T} . (5.19)

Now consider the deformation operator

D̃E
T = DE +

√
−1Tc(V ) :

Ω0,∗(µ−1(a− ε, b+ ε), E
)
→ Ω0,∗(µ−1(a− ε, b+ ε), E

)
(5.20)

and the associated generalized Atiyah-Patodi-Singer boundary value prob-
lem. One deduces easily, by following the localization principle in the Ap-
pendix, that there exists T0 > 0 such that for any T ≥ T0,

dimQ∼APS,T
(
µ−1(a− ε, b+ ε), E

)G =
q∑
i=1

ind
(
DE
Fi(a,b),+(V )

)
(5.21)

and

dimQ∼APS,−T
(
µ−1(a− ε, b+ ε), E

)G =
q∑
i=1

ind
(
DE
Fi(a,b),+(−V )

)
. (5.22)

From (5.21), (5.22) and Theorem 4.2, one deduces that
q∑
i=1

ind
(
DE
Fi(a,b),+(V )

)
−

q∑
i=1

ind
(
DE
Fi(a,b),+(−V )

)
= −sfG{D̃E

µ−1(a−ε),+,t,−T ≤ t ≤ T} − sfG{D̃E
µ−1(b+ε),+,t,−T ≤ t ≤ T} .

(5.23)

From (5.19) and (5.23), one gets

dimQ(Mb, Eb)− dimQ(Ma, Ea)

=
q∑
i=1

ind
(
DE
Fi(a,b),+(V )

)
−

q∑
i=1

ind
(
DE
Fi(a,b),+(−V )

)
, (5.24)

which is exactly (5.17). �

Remark 5.8. It is interesting to observe that since a and b are regular
values of µ, by taking ε in (5.18) small enough one obtains actually that,

dimQ(Ma, Ea) = sfGµ−1(a){D̃E
µ−1(a),+,t,−T≤t≤T} ,

dimQ(Mb, Eb) = −sfGµ−1(b){D̃
E
µ−1(b),+,t,−T≤t≤T} , (5.25)

which hold for T > 0 large enough. (Be aware of the convention for orienta-
tions of µ−1(a) and µ−1(b) used here.) (5.25) is in fact a universal formula
for circle actions. It will play a role in the next section when we study
quantization formula for singular reductions under circle actions.



634 Y. TIAN AND W. ZHANG GAFA

6 A General Asymptotic Quantization Formula on Closed
Manifolds

In this section, we apply our quantization formula for manifolds with bound-
ary to give a general quantization formula which works also for singular
reductions. As an application, combining with the ideas in section 5 we
prove a Guillemin-Sternberg type formula for singular reductions under
circle actions.

This section is organized as follows. In a), we prove a general asymptotic
quantization formula. In b), we apply the results of a) and section 5 to study
quantization formula for singular reductions under circle actions. In c), we
generalize the results in b) to cover an arbitrary auxiliary bundle.

a) A universal asymptotic quantization formula. In this subsection,
we assume that M is closed. The other assumptions and notation are as in
sections 1 and 2, except that we no longer assume that 0 ∈ g∗ is a regular
value of the moment map µ.

Let B ⊂ M be the set of critical points of H = |µ|2. Then there exists
δ > 0 such that

H−1((0, δ]) ∩ B = ∅ . (6.1)
Thus for any c ∈ (0, δ), a regular value of H, H−1(c) is a G-invariant
hypersurface of M , cutting M into two parts M = M c

+∪M c
− with common

boundary M c
+ ∩M c

− = H−1(c). We assume that M c
+ contains µ−1(0) and

B \ µ−1(0) ⊂ M c
−. We can construct the deformations of the canonical

Spinc-Dirac operators as in section 1 for M,M c
+ and M c

− respectively, as
well as the corresponding virtual G-invariant vector spaces.

The main result of this subsection is as follows.

Theorem 6.1. There exists T0 > 0 such that for any T ≥ T0,
1◦ when restricted to the G-invariant subspace of its domain, DL

∂Mc
+,T

is
invertible;

2◦ the following identity holds,
dimQ(M,L)G = dimQAPS,T (M c

+, L|Mc
+

)G . (6.2)
Proof. 1◦ is a corollary of Theorem 2.1. From 1◦ and Theorem 4.2, one
knows that for T ≥ T0, dimQAPS,T (M c

±, LMc
±)G does not depend on T .

Let QT (M,L)G be the G-invariant virtual vector space associated to DL
T .

Then by 1◦, one deduces easily the following splitting formula of G-invariant
indices for T ≥ T0,
dimQT (M,L)G = dimQAPS,T (M c

+, L|Mc
+

)G + dimQAPS,T (M c
−, L|Mc

−)G .
(6.3)
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Since µ−1(0) ∩M c
− = ∅, Theorem 0.1 implies that there exists T1 > 0 such

that for T ≥ T1,
dimQAPS,T (M c

−, L|Mc
−)G = 0 . (6.4)

Now (6.2) follows from (6.3), (6.4) and the following obvious identity,
dimQT (M,L)G = dimQ(M,L)G . (6.5)

�

Remark 6.2. Formula (6.2) shows that dimQ(M,L)G depends only on
the behavior of µ near µ−1(0). If 0 ∈ g∗ is a regular value of µ, then one can
apply Theorems 0.1 and 6.1 to obtain the Guillemin-Sternberg conjecture.
In general, if 0 ∈ g∗ is a critical value of µ, then (6.2) provides a universal
formula which reduces the computation of dimQ(M,L)G to sufficiently
small neighborhoods of µ−1(0).

Remark 6.3. Guillemin-Sternberg type formula for singular reductions
has been studied by Meinrenken and Sjamaar in [MeSj]. In the next sub-
section we will give a treatment for circle actions from our point of view.
(Compare also with [TiZ2] where analytic treatments of some of the results
of Meinrenken-Sjamaar [MeSj] for (possibly) non-abelian group actions were
given.)

b) Singular reductions and quantization for circle actions. We
now specialize to the case G = S1, and we shall also assume that 0 ∈ R
is a singular value of µ : M → R. In this particular situation, one can
use µ instead of H = |µ|2 to obtain the same result as in a) with obvious
modifications.

Thus, let δ > 0 be such that µ−1([−δ, δ]) ∩ (B \ µ−1(0)) = ∅ and take
0 < c < δ. By Theorem 6.1, there exists T0 > 0 such that for any T ≥ T0,

dimQ(M,L)G = dimQAPS,T (M c
+, L|Mc

+
)G , (6.6)

where now M c
+ = µ−1([−c, c]). Since 0 ∈ R is a critical value of µ, by (5.2),

µ−1(0) contains fixed points of the S1 action which we denote by
F0 = µ−1(0) ∩

{
x ∈M ;V (x) = 0

}
. (6.7)

Using the deformation by V as in (5.3),
D̃L
T = DL +

√
−1Tc(V ) : Ω0,∗(M,L)→ Ω0,∗(M,L) , (6.8)

one deduces, by the results described in the Appendix (and using the similar
notation there), that for any T ≥ T0 with some T0 > 0,

dimQ∼APS,T (M c
+, L|Mc

+
)G = ind

(
DF0,+(V )

)
(6.9)

and
dimQ∼APS,−T (M c

+, L|Mc
+

)G = ind
(
DF0,+(−V )

)
. (6.10)
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Clearly, the boundary of M c
+ decomposes into two components:

∂M c
+ = µ−1(c) ∪ µ−1(−c) . (6.11)

We give µ−1(±c) their induced orientations from M c
+ respectively.

From (6.6), (6.9) and the trick used to prove Theorem 5.5, one gets
dimQ(M,L)G = ind

(
DF0,+(V )

)
+ sfG{D̃L

µ−1(−c),+,t,−T ≤ t ≤ T} , (6.12)
for T > 0 sufficiently large. Similarly, one gets from (6.6) and (6.10) that
dimQ(M,L)G = ind

(
DF0,+(−V )

)
− sfG{D̃L

µ−1(c),+,t,−T ≤ t ≤ T} . (6.13)
Now by (5.25), one has

dimQ(Mc, Lc) = −sfG{D̃L
µ−1(c),+,t,−T ≤ t ≤ T}

and
dimQ(M−c, L−c) = sfG{D̃L

µ−1(−c),+,t,−T ≤ t ≤ T} (6.14)
respectively with respect to the corresponding induced orientations.

On the other hand, it is clear that dimQ(M±c, L±c) do not depend on
c > 0 as long as c is sufficiently small. Thus it is natural to denote them
by dimQ(MG,0± , LG,0±) respectively.

To summarize (6.12) through (6.14), we obtain the following main result
of this subsection.

Theorem 6.4. The following identities hold for circle actions,
dimQ(M,L)G = dimQ(MG,0− , LG,0−) + ind

(
DF0,+(V )

)
= dimQ(MG,0+ , LG,0+) + ind

(
DF0,+(−V )

)
. (6.15)

Remark 6.5. If 0 ∈ R is a regular value of µ, then F0 = ∅. Thus (6.15)
reduces to the Guillemin-Sternberg conjecture [GuSt] in this case.

For 0 ∈ R being a critical value of µ, there are three possibilities: (i) 0
is the minimum of µ; (ii) 0 is the maximum of µ; and (iii) 0 is neither the
minimum nor the maximum of µ. Let us discuss them separately.

Case (i) In this case, one clearly has that dimQ(MG,0− , LG,0−) = 0
as MG,0− = ∅. Thus one needs to compute ind(DL

F0,+(V )).
Let N be the normal bundle to F0 in M . Then since V = −J(dµ)∗

and 0 is the minimum of µ, one verifies that N+ = 0, using the notation in
the Appendix. On the other hand, by using the Kostant formula ([Ko], cf.
[TiZ1, (1.13)]) one verifies that√

−1LV |L|F0
= 0 . (6.16)

From (6.16) and the observation in Remark A.3, one deduces that

DL
F0,+(V ) = D

L|F0
F0,+ : Ω0,even(F0, L|F0)→ Ω0,odd(F0, L|F0) , (6.17)

from which we have, via the Atiyah-Singer index theorem [AS] and (6.15),
dimQ(M,L)G =

〈
Td(TF0) exp(c1(L|F0)), [F0]

〉
. (6.18)
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Case (ii) Similarly, if 0 is the maximum of µ, one verifies that

dimQ(M,L)G =
〈
Td(TF0) exp(c1(L|F0)), [F0]

〉
. (6.19)

Case (iii) In this case, both N± 6= 0. Thus by the observation in
Remark A.3, one sees that ind(DL

F0,+(±V )) = 0, and (6.15) becomes

dimQ(M,L)G = dimQ(MG,0+ , LG,0+) = dimQ(MG,0− , LG,0−) . (6.20)

Remark 6.6. Formulas (6.18) and (6.19) have been obtained in [DuGMW]
as applications of the equivariant index formula [AS], and (6.20) fits with
the discussion in [MeSj]. However, as we will see next, new phenomenon
occurs when one allows general auxiliary vector bundles.

c) Singular reductions and asymptotic quantization formula for
general coefficients. Let E be a G-equivariant Hermitian vector bundle
over M , carrying a G-equivariant Hermitian connection. Let m be a posi-
tive integer. In this subsection we consider the quantization formula for S1

singular reductions associated to the twisted Spinc-Dirac operator

DLm⊗E
+ : Ω0,even(M,Lm ⊗E)→ Ω0,odd(M,Lm ⊗E) . (6.21)

Recall that we have shown in [TiZ1, Sect. 4] that there exists m0 > 0
such that for each positive integer m ≥ m0, all the pointwise estimates
needed to localize the quantization problem still hold for DLm⊗E . Further-
more, one sees easily that the arguments in this paper all work for DLm⊗E

with m ≥ m0.
Still consider the circle action case, we get the following result which

extends Theorem 6.4 to an asymptotic formula valid for general twisted
coefficients.

Theorem 6.7. If 0 is a critical value of µ : M → R, then the following
identities hold for m ≥ m0,

dimQ(M,Lm ⊗E)G = dimQ
(
MG,0− , (L

m ⊗E)G,0−
)

+ ind
(
DLm⊗E
F0,+ (V )

)
= dimQ

(
MG,0+ , (Lm ⊗E)G,0+

)
+ ind

(
DLm⊗E
F0,+ (−V )

)
. (6.22)

Now the eigenvalues of
√
−1LV |E|F0

might contain both positive and
negative ones. Therefore, even if 0 is neither the maximum nor the min-
imum, the indices ind(DLm⊗E

F0,+ (±V )) might well be nonzero. Thus there
are nontrivial correction terms to dimQ(MG,0± , (Lm ⊗E)G,0±) in order to
make up dimQ(M,Lm ⊗E)G. See [TiZ3] for more details.
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Appendix. The Contributions of the Fixed Point
Components

The purpose of this appendix is to make explicit constructions of the oper-
ators DE

Fi(a,b),+
(±V )’s appeared in section 5c).

Without loss of generality, we can and we will fix one component of the
fixed point set and denote it by F . Let N be the normal bundle to F , then
N inherits naturally an almost complex structure JN , a Hermitian metric
gN as well as a Hermitian connection ∇N .

Since V is a generator of the S1-action,
√
−1LV acts on N as a co-

variantly constant invertible self-adjoint operator commuting with JN . Let
N+,N− be the positive and negative eigenbundles of

√
−1LV |N respec-

tively. Then JN preserves N±, and one has the canonical splittings

N± ⊗C = N
(1,0)
± ⊕N (0,1)

± . (A.1)

Let Sym(N (1,0)
+ ) (resp. Sym(N (0,1)

− )) be the total symmetric power of N (1,0)
+

(resp. N (0,1)
− ). Then Sym(N (0,1)

− ) ⊗ Sym(N (1,0)
+ ) ⊗ det(N (1,0)

+ ) ⊗ E|F is an
infinite dimensional vector bundle over F , on which

√
−1LV acts as a co-

variantly constant self-adjoint operator. Furthermore, its zero eigenbundle,
denoted by (Sym(N (0,1)

− )⊗ Sym(N (1,0)
+ )⊗ det(N (1,0)

+ )⊗E|F )G, is finite di-
mensional.

Definition A.1. The operator DE
F,+(V ) is defined as the (twisted) Spinc-

Dirac operator on F ,

DE
F,+(V ) : Ω0,even(F, (Sym(N (0,1)

− )⊗ Sym(N (1,0)
+ )⊗ det(N (1,0)

+ )⊗E|F )G
)

→ Ω0,odd(F, (Sym(N (0,1)
− )⊗ Sym(N (1,0)

+ )⊗ det(N (1,0)
+ )⊗E|F )G

)
. (A.2)

If we change V to −V , we get the similar definition of DE
F,+(−V ).

Formulas (5.21), (5.22) can be proved by proceeding as in sections 2
and 4. The first step is again to show that the problem can be localized
to sufficiently small neighborhoods of the fixed point set. This causes no
difficulty as V is nowhere zero on the boundary. While near the fixed point
set, one can proceed as in section 4 and [BLe] to complete the proof. In
particular, one can identify the operators DE

F,+(±V ). We leave the details
to the interested reader.
Remark A.2. The paper [WuZ] contains the needed analysis near F in a
holomorphic context. However, one sees easily that the analysis in [WuZ]
applies here directly. Compare also with Taubes [T, Sect. 2] which goes
back to Witten [W].
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Remark A.3. One verifies easily that the restriction of
√
−1LV to

Sym(N (1,0)
+ ) ⊗ det(N (1,0)

+ ) is positive, while its restriction to Sym(N (0,1)
− )

is nonnegative with ker(
√
−1LV |Sym(N(0,1)

− )
) being the trivial line bundle.

This observation plays important roles in concrete applications.
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