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Abstract. For a complex flat vector bundle over a fibered manifold, we consider the
1-parameter family of certain deformed sub-signature operators introduced by Ma-Zhang
in [MZ]. We compute the adiabatic limit of the Bismut-Freed connection associated to this
family and show that the Bismut-Lott analytic torsion form shows up naturally under this
procedure.

1. Introduction

Adiabatic limit refers to the geometric degeneration when metrics in certain directions
are blown up, while the remaining directions are kept fixed.

Typically, the underlying manifold has a so called fibration structure (or fiber bundle
structure). That is

Z ! M !p B;

where p is a submersion and Z FZb ¼ p�1ðbÞ, for b A B, denotes the typical fiber. Given a
submersion metric on M:

g ¼ p�gB þ gZ;

the adiabatic limit refers to the limit as � ! 0 of

g� ¼ ��2p�gB þ gZ:
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This is first introduced by Witten [W] in his famous work on global gravitational anoma-
lies.

Witten considered the adiabatic limit of the eta invariant of Atiyah-Patodi-Singer
[APS1]–[APS3]. Full mathematical treatment and generalizations are given by Bismut-
Freed [BF], Cheeger [C], Bismut-Cheeger [BC1], Dai [D] among others. The adiabatic limit
of the eta invariant gives rise to the Bismut-Cheeger eta form, a canonically defined di¤er-
ential form on the base B. The eta form is a higher dimensional generalization of the eta
invariant as it gives the boundary contribution of the family index theorem for manifolds
with boundary, see Bismut-Cheeger [BC2], [BC3], and Melrose-Piazza [MP1], [MP2]. The
degree zero component of the eta form here is exactly the eta invariant of the fibers. The
nonzero degree components therefore contain new geometric information about the fibra-
tion.

Another important geometric invariant is the analytic torsion. The adiabatic limit
of the analytic torsion has been considered by Dai-Melrose [DM] (see also the topological
treatment of Fried [Fri], Freed [Fr], and Lück-Schick-Thielmann [LST]). In contrast to the
case of the eta invariant, the adiabatic limit here does not give rise to a higher invariant.
This is because the associated characteristic class involved here is the Pfa‰an, a top form
which kills any possible higher degree components arising from the adiabatic limit.

It should be noted that there is a complex analogue of the analytic torsion for com-
plex manifolds called the holomorphic torsion. Its adiabatic limit has been considered by
Berthomieu-Bismut [BerB]. And it does produce the holomorphic torsion form of Bismut-
Köhler [BK]. The di¤erence can be explained by the fact that the characteristic class here is
the Todd class—a stable class.

There is another way to view the higher invariants, namely via transgression. The eta
form transgresses between the Chern-Weil representative of the family index and its Atiyah-
Singer representative. Similarly, the holomorphic torsion form is the double transgression
of the family index in the complex setting. Bismut-Lott [BL] uses this view point to define
the real analytic torsion form, a higher dimensional generalization of the analytic torsion. It
is a canonical transgression of certain odd cohomology classes.

There remains the question of whether the real analytic torsion form can be ob-
tained from the adiabatic limit process. The purpose of this paper is to answer this ques-
tion in the a‰rmative. We show that, if one considers the Bismut-Freed connection of
the 1-parameter family of certain deformed sub-signature operators introduced by Ma-
Zhang in [MZ], its adiabatic limit essentially gives rise to the Bismut-Lott real analytic
torsion form. In fact, it is precisely the positive degree components of the real analytic tor-
sion form that is captured here. This should be compared with [DM] where the adiabatic
limit of the analytic torsion captures only the degree 0 part of the real analytic torsion
form.

More precisely, let p : M ! B be a smooth fiber bundle with compact fiber Z of di-
mension n. We assume that the base manifold is even dimensional. Let F be a flat complex
vector bundle on M. Fix a connection for the fiber bundle, i.e., a splitting of TM,

TM ¼ T HM lTZ;
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where TZ denotes the vertical tangent bundle of the fiber bundle. If g is a submersion
metric on TM and hF a Hermitian metric on F , we construct, following [MZ], (3.23), a
formally self-adjoint operator of Dirac type DF and a skew-adjoint first order di¤erential
operator D̂DF , see (3.19) for the precise definition (where we introduce further a complex
vector bundle m on the base B). These operators arise as the quantizations of the symmetri-
zation and skew-symmetrization of exterior di¤erentiation d M in the sense of [BL], viewed
as an infinite dimensional superconnection on B (cf. Lemma 3.4).

We then define an analytic invariant via zeta function regularization. That is, let

dðF ; rÞðsÞ ¼ � 1

2GðsÞ
Ðþy

0

ts Trs½D̂DF DF ðrÞe�tðDF ðrÞÞ2

� dt;

where r is any real number and

DF ðrÞ ¼ DF þ
ffiffiffiffiffiffiffi
�1

p
rD̂DF :

The supertrace here is with respect to the Z2-grading induced by the de Rham grading
along the fibers and the Hodge grading on the base (see (3.15) which defines the grading
t).

One shows that dðF ; rÞðsÞ, well-defined for <s su‰ciently large, has meromorphic
continuation to the whole complex plane with s ¼ 0 a regular point. Therefore we define
our invariant by

dðFÞðrÞ ¼ dðF ; rÞ0ð0Þ:

This invariant can be interpreted as the imaginary part of the Bismut-Freed connection on
certain Quillen determinant line bundle.

Our main result is

Theorem 1.1. Let deðFÞðrÞ denote the corresponding invariant associated to the adia-

batic metric ge. Under the assumption that the flat vector bundle F over M is fiberwise acy-

clic, the following identity holds:

lim
e!0

deðFÞðrÞ ¼
Ð
B

LðTB;‘TBÞTr;

where the torsion form Tr is defined by (3.41).

Unlike the Bismut-Lott torsion form, our torsion form Tr has only positive degree
components. However, up to a degree dependent rescaling, Tr is essentially the positive de-
gree components of the Bismut-Lott torsion form (cf. (3.51)).

The paper is organized as follows. We first look at the finite dimensional case in
Section 2. Thus in §2.1, we introduce flat cochain complexes, flat superconnections and
their rescalings. The family of deformed sub-signature operators is then introduced in §2.2.
After some preparatory results, we define an invariant which should be interpreted as the
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imaginary part of the Bismut-Freed connection form for the family of the deformed sub-
signature operators. Finally in §2.3, we study the adiabatic limit of our invariant. The fibra-
tion case is set up as an infinite dimensional analog and studied in Section 3. The flat super-
connection in this case is the Bismut-Lott superconnection and is recalled in §3.1. In §3.2,
we discuss the analog of the deformed sub-signature operators in the fibration case. Then
we look into the Bismut-Freed connection and define a corresponding invariant in §3.3. Fi-
nally, we study the adiabatic limit of our invariant in §3.4. Our main result is stated in The-
orem 3.8. In §3.5, we compare the Bismut-Lott real analytic torsion form with the torsion
form coming out of the adiabatic limit.

Acknowledgements. The authors acknowledge interesting discussions with Ulrich
Bunke, Xiaonan Ma, Thomas Schick and Sebastian Goette. They would also like to thank
the referee for the constructive suggestions which have helped us to improve the paper.

2. The finite dimensional case

In this section, we study the finite dimensional case where instead of a flat vector bun-
dle over a fibered manifold, we consider the situation of a flat cochain complex over an
even dimensional manifold. This fits well with the structures considered in [BL] and [MZ].
The fibered manifold case is the infinite dimensional analog which will be considered in the
next section.

2.1. Superconnections and flat cochain complex. Let ðE; vÞ be a Z-graded cochain
complex of finite rank complex vector bundles over a closed manifold B,

ðE; vÞ : 0 ! E0 !v
E1 !v � � � !v

E n ! 0:ð2:1Þ

Let ‘E ¼
Ln
i¼0

‘E i

be a Z-graded connection on E. We call ðE; v;‘EÞ a flat cochain complex

if the following two conditions hold:

ð‘EÞ2 ¼ 0; ½‘E ; v� ¼ 0:ð2:2Þ

Let hE ¼
Ln

i¼0

hE i

be a Z-graded Hermitian metric on E and denote by v� : E � ! E ��1

the adjoint of v with respect to hE . Let ð‘EÞ� denote the adjoint connection of ‘E with re-
spect to gE . Then (cf. [BZ], (4.1), (4.2), and [BL], §1(g))

ð‘EÞ� ¼ ‘E þ oðE; hEÞ;ð2:3Þ

where

oðE; hEÞ ¼ ðhEÞ�1ð‘EhEÞ:ð2:4Þ

Consider the superconnections on E in the sense of Quillen [Q] defined by

A 0 ¼ ‘E þ v; A 00 ¼ ð‘EÞ� þ v�:ð2:5Þ
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Let N A EndðEÞ denote the number operator of E which acts on E i by multiplication
by i. We extend N to an element of W0

�
B;EndðEÞ

�
.

Following [BL], (2.26), (2.30), for any u > 0, set

C 0
u ¼ uN=2A 0u�N=2 ¼ ‘E þ

ffiffiffi
u

p
v;

C 00
u ¼ u�N=2A 00uN=2 ¼ ð‘EÞ� þ

ffiffiffi
u

p
v�;ð2:6Þ

Cu ¼ 1

2
ðC 0

u þ C 00
u Þ; Du ¼ 1

2
ðC 00

u � C 0
uÞ:

Then we have

C2
u ¼ �D2

u ; ½Cu;Du� ¼ 0:ð2:7Þ

Let

‘E; e ¼ ‘E þ 1

2
oðE; hEÞð2:8Þ

be the Hermitian connection on ðE; hEÞ (cf. [BL], (1.33), and [BZ], (4.3)). Then

Cu ¼ ‘E; e þ
ffiffiffi
u

p

2
ðv þ v�Þð2:9Þ

is a superconnection on E, while

Du ¼ 1

2
oðE; hEÞ þ

ffiffiffi
u

p

2
ðv� � vÞð2:10Þ

is an odd element in Cy
�
B;L�ðBÞ n̂nEndðEÞ

�
.

2.2. Deformed signature operators and the Bismut-Freed connection. We assume in
the rest of this section that p ¼ dim B is even and B is oriented.

Let gTB be a Riemannian metric on TB. For X A TB, let cðXÞ, ĉcðX Þ be the Cli¤ord
actions on LðT �BÞ defined by cðXÞ ¼ X �5� iX , ĉcðXÞ ¼ X �5þ iX , where X � A T �B
corresponds to X via gTB (cf. [BL], (3.18), and [BZ], §4(d)). Then for any X ;Y A TB,

cðX ÞcðYÞ þ cðYÞcðX Þ ¼ �2hX ;Yi;

ĉcðX ÞĉcðYÞ þ ĉcðYÞĉcðX Þ ¼ 2hX ;Yi;

cðX ÞĉcðYÞ þ ĉcðYÞcðX Þ ¼ 0:

ð2:11Þ

Let e1; . . . ; ep be a (local) oriented orthonormal basis of TB. Set

t ¼ ð
ffiffiffiffiffiffiffi
�1

p
Þ

pð pþ1Þ
2 cðe1Þ � � � cðepÞ:ð2:12Þ
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Then t is a well-defined self-adjoint element such that

t2 ¼ IdjLðT �BÞ:ð2:13Þ

Let m be a Hermitian vector bundle on B carrying a Hermitian connection ‘m

with the curvature denoted by Rm ¼ ð‘mÞ2. Let ‘TB be the Levi-Civita connection on
ðTB; gTBÞ with its curvature RTB. Let ‘LðT �BÞ be the Hermitian connection on LðT �BÞ
canonically induced from ‘TB. Let ‘LðT �BÞnmnE; e be the tensor product connection on
LðT �BÞn mnE given by

‘LðT �BÞnmnE; e ¼ ‘LðT �BÞ n IdmnEð2:14Þ

þ IdLðT �BÞ n‘mn IdE þ IdLðT �BÞnmn‘E; e:

Let the Cli¤ord actions c, ĉc extend to actions on LðT �BÞn mnE by acting as iden-
tity on mnE. Let e be the induced Z2-grading operator on E, i.e., e ¼ ð�1ÞN on E. We
extend e to an action on LðT �BÞn mnE by acting as identity on LðT �BÞn m.

Let t n̂n e define the Z2-grading on
�
LðT �BÞn m

�
n̂nE. Then

D
mnE
sig ¼

Pp
i¼1

cðeiÞ‘L�ðT �BÞnmnE; e
ei

ð2:15Þ

defines the twisted signature operator with respect to this Z2-grading. Playing an important
role here is its deformation, given by

D
mnE
sig;u ¼ D

mnE
sig þ

ffiffiffi
u

p

2
ðv þ v�Þ;ð2:16Þ

with u > 0, which might be thought of as a quantization of Cu.

Let Yu be the skew adjoint element in Endodd
�
L�ðT �BÞn mnE

�
defined by (cf.

[MZ], (2.18))

Yu ¼ 1

2

Pp
i¼1

cðeiÞoðE; hEÞðeiÞ þ
ffiffiffi
u

p

2
ðv� � vÞ;ð2:17Þ

which might be thought of as a quantization of Du.

Now following [MZ], Definition 2.3, for any r A R, define

D
mnE
sig;u ðrÞ ¼ D

mnE
sig;u þ

ffiffiffiffiffiffiffi
�1

p
rYu:ð2:18Þ

From (2.15)–(2.18), one has (cf. [MZ], (2.22))

D
mnE
sig;u ðrÞ ¼

Pp
i¼1

cðeiÞ ‘L�ðT �BÞnmnE; e
ei

þ
ffiffiffiffiffiffiffi
�1

p
r

2
oðE; hEÞðeiÞ

 !
ð2:19Þ

þ
ffiffiffi
u

p

2

�
ð1 �

ffiffiffiffiffiffiffi
�1

p
rÞv þ ð1 þ

ffiffiffiffiffiffiffi
�1

p
rÞv��:
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Proposition 2.1. We have the following asymptotic expansion

Trs½DmnE
sig;u ðrÞYue

�tðDmnE

sig; u
ðrÞÞ2

� ¼ c0ðu; rÞ þ c1ðu; rÞt þ � � �ð2:20Þ

as t ! 0þ. The expansion is uniform for ðu; rÞ in a compact set.

Proof. We introduce two auxiliary Grassmann variables z1, z2 and write

Trs½DmnE
sig;u ðrÞYue

�tðDmnE

sig; u
ðrÞÞ2

�ð2:21Þ

¼ �t�2 Trs; z1; z2
½e�tð½DmnE

sig; u
ðrÞ�2�z1D

mnE

sig; u
ðrÞ�z2YuÞ�;

where we use the convention that Trs; z1; z2
½a þ bz1 þ cz2 þ dz1z2� ¼ Trs½d � when a, b, c, d do

not contain z1 and z2. Here the minus sign comes from the order of the appearance of z1, z2

and D
mnE
sig;u ðrÞ, Yu.

Applying the standard elliptic theory to the right-hand side of (2.21), we derive an
asymptotic expansion

Trs½DmnE
sig;u ðrÞYue

�tðDmnE

sig; u
ðrÞÞ2

� ¼ c�p

2
�2ðu; rÞt�

p

2
�2 þ c�p

2
�1ðu; rÞt�

p

2
�1

þ � � � þ c0ðu; rÞ þ c1ðu; rÞt þ � � � :

On the other hand, by the Lichnerowicz formula (cf. (2.30)) and the same argument as in
[BF], we have

lim
t!0

t Trs½DmnE
sig;u ðrÞYue

�tðDmnE

sig; u
ðrÞÞ2

� ¼ 0:

It follows then that ciðu; rÞ ¼ 0 for �p=2 � 2e ie�1. Thus, the asymptotic expansion
starts with the constant term. r

Since

Trs½DmnE
sig;u ðrÞYue

�tðDmnE

sig; u
ðrÞÞ2

� ¼ �Trs½YuD
mnE
sig;u ðrÞe

�tðDmnE

sig; u
ðrÞÞ2

�

is easily seen to be exponentially decaying as t ! þy, the quantity on the right-hand side
of the following definition is well-defined.

Definition 2.2. We define

duðE; vÞðrÞ ¼
Ðy
0

Trs½DmnE
sig;u ðrÞYue

�tðDmnE

sig; u
ðrÞÞ2

� dt:ð2:22Þ

Remark 2.3. If H �ðE; vÞ ¼ f0g, i.e., ðE; vÞ is acyclic, by [MZ], (2.27), which we re-
call as follows,

�
ð1 �

ffiffiffiffiffiffiffi
�1

p
rÞv þ ð1 þ

ffiffiffiffiffiffiffi
�1

p
rÞv��2 ¼ ð1 þ r2Þðv þ v�Þ2;ð2:23Þ
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(2.19) and proceed as in [BC1], one sees that when u > 0 is large enough, D
mnE
sig;u ðrÞ is inver-

tible for fixed r A R. Since by (2.18) one has

qD
mnE
sig;u ðrÞ
qr

¼
ffiffiffiffiffiffiffi
�1

p
Yu;ffiffiffiffiffiffiffi

�1
p

2
duðE; vÞðrÞ is (the imaginary part of) the Bismut-Freed connection form ([BF], see

also [DF], (3.8)) of the Quillen determinant line bundle of the R-family of operators
fD

mnE
sig;u ðrÞgr AR.

2.3. Adiabatic limit as u?BT. We first rewrite duðE; vÞðrÞ as

duðE; vÞðrÞ ¼
Ðy
0

Trs½D�ðrÞY �e�tD2
� ðrÞ� dt;ð2:24Þ

where � ¼ u�
1
2 and

Y � ¼ �

2
cðoÞ þ 1

2
ðv� � vÞ;

D�ðrÞ ¼ �DmnE
sig;u þ

ffiffiffiffiffiffiffi
�1

p
rY �:

ð2:25Þ

We fix a square root of
ffiffiffiffiffiffiffi
�1

p
and let j : LðT �BÞ ! LðT �BÞ be the homomorphism

defined by j : o A LiðT �BÞ ! ð2p
ffiffiffiffiffiffiffi
�1

p
Þ�i=2o. The formulas in what follows will not de-

pend on the choice of the square root of
ffiffiffiffiffiffiffi
�1

p
.

Let LðTB;‘TBÞ be the Hirzebruch characteristic form defined by

LðTB;‘TBÞ ¼ j det1=2 RTB

tanhðRTB=2Þ

� �
;

and chðm;‘mÞ be the Chern character form defined by

chðm;‘mÞ ¼ jTr½expð�RmÞ�:

Proposition 2.4. We have

lim
�!0

Trs½D�ðrÞY �e�tD2
� ðrÞ�ð2:26Þ

¼ �
Ð
B

LðTB;‘TBÞ chðm;‘mÞ

� jTrs t�
1
2Dt

1

2
ðv þ v�Þ þ

ffiffiffiffiffiffiffi
�1

p
r

2
ðv� � vÞ

 !
e�ðCtþ

ffiffiffiffiffi
�1

p
rDtÞ2

" #
:

Proof. As in [BF] and [BC1], we introduce an auxiliary Grassmann variable z and
rewrite

Trs½D�ðrÞY �e�tD2
� ðrÞ� ¼ Trs; z½Y �t�

1
2e�tD2

� ðrÞþz
ffiffi
t

p
D�ðrÞ�;ð2:27Þ
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where for elements of the form A þ zB with A, B containing no z, we have as in [BF] and
[BC1] that Trs; z½A þ zB� ¼ Trs½B�:

By (2.16) and (2.25), one has

D�ðrÞ ¼ �D
mnE
sig þ 1

2
ðv þ v�Þ þ

ffiffiffiffiffiffiffi
�1

p
r

�

2
cðoÞ þ 1

2
ðv� � vÞ

� �
ð2:28Þ

¼ � D
mnE
sig þ

ffiffiffiffiffiffiffi
�1

p
r

1

2
cðoÞ

� �
þ 1

2
ðv þ v�Þ þ

ffiffiffiffiffiffiffi
�1

p
r

1

2
ðv� � vÞ:

Denote by

V ¼ 1

2
ðv þ v�Þ þ

ffiffiffiffiffiffiffi
�1

p
r

1

2
ðv� � vÞ:ð2:29Þ

By Lichnerowicz formula, we have (for simplicity we denote ‘ ¼ ‘L�ðT �BÞnmnE; e)

tD2
� ðrÞ � z

ffiffi
t

p
D�ðrÞð2:30Þ

¼ t�2ðDmnE
sig Þ2 þ t�2 D

mnE
sig ;

ffiffiffiffiffiffiffi
�1

p
r

1

2
cðoÞ

� �
þ t�½DmnE

sig ;V �

þ t
ffiffiffiffiffiffiffi
�1

p
r
�

2
cðoÞ þ V

� �2

� z
ffiffi
t

p
�DmnE

sig þ
ffiffiffiffiffiffiffi
�1

p
r
�

2
cðoÞ þ V

� �

¼ �t �‘ei
þ 1

2
ffiffi
t

p zcðeiÞ
� �2

þ t�2

4
kTB þ t�2

2
cðeiÞcðejÞnRmnE; eðei; ejÞ

þ t�2

8
RTB

ijkl cðeiÞcðejÞĉcðekÞĉcðelÞ þ t�cðeiÞ‘ei
V þ

ffiffiffiffiffiffiffi
�1

p
r

2
t�2cðeiÞcðejÞ‘ei

oj

� t�2
ffiffiffiffiffiffiffi
�1

p
r
Pp
i¼1

oðeiÞ‘ei
þ t

ffiffiffiffiffiffiffi
�1

p
r

2
�cðoÞ þ V

 !2

� z
ffiffi
t

p
V � z

ffiffiffiffiffiffiffi
�1

p
r

2

ffiffi
t

p
�cðoÞ;

where RTB is the Riemannian curvature and kTB is the scalar curvature of gTB, while
RmnE; e is the curvature of the connection on mnE obtained through ‘m and ‘E; e.

Now we find ourself exactly in the situation of [BC1]. Near any point x A M, take a
normal coordinate system fxig and the associated orthonormal basis feig. We first conju-

gate tD2
� ðrÞ � z

ffiffi
t

p
D�ðrÞ by the exponential e

z T
p

i¼1
xicðeiÞ

2
ffi
t

p
� and then apply the Getzler transforma-

tion G ffiffi
t

p
�. One finds that after these procedures, the operator tD2

� ðrÞ � z
ffiffi
t

p
D�ðrÞ tends to, as

� ! 0,

� qi þ
1

4
RTB

ij xj

� �2

þ 1

4
RTB

kl ĉcðekÞĉcðelÞ þ RmnE; eð2:31Þ

þ t
1
2‘V þ

ffiffiffiffiffiffiffi
�1

p
r

2
‘oþ

ffiffiffiffiffiffiffi
�1

p
r

2
oþ t

1
2V

 !2

� z
ffiffi
t

p
V
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¼ � qi þ
1

4
RTB

ij xj

� �2

þ 1

4
RTB

kl ĉcðekÞĉcðelÞ þ Rm

þ ‘E; e þ
ffiffiffiffiffiffiffi
�1

p
r

2
oþ t

1
2V

 !2

� z
ffiffi
t

p
V

¼ � qi þ
1

4
RTB

ij xj

� �2

þ 1

4
RTB

kl ĉcðekÞĉcðelÞ þ ðCt þ
ffiffiffiffiffiffiffi
�1

p
rDtÞ2

� z
ffiffi
t

p 1

2
ðv þ v�Þ þ

ffiffiffiffiffiffiffi
�1

p
r

2
ðv� � vÞ

 !
:

On the other hand, by (2.25) it is clear that under the same procedures, Y � tends to, as
� ! 0,

t�
1
2

1

2
oþ

ffiffi
t

p

2
ðv� � vÞ

� �
¼ t�

1
2Dt:ð2:32Þ

From (2.27), (2.31) and (2.32), by proceeding with the by now standard local index
techniques, and keeping in mind that the supertrace in the left-hand sides of (2.26) and
(2.27) are with respect to the Z2-grading defined by t n̂n e, one derives (2.26). r

We now examine the terms appearing in the right-hand side of (2.26).

By (cf. [MZ], (2.34))

ðCt þ
ffiffiffiffiffiffiffi
�1

p
rDtÞ2 ¼ ð1 þ r2ÞC2

t ¼ �ð1 þ r2ÞD2
t ;ð2:33Þ

and

v þ v� ¼ �2t�
1
2½N;Dt�; v� � v ¼ �2t�

1
2½N;Ct�;ð2:34Þ

we have

�Trs t�
1
2Dt

1

2
ðv þ v�Þ þ

ffiffiffiffiffiffiffi
�1

p
r

2
ðv� � vÞ

 !
e�ðCtþ

ffiffiffiffiffi
�1

p
rDtÞ2

" #
ð2:35Þ

¼ � 1

2
ffiffi
t

p Trs½Dtðv þ v�Þeð1þr2ÞD2
t � �

ffiffiffiffiffiffiffi
�1

p
r

2
ffiffi
t

p Trs½Dtðv� � vÞeð1þr2ÞD2
t �

¼ 1

t
Trs½Dt½N;Dt�eð1þr2ÞD2

t � þ
ffiffiffiffiffiffiffi
�1

p
r

t
Trs½Dt½N;Ct�eð1þr2ÞD2

t �

¼ � 1

t
Trs½ND2

t eð1þr2ÞD2
t � DtNDte

ð1þr2ÞD2
t � þ

ffiffiffiffiffiffiffi
�1

p
r

t
d Trs½NDte

ð1þr2ÞD2
t �;

where in the last equality we have used (2.7) (compare also with [MZ], (2.75)).

We are now ready to prove the following main result of this section.
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Theorem 2.5. Under the assumption that the flat cochain complex ðE; vÞ is acyclic,
H �ðE; vÞ ¼ 0, the following identity holds:

1

2
lim

u!þy
duðE; vÞðrÞ ¼

Ð
B

LðTB;‘TBÞ chðm;‘mÞTr;ð2:36Þ

where

Tr ¼ �
Ðy
0

jTrs½ND2
t eð1þr2ÞD2

t � dt

t
:ð2:37Þ

Proof. First of all, the assumption that H �ðE; vÞ ¼ 0 implies that the eigenvalues of
D�ðrÞ are uniformly bounded away from zero. Hence the integral in (2.24) is uniformly con-
vergent at t ¼ y.

We now examine the same issue at t ¼ 0. From Proposition 2.1, one has

Trs½D�ðrÞY �e�tðD�ðrÞÞ2

� ¼ c0ð�; rÞ þ c1ð�; rÞt þ � � � :ð2:38Þ

We claim that this asymptotic expansion is in fact uniform in � as � ! 0 and the coe‰cients
converge to that of asymptotic expansion of the right-hand side of (2.26). This can be seen
by an argument similar to that of [BC1], which is carried out in detail later for the infinite
dimensional case; see the proof of Proposition 3.6.

Our theorem now follows from Proposition 2.4, the equation (2.35) and the above
discussion. r

Remark 2.6. By Remark 2.3, one sees that under the assumption of Theorem 2.5,

for each r A R, when u > 0 is large enough,

ffiffiffiffiffiffiffi
�1

p

2
duðE; vÞðrÞ is the Bismut-Freed connection

form of the R-family of the operators fD
mnE
sig;u ðrÞgr AR at r. On the other hand, by compar-

ing the right-hand side of (2.37) with [BL] and [MZ], one sees that Tr here gives, up to
rescaling, the nonzero degree terms of the Bismut-Lott torsion form ([BL]). Thus, we can
say that one obtains the Bismut-Lott torsion form through the adiabatic limit of the
Bismut-Freed connection. This is the main philosophy we would like to indicate in this
paper.

3. Sub-signature operators, adiabatic limit and the Bismut-Lott torsion form

In this section, we deal with the fibration case. We will show that, for an acyclic flat
complex vector bundle over a fibered manifold, if we consider the Bismut-Freed connection
form [BF] on the Quillen determinant line bundle associated to the 1-parameter family con-
structed in [MZ], Section 3, then the Bismut-Lott analytic torsion form [BL] will show up
naturally through the adiabatic limit of this connection form. This tautologically answers a
question asked implicitly in the original article of Bismut-Lott.

3.1. The Bismut-Lott superconnection. We first set up the fibration case as an infi-
nite dimensional analog of the case considered in the previous section. Let p : M ! B be
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a smooth fiber bundle with compact fiber Z of dimension n. We denote by m ¼ dim M,
p ¼ dim B. Let TZ be the vertical tangent bundle of the fiber bundle, and let T �Z be its
dual bundle.

Let TM ¼ T HM lTZ be a splitting of TM. Let PTZ, PT H M denote the projec-
tion from TM to TZ, T HM. If U A TB, let U H be the lift of U in T HM, so that
p�U

H ¼ U .

Let F be a flat complex vector bundle on M and let ‘F denote its flat connection.

Let E ¼
Ln
i¼0

E i be the smooth infinite-dimensional Z-graded vector bundle over B

whose fiber over b A B is Cy
�
Zb;
�
LðT �ZÞnF

�
jZb

�
. That is

CyðB;E iÞ ¼ Cy
�
M;LiðT �ZÞnF

�
:ð3:1Þ

Definition 3.1. For s A CyðB;EÞ and U a vector field on B, let ‘E be a Z-grading
preserving connection on E defined by

‘E
U s ¼ LU H s;ð3:2Þ

where the Lie derivative LU H acts on CyðB;EÞ ¼ Cy
�
M;LiðT �ZÞnF

�
.

If U1, U2 are vector fields on B, put

TðU1;U2Þ ¼ �PTZ½U H
1 ;U H

2 � A CyðM;TZÞ:ð3:3Þ

We denote by iT A W2
�
B;HomðE�;E��1Þ

�
the 2-form on B which, to vector fields U1, U2

on B, assigns the operation of interior multiplication by TðU1;U2Þ on E.

Let d Z be the exterior di¤erentiation along fibers. We consider d Z to be an ele-
ment of Cy

�
B;HomðE�;E�þ1Þ

�
. The exterior di¤erentiation operator d M , acting on

WðM;FÞ ¼ Cy
�
M;LðT �MÞnF

�
, has degree 1 and satisfies ðd MÞ2 ¼ 0. By [BL], Propo-

sition 3.4, we have

d M ¼ d Z þ ‘E þ iT :ð3:4Þ

So d M is a flat superconnection of total degree 1 on E. We have

ðd ZÞ2 ¼ 0; ½‘E ; d Z� ¼ 0:ð3:5Þ

Let gTZ be a metric on TZ. Let hF be a Hermitian metric on F . Let ‘F� be the ad-
joint of ‘F with respect to hF . Let oðF ; hF Þ and ‘F ; e be the 1-form on M and the connec-
tion on F defined as in (2.3), (2.8).

Let oðTZÞ be the orientation bundle of TZ, a flat real line bundle on M. Let dvZ be
the Riemannian volume form on fibers Z associated to the metric gTZ (Here dvZ is viewed
as a section of Ldim ZðT �ZÞn oðTZÞ.) Let h ; iLðT �ZÞnF be the metric on LðT �ZÞnF in-
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duced by gTZ, hF . Then E acquires a Hermitian metric hE such that for a; a 0 A CyðB;EÞ
and b A B,

ha; a 0ihE ðbÞ ¼
Ð

Zb

ha; a 0iLðT �ZÞnF dvZb
:ð3:6Þ

Let ‘E�, d Z�, ðd MÞ�, ðiTÞ� be the formal adjoints of ‘E , d Z, d M , iT with respect to
the scalar product h ; ihE . Set

DZ ¼ d Z þ d Z�; ‘E; e ¼ 1

2
ð‘E þ ‘E�Þ;

ð3:7Þ
oðE; hEÞ ¼ ‘E� � ‘E :

Let NZ be the number operator of E, i.e. NZ acts by multiplication by k on
Cy
�
M;LkðT �ZÞnF

�
. For u > 0, set

C 0
u ¼ uNZ=2d Mu�NZ=2; C 00

u ¼ u�NZ=2ðd MÞ�uNZ=2;

Cu ¼ 1

2
ðC 0

u þ C 00
u Þ; Du ¼ 1

2
ðC 00

u � C 0
uÞ:

ð3:8Þ

Then C 00
u is the adjoint of C 0

u with respect to hE . Moreover, Cu is a superconnection on E

and Du is an odd element of Cy
�
B;EndðEÞ

�
, and

C2
u ¼ �D2

u ; ½Cu;Du� ¼ 0:ð3:9Þ

Let gTB be a Riemannian metric on TB. Then gTM ¼ gTZ l p�gTB is a metric on
TM. Let ‘TM , ‘TB denote the corresponding Levi-Civita connections on TM, TB. Put
‘TZ ¼ PTZ‘TM , a connection on TZ. As shown in [B], Theorem 1.9, ‘TZ is indepen-
dent of the choice of gTB. Then 0‘ ¼ ‘TZ l p�‘TB is also a connection on TM. Let
S ¼ ‘TM � 0‘. By [B], Theorem 1.9, hSð�Þ�; �igTM is a tensor independent of gTB. More-
over, for U1;U2 A TB, X ;Y A TZ,

hSðU H
1 ÞX ;U H

2 igTM ¼ �hSðU H
1 ÞU H

2 ;XigTM

¼ hSðXÞU H
1 ;U H

2 igTM ¼ 1

2
hTðU H

1 ;U H
2 Þ;XigTM ;ð3:10Þ

hSðXÞY ;U H
1 igTM ¼ �hSðXÞU H

1 ;YigTM ¼ 1

2
ðLU H

1
gTZÞðX ;YÞ;

and all other terms are zero.

Let f fagp
a¼1 be an orthonormal basis of TB, let f f agp

a¼1 be the dual basis of T �B. In
the following, it’s convenient to identify fa with f H

a . Let feign
i¼1 be an orthonormal basis of

ðTZ; gTZÞ. We define a horizontal 1-form k on M by

kð faÞ ¼ �
P

i

hSðeiÞei; fai:ð3:11Þ
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Set

cðTÞ ¼ 1

2

P
a;b

f a5 f bc
�
Tð fa; fbÞ

�
;

ĉcðTÞ ¼ 1

2

P
a;b

f a5 f bĉc
�
Tð fa; fbÞ

�
:

ð3:12Þ

Let ‘LðT �ZÞ be the connection on LðT �ZÞ induced by ‘TZ. Let ‘TZnF ; e be the con-
nection on LðT �ZÞnF induced by ‘LðT �ZÞ, ‘F ; e. Then by [BL], (3.36), (3.37), (3.42),

DZ ¼
P

j

cðejÞ‘TZnF ; e
ej

� 1

2

P
j

ĉcðejÞoðF ; hF ÞðejÞ;

d Z� � d Z ¼ �
P

j

ĉcðejÞ‘TZnF ; e
ej

þ 1

2

P
j

cðejÞoðF ; hF ÞðejÞ;

‘E; e ¼
P
a

f a ‘TZnF ; e
fa

þ 1

2
kð faÞ

� �
;

oðE; hEÞ ¼
P
a

f a

�P
i; j

hSðeiÞej; faicðeiÞĉcðejÞ þ oðF ; hF Þð faÞ
�
:

ð3:13Þ

By [BL], Proposition 3.9, one has

Cu ¼
ffiffiffi
u

p

2
DZ þ ‘E; e � 1

2
ffiffiffi
u

p cðTÞ;

Du ¼
ffiffiffi
u

p

2
ðd Z� � d ZÞ þ 1

2
oðE; hEÞ � 1

2
ffiffiffi
u

p ĉcðTÞ:
ð3:14Þ

3.2. Deformed sub-signature operators on a fibered manifold. We assume now that
TB is oriented.

Let ðm; hmÞ be a Hermitian complex vector bundle over B carrying a Hermitian con-
nection ‘m.

Let NB, NM be the number operators on LðT �BÞ, LðT �MÞ, i.e. they act as multipli-
cation by k on LkðT �BÞ, LkðT �MÞ respectively. Then NM ¼ NB þ NZ.

Let ‘LðT �MÞ be the connection on LðT �MÞ canonically induced from ‘TM .
Let ‘LðT �MÞnp�mnF (resp. ‘LðT �MÞnp�mnF ; e) be the tensor product connection on
LðT �MÞn p�mnF induced by ‘LðT �MÞ, p�‘m and ‘F (resp. ‘F ; e).

Let feagm
a¼1 be an orthonormal basis of TM, and its dual basis feagm

a¼1. (Note that
feign

i¼1 denotes an orthonormal basis of TZ—the di¤erence lies in the letter used for the
subscript index; namely ‘‘i’’ vs. ‘‘a’’.) Let f fagp

a¼1 be an oriented orthonormal basis of TB.
Set

tðTBÞ ¼ ð
ffiffiffiffiffiffiffi
�1

p
Þ

pð pþ1Þ
2 cð f H

1 Þ � � � cð f H
p Þ;

t ¼ ð�1ÞNZtðTBÞ:
ð3:15Þ
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Then the operators tðTBÞ, t act naturally on LðT �MÞ, and

tðTBÞ2 ¼ t2 ¼ 1:ð3:16Þ

Let d ‘m

: WaðM; p�mnFÞ ! Waþ1ðM; p�mnFÞ be the unique extension of ‘m, ‘F

which satisfies the Leibniz rule. Let d ‘m� be the adjoint of d ‘m

with respect to the scalar
product h ; iWðM;p�mnFÞ on WðM; p�mnFÞ induced by gTM , hm, hF as in (3.6). As in [BZ],
(4.26), (4.27), we have

d‘m ¼
P
a

ea5‘LðT �MÞnp�mnF
ea

;

d ‘m� ¼ �
P

a

iea
5
�
‘LðT �MÞnp�mnF

ea
þ oðF ; hF ÞðeaÞ

�
:

ð3:17Þ

Following [Z1], let ~‘‘LðT �MÞ be the Hermitian connection on LðT �MÞ defined by (cf.
[Z1], (1.21))

~‘‘
LðT �MÞ
X ¼ ‘

LðT �MÞ
X � 1

2

Pp
a¼1

ĉc
�
PTZSðXÞ fa

�
ĉcð faÞ; X A TM:ð3:18Þ

Let ~‘‘e be the tensor product connection on LðT �MÞn p�mnF induced by ~‘‘LðT �MÞ,
p�‘m and ‘F ; e. Following [MZ], (3.23), for any r A R, set

Dp�mnF ¼
Pm
a¼1

cðeaÞ~‘‘e
ea
� 1

2

Pn
i¼1

ĉcðeiÞoðF ; hF ÞðeiÞ;

D̂Dp�mnF ¼ �
Pn
i¼1

ĉcðeiÞ~‘‘e
ei
þ 1

2

Pm
a¼1

cðeaÞoðF ; hF ÞðeaÞ

� 1

4

Pp
a;b¼1

ĉc
�
Tð fa; fbÞ

�
ĉcð faÞĉcð fbÞ;

Dp�mnF ðrÞ ¼ Dp�mnF þ
ffiffiffiffiffiffiffi
�1

p
rD̂Dp�mnF :

ð3:19Þ

From (3.19), the operators Dp�mnF , Dp�mnF ðrÞ are formally self-adjoint first order
elliptic operators, and D̂Dp�mnF is a skew-adjoint first order di¤erential operator. Moreover,
the operator Dp�mnF is locally of Dirac type.

By [MZ], (3.20) and Proposition 3.4, one has

Dp�mnF ¼ 1

2
½ðd‘m þ d‘m�Þ þ ð�1Þpþ1tðd ‘m þ d ‘m�Þt�;

D̂Dp�mnF ¼ 1

2
½ðd‘m� � d ‘mÞ þ ð�1Þpþ1tðd ‘m� � d ‘mÞt�;

ð3:20Þ

which partly explains the motivation of introducing these operators (compare with (2.25));
see also Lemma 3.4.

By (3.15), (3.16) and (3.20), one verifies (cf. [MZ], (3.28))

tDp�mnF ¼ ð�1Þpþ1
Dp�mnFt; tD̂Dp�mnF ¼ ð�1Þpþ1

D̂Dp�mnFt:ð3:21Þ
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Remark 3.2. It is important to note that by (3.21), when p ¼ dim B is even, both
Dp�mnF and D̂Dp�mnF anti-commute with t.

Remark 3.3. When m ¼ F ¼ C and p ¼ dim B is even, Dp�mnF has been constructed
in [Z1] and [Z2], where it is called the sub-signature operator.

3.3. Bismut-Freed connection of the deformed family. We assume that p ¼ dim B is
even. Moreover, we make the following technical assumption.

Technical assumption. The flat vector bundle F over M is fiberwise acyclic, that is,
H �ðZb;F jZb

Þ ¼ f0g on each fiber Zb, b A B.

For any e > 0, we change gTB to
1

e
gTB and do everything again for

gTM
e ¼ gTZ l

1

e
p�gTB:

We will use a subscript e to denote the resulting objects.

For any r A R, one verifies directly that the coe‰cient of
1ffiffi
e

p in
1ffiffi
e

p Dp�mnF
e ðrÞ is given

by d Z þ d Z� �
ffiffiffiffiffiffiffi
�1

p
rðd Z � d Z�Þ: Since�

d Z þ d Z� �
ffiffiffiffiffiffiffi
�1

p
rðd Z � d Z�Þ

�2 ¼ ð1 þ r2Þðd Z þ d Z�Þ2;ð3:22Þ

by proceeding as in [BC1], one sees that when e > 0 is small enough, Dp�mnF
e ðrÞ is inverti-

ble. In fact, the eigenvalues of Dp�mnF
e ðrÞ are uniformly bounded away from zero.

Consider now fDp�mnF
e ðrÞgr AR as an R-family of operators which anti-commute with

the Z2-grading defined by t.

Then one can construct the Quillen determinant line bundle over R and the associated
Bismut-Freed connection on it (cf. [BF]). Moreover, by the above discussion and by [BF],
3.8, we know that when e > 0 is small enough, the imaginary part of the Bismut-Freed con-
nection form is given by

1

2
ffiffiffiffiffiffiffi
�1

p F:P:
Ðþy

0

Trs Dp�mnF
e ðrÞ qDp�mnF

e ðrÞ
qr

e�tðDp�mnF
e ðrÞÞ2

� �
dt

¼ 1

2
F:P:

Ðþy

0

Trs½Dp�mnF
e ðrÞD̂Dp�mnF

e e�tðDp�mnF
e ðrÞÞ2

� dt

¼ � 1

2
F:P:

Ðþy

0

Trs½D̂Dp�mnF
e Dp�mnF

e ðrÞe�tðDp�mnF
e ðrÞÞ2

� dt;

where the supertrace is with respect to t and ‘F.P.’ means taking the finite part of the (di-
vergent) integral. As usual we use the zeta function regularization. Thus, we define

deðF ; rÞðsÞ ¼ � 1

2GðsÞ
Ðþy

0

ts Trs½D̂Dp�mnF
e Dp�mnF

e ðrÞe�tðDp�mnF
e ðrÞÞ2

� dt:ð3:23Þ
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Remark. Note that we have built the factor 1=2 into the definition (unlike the finite
dimensional case).

In the next subsection we will study the asymptotic expansions of the integrand in
(3.23) which implies that the integral, convergent for <s su‰ciently large, has meromorphic
continuation to the whole complex plane with s ¼ 0 a regular point. Therefore we define
our invariant by

deðFÞðrÞ ¼ deðF ; rÞ0ð0Þ:ð3:24Þ

Also in the next section we will compute the adiabatic limit of deðFÞðrÞ as e ! 0.

We remark that the definition of deðFÞðrÞ itself need not make use of the technical
assumption H �ðZb;F jZb

Þ ¼ f0g.

3.4. The adiabatic limit and the torsion form. We begin with a lemma.

Lemma 3.4. D̂Dp�mnF is the quantization of D4; namely, it is obtained by replacing the

horizontal di¤erential forms in D4 by the corresponding Cli¤ord multiplications. Similarly,
Dp�mnF is the quantization of C4.

Proof. By (3.19),

D̂Dp�mnF ¼ �
Pn
i¼1

ĉcðeiÞ~‘‘e
ei
þ 1

2

Pm
a¼1

cðeaÞoðF ; hF ÞðeaÞ

� 1

4

Pp
a;b¼1

ĉc
�
Tð fa; fbÞ

�
ĉcð faÞĉcð fbÞ;

where the connection ~‘‘LðT �MÞ is defined by (3.18). Thus, we now look at the connection in
a bit more detail. Since ‘TM ¼ 0‘þ S and 0‘ ¼ ‘TZ l p�‘TB, we find (for simplicity, we
denote Sija ¼ hSðeiÞej; fai and so on)

‘LðT �MÞ
ei

¼ ‘LðT �ZÞ
ei

� 1

4

�
Sija

�
ĉcðejÞĉcð faÞ � cðejÞcð faÞ þ cðejÞĉcð faÞ � ĉcðejÞcð faÞ

�
þ Siaj

�
ĉcð faÞĉcðejÞ � cð faÞcðejÞ þ cð faÞĉcðejÞ � ĉcð faÞcðejÞ

�
þ Siab

�
ĉcð faÞĉcð fbÞ � cð faÞcð fbÞ þ cð faÞĉcð fbÞ � ĉcð faÞcð fbÞ

�	
¼ ‘LðT �ZÞ

ei
� 1

2
Siaj½ĉcð faÞĉcðejÞ � cð faÞcðejÞ�

� 1

4
Siab½ĉcð faÞĉcð fbÞ � cð faÞcð fbÞ þ cð faÞĉcð fbÞ � ĉcð faÞcð fbÞ�:

Hence

~‘‘LðT �MÞ
ei

¼ ‘LðT �ZÞ
ei

� 1

2
Sijacð faÞcðejÞ

� 1

4
Siab½ĉcð faÞĉcð fbÞ � cð faÞcð fbÞ þ cð faÞĉcð fbÞ � ĉcð faÞcð fbÞ�:

103Dai and Zhang, Bismut-Freed connection



Therefore,

ĉcðeiÞ~‘‘LðT �MÞ
ei

¼ ĉcðeiÞ‘LðT �ZÞ
ei

� 1

4
Siab ĉcðeiÞ½ĉcð faÞĉcð fbÞ � cð faÞcð fbÞ þ cð faÞĉcð fbÞ � ĉcð faÞcð fbÞ�:

And so

ĉcðeiÞ~‘‘e
ei
¼ ĉcðeiÞ‘TZnF ; e

ei
� 1

8
ĉc
�
Tð fa; fbÞ

�
ĉcð faÞĉcð fbÞ þ

1

8
ĉc
�
Tð fa; fbÞ

�
cð faÞcð fbÞ

� 1

8
ĉc
�
Tð fa; fbÞ

�
½cð faÞĉcð fbÞ � ĉcð faÞcð fbÞ�:

The last term here, � 1

8
ĉc
�
Tð fa; fbÞ

�
½cð faÞĉcð fbÞ � ĉcð faÞcð fbÞ�, vanishes by the antisymmetry.

Using the formula above together with (3.13), (3.14), (3.19), we prove our lemma. (The
other case is dealt with similarly.) r

Proposition 3.5. We have

lim
�!0

Trs½D̂Dp�mnF
e Dp�mnF

e ðrÞe�tðDp�mnF
e ðrÞÞ2

�ð3:25Þ

¼ �
Ð
B

LðTB;‘TBÞ chðm;‘mÞ

� jTrs t�
1
2D4t

q

q
ffiffi
t

p ðC4t þ
ffiffiffiffiffiffiffi
�1

p
rD4tÞe�ð1þr2ÞC 2

4t

� �
:

Proof. Again, we introduce an auxiliary Grassmann variable z and rewrite

Trs½D̂Dp�mnF
e Dp�mnF

e ðrÞe�tðDp�mnF
e ðrÞÞ2

�ð3:26Þ

¼ �Trs; z½t�
1
2D̂Dp�mnF

e e�tðDp�mnF
e ðrÞÞ2þz

ffiffi
t

p
D

p�mnF
e ðrÞ�:

The following Lichnerowicz formula was proved in [Z1], Theorem 1.1:

ðDp�mnF Þ2 ¼ �~DDe þ K

4
þ 1

2

Pm
a;b¼1

cðeaÞcðebÞðR̂Re þ p�RmÞðea; ebÞð3:27Þ

þ 1

4

Pn
i¼1

�
oðF ; hF ÞðeiÞ

�2 þ 1

8

Pn
i; j¼1

ĉcðeiÞĉcðejÞ
�
oðF ; hF Þ

�2ðei; ejÞ

� 1

2

Pm
a¼1

cðeaÞ
�Pn

i¼1

ĉcðeiÞ‘TM nF ; e
ea

oðF ; hF ÞðeiÞ

þ
Pp
a¼1

ĉcð faÞoðF ; hF Þ
�
PTZSðeaÞ fa

��
:
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Similarly, the following formulas are shown in [MZ], Proposition 3.6.

ðD̂Dp�mnF Þ2 ¼
Pn
i¼1

�
ð~‘‘e

ei
Þ2 � ~‘‘e

‘TM
ei

ei

�
þ 1

2

Pn
i; j¼1

ĉcðeiÞĉcðejÞð~‘‘eÞ2ðei; ejÞð3:28Þ

þ 1

4

Pn
i¼1

ĉcðeiÞ
�
~‘‘e

ei
;
Pp

a;b¼1

ĉc
�
Tð fa; fbÞ

�
ĉcð faÞĉcð fbÞ

�

þ 1

2

Pp
a;b¼1

ĉcð faÞĉcð fbÞ~‘‘e
Tð fa; fbÞ

� 1

2

Pn
i¼1

Pm
a¼1

ĉcðeiÞcðeaÞ
�
‘TMnF ; e

ei
oðF ; hF Þ

�
ðeaÞ

� 1

4

Pm
a¼1

�
oðF ; hF ÞðeaÞ

�2 þ 1

8

Pm
a;b¼1

cðeaÞcðebÞ
�
oðF ; hF Þ

�2ðea; ebÞ

þ 1

16

� Pp
a;b¼1

ĉc
�
Tð fa; fbÞ

�
ĉcð faÞĉcð fbÞ

�2

;

½Dp�mnF ; D̂Dp�mnF �ð3:29Þ

¼ �
Pm
a¼1

Pn
i¼1

cðeaÞĉcðeiÞ R̂Re þ p�Rm þ 1

4
oðF ; hF Þ2

� �
ðea; eiÞ

�
Pp
a¼1

oðF ; hF Þð faÞ~‘‘e
fa
þ 1

4

Pp
a;b¼1

oðF ; hF Þ
�
Tð fa; fbÞ

�
ĉcð faÞĉcð fbÞ

þ 1

4

Pm
a¼1

cðeaÞ
�
~‘‘e

ea
;
Pp

a;b¼1

ĉc
�
Tð fa; fbÞ

�
ĉcð faÞĉcð fbÞ

�
:

Therefore one can apply the standard Getzler rescaling to ðD̂Dp�mnF
s; e Þ2 and

½Dp�mnF
s; e ; D̂Dp�mnF

s; e � with no problem and all terms converge as � ! 0.

On the other hand, in [Z1], Proposition 2.2, Zhang formulated a Lichnerowicz type
formula for tðDp�mnF

s; e Þ2 � z
ffiffi
t

p
Dp�mnF

s; e . The only singular term (for Getzler’s rescaling) as
e ! 0 appears in

�te
P
a

�
~‘‘fa þ

ffiffi
e

p

2

P
i;b

hSð faÞei; fbicðeiÞcð fbÞ þ
zcð faÞ
2
ffiffiffiffi
te

p
�2

:ð3:30Þ

This singular term can be easily eliminated by the exponential transform, namely conjugat-
ing by the exponential

e

z T
p

a¼1
yacð faÞ

2
ffiffi
t�

p
:ð3:31Þ

We then do the Getzler rescaling G ffiffiffi
te

p :

ya !
ffiffiffiffi
te

p
ya; ‘fa !

1ffiffiffiffi
te

p ‘fa ; cð faÞ !
1ffiffiffiffi
te

p f a5�
ffiffiffiffi
te

p
ifa :
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By (3.9), (3.10), (3.19), (3.30), [Z1], Proposition 2.2, and by proceeding similarly as
in [BC1], (4.69), after the conjugation by (3.31), the G ffiffiffi

te
p rescaled operator of

t
�
Dp�mnF

s; e ðrÞ
�2 � z

ffiffi
t

p
Dp�mnF

s; e ðrÞ converges as e ! 0 to

Hþ ð1 þ r2ÞðC m
4tÞ

2 � z

� ffiffi
t

p
DZ þ cðTÞ

4
ffiffi
t

p þ
ffiffiffiffiffiffiffi
�1

p
r

ffiffi
t

p
ðd Z� � d ZÞ þ ĉcðTÞ

4
ffiffi
t

p
� ��

ð3:32Þ

¼ Hþ ð1 þ r2ÞðC2
4t þ RmÞ � z2t

q

qt
ðC4t þ

ffiffiffiffiffiffiffi
�1

p
rD4tÞ;

where

H ¼ �
P
a

‘fa þ
1

4
hRTB

b0
y; fai

� �2

� 1

4

P
a;b

hRTB
b0

fa; fbiĉcð faÞĉcð fbÞ:

Finally, by the previous lemma, we see that the rescaled operator obtained from the
conjugation by (3.31) of D̂Dp�mnF

e converges to t�1=2D4t as e ! 0. Proceeding as in [MZ] and

noting 2t
q

qt
¼

ffiffi
t

p q

q
ffiffi
t

p , we obtain the desired formula. r

Proposition 3.6. We have the following uniform asymptotic expansion

Trs½D̂Dp�mnF
e Dp�mnF

e ðrÞe�tðDp�mnF
e ðrÞÞ2

� ¼ c�kðeÞt�k þ c�kþ1ðeÞt�kþ1 þ � � � ;ð3:33Þ

where k ¼ 3=2 if n (dimension of the fiber) is odd and k ¼ 1 if n is even. Similarly,

�
Ð
B

LðTB;‘TBÞ chðm;‘mÞjTrs t�
1
2D4t

q

q
ffiffi
t

p ðC4t þ
ffiffiffiffiffiffiffi
�1

p
rD4tÞe�ð1þr2ÞC 2

4t

� �
ð3:34Þ

¼ c�kt�k þ c�kþ1t�kþ1 þ � � � :

Moreover,

ci=2ðeÞ ! ci=2 as e ! 0:

Proof. Using two auxiliary Grassmann variables z1, z2, we write

Trs½D̂Dp�mnF
e Dp�mnF

e ðrÞe�tðDp�mnF
e ðrÞÞ2

�ð3:35Þ

¼ t�2 Trs; z1; z2
½e�tð½Dp�mnF

e ðrÞ�2�z1D
p�mnF
e ðrÞ�z2D̂D

p�mnF
e Þ�:

Applying the standard elliptic theory to the right-hand side of (3.35), we derive an asymp-
totic expansion

Trs½D̂Dp�mnF
e Dp�mnF

e ðrÞe�tðDp�mnF
e ðrÞÞ2

� ¼ c�m=2�2ðeÞt�m=2�2 þ c�m=2�1ðeÞt�m=2�1 þ � � � :

To prove the vanishing of the coe‰cients, we revert to one auxiliary Grassmann vari-
able z and rewrite

t
3
2 Trs½D̂Dp�mnF

e Dp�mnF
e ðrÞe�tðDp�mnF

e ðrÞÞ2

�ð3:36Þ

¼ �Trs; z½tD̂Dp�mnF
e e�tðDp�mnF

e ðrÞÞ2þz
ffiffi
t

p
D

p�mnF
e ðrÞ�:
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As usual, one fixes a point of M and employs the normal coordinates x around the
point. Consider the Getzler rescaling GMffiffi

t
p :

xa !
ffiffi
t

p
xa; ‘ea

! 1ffiffi
t

p ‘ea
; cðeaÞ !

1ffiffi
t

p ea5�
ffiffi
t

p
iea
:

By (3.27), (3.28), (3.29) and the same argument as in [BF], we can formulate a Lich-
nerowicz formula for t

�
Dp�mnF

e ðrÞ
�2 � z

ffiffi
t

p
Dp�mnF

e ðrÞ. The only singular term with respect
to the Getzler rescaling GMffiffi

t
p as t ! 0 appears in

�te
Pp
a¼1

‘ea
þ zcðeaÞ

2
ffiffiffiffi
te

p
� �2

� t
Pm

a¼pþ1

‘ea
þ zcðeaÞ

2
ffiffi
t

p
� �2

:

This singular term can be easily eliminated by the exponential transform, namely conjugat-
ing by the exponential

e

z T
m

a¼1
xacðeaÞ

2
ffi
t

p
:

Thus, after the exponential transform and then the Getzler rescaling GMffiffi
t

p , we find that
t
�
Dp�mnF

e ðrÞ
�2 � z

ffiffi
t

p
Dp�mnF

e ðrÞ converges as t ! 0 to

Hðr; eÞ � r2o2 þ z
ffiffiffiffiffiffiffi
�1

p
r
Pm

a¼pþ1

ĉcðeaÞqa;

where

Hðr; eÞ ¼ �e
Pp
a¼1

qa þ
1

4
hRTM

p0
y; eai

� �2

� ð1 þ r2Þ
Pm

a¼pþ1

qa þ
1

4
hRTM

p0
y; eai

� �2

:

On the other hand, after the exponential transform and then the Getzler rescaling
GMffiffi

t
p , tD̂Dp�mnF

e converges to

� z

2

Pm
a¼pþ1

ĉcðeaÞea5:

It follows that

lim
t!0

t
3
2 Trs½D̂Dp�mnF

e Dp�mnF
e ðrÞe�tðDp�mnF

e ðrÞÞ2

� ¼ �
Ð B Pm

a¼pþ1

ĉcðeaÞea5e�Hðe; rÞþr2o2

;

where
Ð B

denotes the Berezin integral (cf. [MZ], p. 604).

Thus, we deduce that ciðeÞ ¼ 0 for �n=2 � 2e i < �k, with k ¼ 3=2 if n is odd. On
the other hand, if n is even, the Berezin integral on the right-hand side vanishes for parity
reason, and thus k ¼ 1.
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Now we show that the asymptotic expansion is uniform in e. According to the
discussion above, after the conjugation by (3.4), the G ffiffi

e
p rescaled operator of�

Dp�mnF
s; e ðrÞ

�2 � zDp�mnF
s; e ðrÞ converges as e ! 0 to

Hþ ð1 þ r2ÞðC2
4t þ RmÞ � z

�
DZ þ cðTÞ

4
þ

ffiffiffiffiffiffiffi
�1

p
r ðd Z� � d ZÞ þ ĉcðTÞ

4

� ��
:

Similarly, the G ffiffi
e

p rescaled operator of D̂Dp�mnF
e converges to D4. Since the asymptotic ex-

pansion of

Trs½D̂Dp�mnF
e Dp�mnF

e ðrÞe�tðDp�mnF
e ðrÞÞ2

�

depends only on the local symbols of the rescaled operators of
�
Dp�mnF

s; e ðrÞ
�2 � zDp�mnF

s; e ðrÞ
and D̂Dp�mnF

e , the coe‰cients ciðeÞ of its asymptotic expansion converges uniformly to that
of

Trs½D4e�tðHþð1þr2ÞðC 2
4t
þRmÞ�zðDZþcðTÞ

4
þ
ffiffiffiffiffi
�1

p
rðd Z��d Zþ ĉcðTÞ

4
ÞÞÞ�:

On the other hand, since

Trs½D4te
�ðHþð1þr2ÞðC m

4t
Þ2�zð

ffiffi
t

p
DZþcðTÞ

4
ffi
t

p þ
ffiffiffiffiffi
�1

p
rð
ffiffi
t

p
ðd Z��d ZÞþ ĉcðTÞ

4
ffi
t

p ÞÞÞ�

¼ t�1=2 Trs½D4e�tðHþð1þr2ÞðC 2
4t
þRmÞ�zðDZþcðTÞ

4
þ
ffiffiffiffiffi
�1

p
rðd Z��d Zþ ĉcðTÞ

4
ÞÞÞ�;

we obtain (3.34) and also the convergence of asymptotic coe‰cients. r

Corollary 3.7. The function deðF ; rÞðsÞ in (3.23) has a meromorphic continuation to

the whole complex plane with s ¼ 0 a regular point.

Proof. The integral in (3.23) is convergent at t ¼ y since

Trs½D̂Dp�mnF
e Dp�mnF

e ðrÞe�tðDp�mnF
e ðrÞÞ2

�

is exponentially decaying in t as t ! y. On the other hand, it follows immediately from
Proposition 3.6 that the integral is convergent at t ¼ 0 for <s > k � 1. Moreover the stan-
dard method shows that deðF ; rÞðsÞ in (3.23) has a meromorphic continuation to the whole
complex plane with simple poles at s ¼ k � 1; k; . . . : However the possible simple pole at
s ¼ 0 is canceled by that of GðsÞ. Hence s ¼ 0 is a regular point. From this discussion, we
also derive the formula

deðFÞðrÞ ¼ deðF ; rÞ0ð0Þð3:37Þ

¼ � 1

2

Ð1
0

�
Trs½D̂Dp�mnF

e Dp�mnF
e ðrÞe�tðDp�mnF

e ðrÞÞ2

� � c�kðeÞt�k
�

dt

� 1

2

Ðþy

1

Trs½D̂Dp�mnF
e Dp�mnF

e ðrÞe�tðDp�mnF
e ðrÞÞ2

� dt þ C;

where C ¼ c�3
2
ðeÞ if m is odd (and hence k ¼ 3

2
) and C ¼ 1

2
G 0ð1Þc�1ðeÞ if m is even (and thus

k ¼ 1). r
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We now define our torsion form. As in the discussion above, we first define the corre-
sponding zeta function

zTðsÞ ¼ � 1

GðsÞ
Ðy
0

ts�1jTrs½NZD2
t eð1þr2ÞD2

t � dt:ð3:38Þ

From [BL], Theorem 3.21, Trs½NZð1 þ 2D2
t Þeð1þr2ÞD2

t � has an asymptotic expansion as t ! 0
with no singular terms (i.e. no singular powers of t). By [BZ] and [DM], Trs½NZeð1þr2ÞD2

t �
has an asymptotic expansion as t ! 0 starting with the t�l term, with l ¼ 0 if n is even
and l ¼ 1=2 if n is odd, compare [MZ], (3.118). Hence Trs½NZD2

t eð1þr2ÞD2
t � has an asymp-

totic expansion as t ! 0 starting with the t�l term:

Trs½NZD2
t eð1þr2ÞD2

t �@A�l t
�l þ A�lþ1t�lþ1 þ � � � :

It follows that zTðsÞ has a meromorphic continuation to the whole complex plane with
s ¼ 0 a regular point. Also, for later use, we note that

zTð0Þ ¼ 0;ð3:39Þ

when n is odd; and

fzTð0Þg½i� ¼ 0;ð3:40Þ

for i > 0 when n is even. Now we define our torsion form by

Tr ¼ z 0Tð0Þ:ð3:41Þ

In fact, we have

Tr ¼ �
Ð1
0

jðTrs½NZD2
t eð1þr2ÞD2

t � � A�l t
�lÞ dt

t
ð3:42Þ

�
Ðy
1

jTrs½NZD2
t eð1þr2ÞD2

t � dt

t
þ C 0;

where C 0 ¼ j
�
A�lG

0ð1Þ
�

if n is even, and C 0 ¼ jð2A�lÞ if n is odd.

We also introduce a variant of the torsion form. From (3.34), we have for t ! 0
that

Trs t�
1
2D4t

q

q
ffiffi
t

p ðC4t þ
ffiffiffiffiffiffiffi
�1

p
rD4tÞeð1þr2ÞD2

4t

� �
@C�kt�k þ C�kþ1t�kþ1 þ � � � :ð3:43Þ

Here k is defined as in (3.34). Define

z ~TTðsÞ ¼ � 1

GðsÞ
Ðy
0

tsjTrs t�
1
2D4t

q

q
ffiffi
t

p ðC4t þ
ffiffiffiffiffiffiffi
�1

p
rD4tÞeð1þr2ÞD2

4t

� �
dt:ð3:44Þ
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As before, this zeta function has analytic continuation to the whole complex plane with
s ¼ 0 a regular point. Therefore we can define

~TTr ¼ z 0~TTð0Þ:ð3:45Þ

In fact, one has

~TTr ¼ �
Ð1
0

j Trs t�
1
2D4t

q

q
ffiffi
t

p ðC4t þ
ffiffiffiffiffiffiffi
�1

p
rD4tÞeð1þr2ÞD2

4t

� �
� C�kt�k

� �
dtð3:46Þ

�
Ðy
1

jTrs t�
1
2D4t

q

q
ffiffi
t

p ðC4t þ
ffiffiffiffiffiffiffi
�1

p
rD4tÞeð1þr2ÞD2

4t

� �
dt þ C 00;

where C 00 ¼ 2jC�3=2 if m is odd (and hence k ¼ 3=2) and C 00 ¼ G 0ð1ÞjC�1 if m is even (and
thus k ¼ 1).

We are now ready for our main result.

Theorem 3.8. Under the assumption that the flat vector bundle F over M is fiberwise

acyclic, the following identity holds:

lim
e!0

deðFÞðrÞ ¼
Ð
B

LðTB;‘TBÞ chðm;‘mÞTr:ð3:47Þ

Proof. The proof follows the same line as in the proof of Theorem 2.5. Using Pro-
position 3.5, Proposition 3.6, (3.37) and (3.46), one deduces that

lim
e!0

deðFÞðrÞ ¼ 1

2

Ð
B

LðTB;‘TBÞ chðm;‘mÞ ~TTr:

To derive the final result, we use

2u
q

qu
Cu ¼ �½NZ;Du�; 2u

q

qu
Du ¼ �½NZ;Cu�

(see [MZ], (3.81)) to rearrange the right-hand side of (3.25) as in (2.35). Namely, one
has

�Trs t�
1
2D4t

q

q
ffiffi
t

p ðC4t þ
ffiffiffiffiffiffiffi
�1

p
rD4tÞeð1þr2ÞD2

4t

� �
ð3:48Þ

¼ � 2

t
Trs½NZD2

t eð1þr2ÞD2
t � þ

ffiffiffiffiffiffiffi
�1

p
r

t
d Trs½NZDte

ð1þr2ÞD2
t �:

It follows that �2Ai þ
ffiffiffiffiffiffiffi
�1

p
r dBi ¼ 0 if i < �1=2 and �2Ai þ

ffiffiffiffiffiffiffi
�1

p
r dBi ¼ Ci�1 if if�1=2,

where Bi is the coe‰cient of asymptotic expansion of Trs½NZDte
ð1þr2ÞD2

t �. Consequently, we
obtain by using (3.42) and (3.46),

Ð
B

LðTB;‘TBÞ chðm;‘mÞ ~TTr ¼ 2
Ð
B

LðTB;‘TBÞ chðm;‘mÞTr: r
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Remark 3.9. Theorem 3.8 is closely related to [MZ], Theorems 3.17 and 3.18. In-
deed, in [MZ] one sees the torsion forms through the transgression of the ĥh-forms, while
the ĥh-forms involved come from the adiabatic limits of h-invariants. Our simple observa-
tion is that for the r-family considered in [MZ], one may also consider the process of first
taking the variation of h-function and then taking the adiabatic limit thinking r as an ele-
ment in the base. The transgressed form might then come out explicitly. It is this process
that leads us to the Bismut-Freed connection form. And thus the appearance of the torsion
like form through this process is not so surprising. Moreover it is quite reasonable that the
torsion forms appeared here are not exactly the same as those appearing in [MZ], as the
process of first taking adiabatic limit and then taking variation need not be the same as
that of first taking variation and then taking adiabatic limit.

3.5. Comparison with the Bismut-Lott torsion form. Recall that the Bismut-Lott tor-
sion form TðT HM; gTZ; hF Þ is defined by

TðT HM; gTZ; hF Þ ¼ �j
Ðþy

0

�
Trs½NZð1 þ 2D2

uÞeD2
u � � d

�
HðZ;F jZÞ

�
ð3:49Þ

� n

2
wðZÞ rkðFÞ � d

�
HðZ;F jZÞ

�� �
1 � u

2

� �
e�u=4

�
du

2u
:

Now we note that the second and the third terms of the integrand, terms inserted in
(3.49) to make the integral convergent, are degree 0 terms. Hence, for i > 0,

fTðT HM; gTZ; hF Þg½i� ¼ �
Ðþy

0

fjTrs½NZð1 þ 2D2
uÞeD2

u �g½i� du

2u
;

where we denote by a superscript ½i� the degree i component of the corresponding form.

On the other hand, since

fTrs½NZD2
u expðD2

uÞ�g
½i� ¼ u�i=2fTrs½NZuD2

1 expðuD2
1Þ�g

½i�;

fTrs½NZ expðD2
uÞ�g

½i� ¼ u�i=2fTrs½NZ expðuD2
1Þ�g

½i�;

one deduces that, for <s > 0 su‰ciently large,

Ðy
0

usfTrs½NZD2
u expðD2

uÞ�g
½i� du

u
¼
Ðy
0

us� i

2fTrs½NZD2
1 expðuD2

1Þ�g
½i�

du

¼
Ðy
0

us� i

2
q

qu
fTrs½NZ expðuD2

1Þ�g
½i�

du

¼
Ðy
0

ði � 2sÞus� i

2fTrs½NZ expðuD2
1Þ�g

½i� du

2u
;

¼
Ðy
0

ði � 2sÞusfTrs½NZ expðD2
uÞ�g

½i� du

2u
;

cf. [MZ], (3.140) and (3.141). We have used our assumption that H �ðZb;F jZb
Þ ¼ f0g.
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Thus, for i > 0,

1

GðsÞ
Ðþy

0

usfjTrs½NZð1 þ 2D2
uÞeD2

u �g½i� du

2u
ð3:50Þ

¼ 1

i � 2s
þ 1

� �
1

GðsÞ
Ðþy

0

us�1fjTrs½NZD2
u expðD2

uÞ�g
½i�

du:

Hence,

fTðT HM; gTZ; hF Þg½i� ¼ ð1 þ r2Þ1� i

2

�
2 þ lnð1 þ r2Þ

�
zTð0Þ þ i þ 1

i
Tr


 �½i�
;

as

fzTðsÞg½i� ¼ �ð1 þ r2Þ�sþ i
2
�1 1

GðsÞ
Ðy
0

us�1fjTrs½NZD2
u expðD2

uÞ�g
½i�

du:

In particular, using (3.39) and (3.40), we have

fTrg½i� ¼
i

i þ 1
ð1 þ r2Þ

i
2
�1fTðT HM; gTZ; hF Þg½i�:ð3:51Þ

For the degree 0 component, one has

fTrg½0� ¼ 0:

This is a direct consequence of [BL], Theorem 3.29. Thus, up to a scaling factor on each
degree component, Tr captures the positive degree components of the Bismut-Lott real
analytic torsion form.
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