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Abstract .  We present a direct analytic proof of the Guillemin-Sternberg geometric quantization 
conjecture [2]. Further extensions are also obtained. 

R~sum~. 

Ri~duc t i on  s y m p l e c t i q u e  et  q u a n t i f i c a t i o n  

Nous prdsentons une preuve analytique d'une conjecture de Guillemin-Sternberg [2], 
ainsi que des extensions de ce rdsultat. 

Version f ranfa ise  abr$g~e 

Soit G un groupe de Lie compact connexe agissant sur une vari6t6 symplectique compacte 
(M, ~v) par une action hamiltonienne. Soit (L, V L) un fibr6 en droites hermitien muni d'une 
connexion hermitienne, suppos6 G-6quivariant, et tel que V z'2 - 2~ w. Soit # : M ~ g* 
l'application moment associ6e. Soit J u n e  structure presque complexe G-invariante sur T M ,  telle 
que 9TM (u, V) = w (u, Jv)  est une m6trique riemannienne sur T M .  

Soit D z : [2 0, * (M, L) ~ ~o, .  (M, L) l'op6rateur Spin c de Dirac associ6 (voir [4]). Alors, on a 
une repr6sentation virtuelle R R  (M, L) de G donn6e par 

R R  (M, L) = f/o, pair (M, L) N ker D L - f~o, impair (M, L) n ker D g. 

Supposons que 0 E g* soit une valeur r6guli~re de #, et que G agisse librement sur #-1  (0). On note 
M c  = 1 ~-1 (O)/G la r6duction symplectique de Marsden-Weinstein. Le fibr6 L c  = (LI~-I (o)/G) est 
un fibr6 hermitien en droites sur Me .  On obtient ainsi un espace virtuel R R  (MG, Lc) .  

Conjecture (Guillemin-Sternberg, [2]) On a 

dim R R  (M, L) ~ = dim R R  (Me,  Lc ) .  

Note pr~sentc~e par Jean-Michel BISMUT. 
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Dans cette Note, nous pr6sentons une preuve analytique de cette conjecture et on obtient 6galement 
des extensions de ce r6sultat. Ainsi, si (M, w) est kahl6rienne, on montre des in6galit6s de type 
Morse relative h la partie invariante de la cohomologie de L 

In this Note, we present a direct analytic proof of the Guillemin-Sternberg geometric quantization 
conjecture [2]. Besides deriving an alternative proof of this conjecture in the full nonabelian group 
action case, our methods also lead to immediate generalizations in various contexts. Details and 
further applications will appear in [7]. 

1. The Guillemin-Sternberg conjecture 

Let (M, w) be a closed symplectic manifold such that there is a Hermitian line bundle L over M 
admitting a Hermitian connection ~TL with the property that ~7L, 2 27r = ./-=2-W. Let J be an almost 

complex structure on T M  so that gTU (U, V) = 03 (U, Jr)  defines a riemannian metric on TM.  
With these data, one can construct canonically a SpinC-Dirac operator (see [4, Appendix D]) 

(1.1) D L : f~o,, (M, L) ---* ~o, ,  (M, L), 

which gives rise to the finite dimensional virtual vector space 

(1.2) R R  (M, L) = flo . . . . .  (M, L) N ker D L - ~o, odd (M, L) N ker D L. 

Now suppose that a compact connected Lie group G acts on (M, w) in a Hamiltonian way, which 
lifts to L naturally and preserves J ,  V L, etc. Let # : M ~ g* be the corresponding moment map. 
We assume that 0 E g* is a regular value of #, and for simplicity, that G acts on #-1  (0) freely. Then 
MG = #-1 (O)/G is a smooth manifold. On the other hand, w descends to a symplectic form WG on 
MG. Thus we get the Marsden-Weinstein symplectic reduction space (MG, WG). The pair (L, V L) 
also descends to a pair (LG, V LG ) over MG. Then one defines the corresponding SpinC-Dirac operator 
and in particular the virtual vector space RR(MG,  LG). 

Since G preserves everything, it commutes with D L. Thus R R  (M, L) is a virtual representation 
space of G. Denote by R R  (M, L) G the G-trivial representation component of R R  (M, L). 

THEOREM 1.1. -- dim R R ( M ,  L) G = dim R R ( M a ,  LG). 

Theorem 1.1 was first proved by Guillemin-Sternberg [2] in the holomorphic category when 
(M, 9 TM) is K~ihler. They raised it as a conjecture for general symplectic manifolds. When G is 
abelian, this conjecture was proved by Meinrenken [5] and Vergne ([8], [9]). A proof for the full 
nonabelian case was given by Meinrenken [6]. 

2. Quantized Witten deformation and its Laplacian 

For any X 6 F ( T M )  with complexification X = X1 + X2 6 F ( T ( I ' ° ) M  ® T(° ' I )M) ,  set 
c (X) = x/2X~" A - x / 2 i x 2 ,  where X~' E F (T* (o, 1)M) is the metric dual of X1 (see [1], Section 5). 
Then c (X) extends to an action on f~o,. (M, L). 

Let g and thus g* be equipped with an Ad G-invariant metric. Let 1#]2 be the norm square of the 
moment map. Let Jdlltl 2 6 F (T 'M)  ~_ F (TM) be the 1-form introduced by Witten [10]. 
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DEFINITION 2.1. -- For any T E R, the quantized Witten symplectic deformation operator DT is the 
formally self-adjoint first order elliptic differential operator given by 

(2.1) DT = D L ~-]-Y2 c(Jdl#lZ) : a °,* (M, L) ~ f~o,, (M, L). 

Remark 2.2. - If J is integrable, so that (M, 9 TM) is K~ihler, one has 

(2.2) DT = V/2(e -Tlu12/2 0 n e TI~'[~/2 4- e TI~'I~/2 (OL)* e-T[,12/2). 

Also, a similar deformation has been used by Vergne [9] on the symbol level. 
• ~ . v ~ d i r n  G 

Let hi,  .. hdimG be an orthonormal base of g* Then It has the expression /z = z-,i=1 #4hi, 
where each #i is a real function on M. Let Vi be the killing vector field on M induced by the dual 
of hi. Using (2.1) and the Kostant formula [3] for the infinitesimal action of G on L, one obtains 
the following Bochner type formula. 

THEOREM 2.3. -- The following identity holds, 

(2.3) 
d i m  G d i m  G 2 

D~= DL'2 + V/-L-TT Z c(dm)c(~)+4~rTIp[2 +T2[ ~ mV~ 
4=1  4=1 

d i m  G d i m  g l  

-~- ~/I"~T Z 1~4 (~ E ~(~J)C(~cJ Vi)-- Tr [~7(1'0)V4IT(I'°)M]- 2Lgi) ' 
i = 1  j = l  

where Lt: denotes the infinitesimal action of Vi on [2 0, * (M, L), and V (1' o) denotes the connection 
on T O ' ° )M induced from the Levi-Civita connection V of 9 TM. 

3. Localization to neighbourhoods of  p-1 (0) 

In this section, we show that the proof of Theorem 1.1 can be localized to arbitrary small 
neighbourhoods of p-1 (0). The main difficulty arises from the fact that the nonzero critical point 
set of I#l 2 may not be nondegenerate in the sense of Bott. We overcome this difficulty by doing 
pointwise estimates instead of global estimates used in the standard analytic Morse theory. 

Let f ~  * (M, L) denote the G-invariant part of [2 0, * (M, L). 

THEOREM 3.1. -- For any open neighbourhood U of p -1 (0), there exist constants C > O, b > 0 such 
that for any T >_ 1 and any s C [2~* (M, L) with Supps C M \ U ,  

(3.1) I IDTsl lg _> C(llsll  + (T - b)118112). 

We prove Theorem 3.1 in two steps. The first step is to prove the following key pointwise estimate• 

PROPOSITION 3.2. -- Let 

d i m  G 

(3.2) QT = P 2 + 2 x /ZI  T E #i Lv, 
i = 1  

act on [2 0, * (M, g). For any x E M \ U ,  there exist an open neighborhood W of x and constants 
Cx > O, bx > 0 such that if s E f~°' * ( M, L) with Supps C W,  then for any T >_ 1, 

(3.3) (QTs, ~) >_ Cx (llsll~ + (T - bx)llsllg). 
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If x is not a critical point of l/z[ 2, the proof of (3.3) is trivial. We now assume that x is a nonzero 
critical point of [#l 2. Then one can find an orthonormal basis f l ,  . . . ,  fdimM of T~M with the 
corresponding normal coordinates yl, . . . ,  YdlmM such that near x, Ittl 2 can be written as 

dim AI 

(3.4) l# (V)I 2 -- It' (x)l 2 + ajyy + O (Iv13), 
j = l  

where the constants aj's may possibly be zero. 
From (3.4), one can see directly that at x, 

dim G dim G 

i=1 i=1 
dimM 

_ > -  ~ laj[. 
j= l  

dim M 

E c(fj)c(Vfj Yi) -- T r [ ~  7(1'0) W/]) 
j = l  

From (3.5), (3.4), (3.2) and (2.3), one gets (3.3). 
The second step of the proof of Theorem 3.1 is to glue together the pointwise estimates in 

Proposition 3.2. The key point is that when restricted to ft~* (M, L), one has L~, = o. Thus 
D~ -= QT on ft~ * (M, L). On the other hand, since M \ U  is compact, finitely many glueing suffice. 

4. The analysis n e a r  /Z -1  (0)  and a proof of Theorem 1.1 

Theorem 3.1 allows us to reduce the proof of Theorem 1.1 to a sufficiently small open neighbourhood 
U of #-1 (0). We take U to be equivariant. 

Since 0 E g* is a regular value of #, #-1  (0) is a nondegenerate critical submanifold of I#12 
in the sense of Bott. One can then apply directly here methods and techniques of the paper of 
Bismut-Lebeau [1, Sections 8, 9] and localize everything at #-1  (0). As G acts on #-1  (0) freely, 
G ~ tt -1 (0) -L Mc = M / G  is a principal fibration. Furthermore, the vertical G-direction covariant 
derivatives are bounded operators when restricted to G-invariant subspaces. This eventually pushes 
everything down to Me.  

In summary, we get a self-adjoint SpinC-Dirac type operator DQ on M a  acting on [2 0, *(Mc,  LG), 
having the properties given in Theorem 4.1. To our surprise, it turns out to be non identical to the 
SpinC-Dirac operator D zC. 

THEOREM 4.1. -- There exist c > O, To > 0 such that there are no nonzero eigenvalues of D~ in 
[0, c], and such that for any T > To, the number of eigenvalues of D~.]~. (M,L) in [0, c] is equal 

to dim (ker DQ). 

Now, all arguments used to prove Theorem 4.1 preserve the Z2-grading of the Spine-bundles. 
Theorem 1.1 then follows from Theorem 4.1 easily. 

Remark 4.2. - For a precise form of DQ in the holomorphic category, see (6.1). 

Remark 4.3. - If G does not act freely on tt -1 (0), then M c  is an orbifold. In this case, the above 
arguments can be modified easily to prove the orbifold version of Theorem 1.1. 

Remark 4.4. - Alternatively, one can first take the principal fibration G --~ U --~ U/G and then 
apply [1] to U/G to prove Theorem 4.1. 
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5. Two immediate extensions 

Arguments  in Sections 2 to 4 also lead immediately to further extensions of  Theorem 1.1. Here we 
only state two of  them. The first is a dual version of  Theorem 1.1. 

THEOREM 5.1. - The following identity holds: 

d im R R ( M ,  L -1 ® det  ( T ( ° ' I ) M ) )  C = (--1)  dimG d im RR(MG, L~ ~ ® det  (T(° '  1 )Me)) .  

The second result can be viewed as an invariance property of  symplectic quotients. It has also been 
obtained independently by Meinrenken and Sjamaar. 

THEOREM 5.2. - - / f # - X  (0) is not empty, then we have the equality of Todd genus, (Td  (TM),  [M]) = 
(Td  (TMG), [MG]). 

6. Holomorphic Morse inequalities 

We now assume that (M,  w) is Kiihler and work in the holomorphic category. Then (MG, we) is 
also Kiihler. The line bundle L (resp.  L c )  is now holomorphic over  M (resp. MG). 

Let h : MG ~ R +  be defined by h (x) = vol (Gx)  = vol (Tr -1 (z)) .  Then the Dirac type operator 
DQ in Section 4 can be written precisely here as 

(6.1) DO " = x/~ (hi /2 ~Lc h-1/2 + h-1/2 (OLG)* hl /2) .  

From (2.2), (6.1), and proceeding as in Sections 2 through 4, one actually gets a Z-graded refined 
version of  Theorem 4.1. This culminates in the following refinement of  Theorem 1.1, which is stated 
for Dolbeault  cohomologies,  where we use the upperscript G to denote the G-invariant  part. 

THEOREM 6.1. -- The following Morse type inequalities hold: 
(i) For any 0 < p < dim M 

d im H °'p (M,  L) a < d im H °'p (MG, LG); 

(ii) For any 0 < p < dim M 
- -  - -  2 ' 

p p 

( - 1 )  i d im  H °'p-i (M,  L) c _< Z ( -1 )~  d im H °'p-i (MG, LG). 
i=o i=0 
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