η -invariant and closed geodesics

Weiping Zhang

Chern Institute of Mathematics

Fukuoka, March 26, 2013

The SC^p structure of a Riemannian metric The Eells-Kuiper quaternionic projective plane The Eells-Kuiper μ -invariant

The main result

► Joint with **Zizhou Tang**

The SC^p structure of a Riemannian metric The Eells-Kuiper quaternionic projective plane The Eells-Kuiper μ -invariant

The main result

► Joint with **Zizhou Tang**

► **Theorem.** Every Eells-Kuiper quaternionic projective plane carries a Riemannian metric such that all geodesics passing through a certain point are simply closed and of the same length.

The SC^p structure of a Riemannian metric The Eells-Kuiper quaternionic projective plane The Eells-Kuiper μ -invariant

The main result

► Joint with **Zizhou Tang**

- ► **Theorem.** Every Eells-Kuiper quaternionic projective plane carries a Riemannian metric such that all geodesics passing through a certain point are simply closed and of the same length.
- Solving a problem of Bérard-Bergery and Besse dating back to 1970s.

The SC^p structure of a Riemannian metric The Eells-Kuiper quaternionic projective plane The Eells-Kuiper μ -invariant

The main result

► Joint with **Zizhou Tang**

► **Theorem.** Every Eells-Kuiper quaternionic projective plane carries a Riemannian metric such that all geodesics passing through a certain point are simply closed and of the same length.

- Solving a problem of Bérard-Bergery and Besse dating back to 1970s.
- ▶ arxiv :1302.2792, 7 pages

The theorem of Bott The problem of Bérard-Bergery and Besse

The SC^p property

▶ M a closed Riemannian manifold with metric g^{TM}

 $\begin{array}{c} & \text{Introduction} \\ \hline \mathbf{The} \ SC^p \ \mathbf{structure} \ \mathbf{of} \ \mathbf{a} \ \mathbf{Riemannian} \ \mathbf{metric} \\ \hline \text{The Eells-Kuiper quaternionic projective plane} \\ & \text{The Eells-Kuiper } \mu \text{-invariant} \end{array}$

The theorem of Bott The problem of Bérard-Bergery and Besse

The SC^p property

- ▶ M a closed Riemannian manifold with metric g^{TM}
- ▶ g^{TM} carries an SC^p -structure if there is $p \in M$ such that all geodesics issued from p are simply closed (periodic) geodesics with the same length.

The theorem of Bott The problem of Bérard-Bergery and Besse

The SC^p property

- ▶ M a closed Riemannian manifold with metric g^{TM}
- ▶ g^{TM} carries an SC^p -structure if there is $p \in M$ such that all geodesics issued from p are simply closed (periodic) geodesics with the same length.
- A. Besse,
 <u>Manifolds All of Whose Geodesics are Closed.</u>
 Springer, Berlin, 1978.

The theorem of Bott The problem of Bérard-Bergery and Besse

The SC^p property

- ▶ M a closed Riemannian manifold with metric g^{TM}
- ▶ g^{TM} carries an SC^p -structure if there is $p \in M$ such that all geodesics issued from p are simply closed (periodic) geodesics with the same length.
- A. Besse, <u>Manifolds All of Whose Geodesics are Closed.</u> Springer, Berlin, 1978.
- ► SC-structure : for every $p \in M$, SC^p -structure holds

The theorem of Bott The problem of Bérard-Bergery and Besse

The theorem of Bott

▶ Theorem (Bott, 1954) Any smooth manifold carrying an *SC^p* structure should have the same integral cohomolgy ring as that of a CROSS

The theorem of Bott The problem of Bérard-Bergery and Besse

The theorem of Bott

- ► Theorem (Bott, 1954) Any smooth manifold carrying an SC^p structure should have the same integral cohomolgy ring as that of a CROSS
- ► CROSS = compact symmetric spaces of rank one (namely, the unit spheres, the real projective spaces, the complex projective spaces, the quaternionic projective spaces and the Cayley projective plane, endowed with the corresponding canonical metrics).

The theorem of Bott The problem of Bérard-Bergery and Besse

The theorem of Bott

- Theorem (Bott, 1954) Any smooth manifold carrying an SC^p structure should have the same integral cohomolgy ring as that of a CROSS
- ► CROSS = compact symmetric spaces of rank one (namely, the unit spheres, the real projective spaces, the complex projective spaces, the quaternionic projective spaces and the Cayley projective plane, endowed with the corresponding canonical metrics).
- ▶ Natural question : whether there are manifolds of *SC^p*-structure not contained in CROSS ?

The theorem of Bott The problem of Bérard-Bergery and Besse

The problem of Bérard-Bergery and Besse

► In 1975, Bérard-Bergery found an exotic 10-sphere carrying an SC^p structure

The theorem of Bott The problem of Bérard-Bergery and Besse

The problem of Bérard-Bergery and Besse

- ► In 1975, Bérard-Bergery found an exotic 10-sphere carrying an SC^p structure
- He then raised the question : whethere there is an SC^p structure on any exotic quaternionic projective plane constructed by Eells and Kuiper (1962)

The theorem of Bott The problem of Bérard-Bergery and Besse

The problem of Bérard-Bergery and Besse

- ► In 1975, Bérard-Bergery found an exotic 10-sphere carrying an SC^p structure
- He then raised the question : whethere there is an SC^p structure on any exotic quaternionic projective plane constructed by Eells and Kuiper (1962)
- ▶ The same question is also raised in the book of Besse

The Milnor fibration The Eells-Kuiper quaternionic projective plane Main results

The Milnor fibration (1957)

► For any $h \in \mathbf{Z}$, let ξ_h be the S^3 -sphere bundle over S^4 determined by the characteristic map

$$f_h: S^3 \to SO(4)$$

such that for any $u \in S^3$, $v \in \mathbf{R}^4$,

$$f_h(u)v = u^h v u^{1-h}$$

The Milnor fibration The Eells-Kuiper quaternionic projective plane Main results

The Milnor fibration (1957)

► For any $h \in \mathbf{Z}$, let ξ_h be the S^3 -sphere bundle over S^4 determined by the characteristic map

$$f_h: S^3 \to SO(4)$$

such that for any $u \in S^3$, $v \in \mathbf{R}^4$,

$$f_h(u)v = u^h v u^{1-h}$$

• M_h denotes the total space of the fibration ξ_h (Milnor showed that M_h is homeomorphic to S^7)

The Milnor fibration The Eells-Kuiper quaternionic projective plane Main results

The Milnor fibration (1957)

► For any $h \in \mathbf{Z}$, let ξ_h be the S^3 -sphere bundle over S^4 determined by the characteristic map

$$f_h: S^3 \to SO(4)$$

such that for any $u \in S^3$, $v \in \mathbf{R}^4$,

$$f_h(u)v = u^h v u^{1-h}$$

- M_h denotes the total space of the fibration ξ_h (Milnor showed that M_h is homeomorphic to S^7)
- ▶ M_0 and M_1 are diffeomorphic to S^7 ; while M_2 is an exotic 7-sphere (Milnor's celebrated example)

The Milnor fibration **The Eells-Kuiper quaternionic projective plane** Main results

The Eells-Kuiper quaternionic projective plane I

▶ Theorem (Eells-Kuiper, 1962) If $\frac{h(1-h)}{56} \in \mathbb{Z}$, then M_h is diffeomorphic to S^7

The Milnor fibration **The Eells-Kuiper quaternionic projective plane** Main results

The Eells-Kuiper quaternionic projective plane I

- ▶ Theorem (Eells-Kuiper, 1962) If $\frac{h(1-h)}{56} \in \mathbb{Z}$, then M_h is diffeomorphic to S^7
- ▶ From now on, we assume that $\frac{h(1-h)}{56} \in \mathbf{Z}$

The Milnor fibration **The Eells-Kuiper quaternionic projective plane** Main results

The Eells-Kuiper quaternionic projective plane I

- ▶ Theorem (Eells-Kuiper, 1962) If $\frac{h(1-h)}{56} \in \mathbb{Z}$, then M_h is diffeomorphic to S^7
- ▶ From now on, we assume that $\frac{h(1-h)}{56} \in \mathbf{Z}$
- ► N_h the disk bundle associated to ξ_h , then $\partial N_h = M_h$:

$$\sigma: \partial N_h = M_h \to S^7 = \partial D^8$$

The Milnor fibration **The Eells-Kuiper quaternionic projective plane** Main results

The Eells-Kuiper quaternionic projective plane I

- ▶ Theorem (Eells-Kuiper, 1962) If $\frac{h(1-h)}{56} \in \mathbb{Z}$, then M_h is diffeomorphic to S^7
- ▶ From now on, we assume that $\frac{h(1-h)}{56} \in \mathbf{Z}$
- ► N_h the disk bundle associated to ξ_h , then $\partial N_h = M_h$:

$$\sigma: \partial N_h = M_h \to S^7 = \partial D^8$$

► $X_{h,\sigma}$ denotes the associated attached space $N_h \cup_{\sigma} D^8$

The Milnor fibration **The Eells-Kuiper quaternionic projective plane** Main results

The Eells-Kuiper quaternionic projective plane I

- ▶ Theorem (Eells-Kuiper, 1962) If $\frac{h(1-h)}{56} \in \mathbb{Z}$, then M_h is diffeomorphic to S^7
- ▶ From now on, we assume that $\frac{h(1-h)}{56} \in \mathbf{Z}$
- ► N_h the disk bundle associated to ξ_h , then $\partial N_h = M_h$:

$$\sigma: \partial N_h = M_h \to S^7 = \partial D^8$$

▶ $X_{h,\sigma}$ denotes the associated attached space $N_h \cup_{\sigma} D^8$

▶ When h = 0, 1 and $\sigma = \text{Id}$, $X_{h,\sigma}$ is the standard quaternionic projective plane

The Milnor fibration **The Eells-Kuiper quaternionic projective plane** Main results

The Eells-Kuiper quaternionic projective plane II

► X_{h,σ}'s are the only closed smooth 8-manifolds admitting a Morse function with 3 critical points

The Milnor fibration **The Eells-Kuiper quaternionic projective plane** Main results

The Eells-Kuiper quaternionic projective plane II

- ► X_{h,σ}'s are the only closed smooth 8-manifolds admitting a Morse function with 3 critical points
- Theorem (Krammer-Stolz, 2007) The diffeomorphism type of X_{h,σ} does not depend on σ

The Milnor fibration **The Eells-Kuiper quaternionic projective plane** Main results

The Eells-Kuiper quaternionic projective plane II

- ► X_{h,σ}'s are the only closed smooth 8-manifolds admitting a Morse function with 3 critical points
- Theorem (Krammer-Stolz, 2007) The diffeomorphism type of $X_{h,\sigma}$ does not depend on σ
- Theorem (Bérard-Bergery, 1977) If τ_h is the canonical involution on M_h obtained by the fiberwise antipodal involution on S^3 , then $X_{h,\sigma}$ carries an SC^p structure if there is a diffeomorphism σ such that

$$\tau\sigma = \sigma\tau_h,$$

where τ is the standard involution on S^7

The Milnor fibration The Eells-Kuiper quaternionic projective plane Main results

Main results

• Theorem (Tang-Zhang, 2013) The involution τ_h on $M_h \equiv S^7$ is equivalent to the standard antipodal involution on S^7 (i.e., M_h/τ_h is diffeomorphic to $\mathbf{R}P^7$)

The Milnor fibration The Eells-Kuiper quaternionic projective plane Main results

Main results

- Theorem (Tang-Zhang, 2013) The involution τ_h on $M_h \equiv S^7$ is equivalent to the standard antipodal involution on S^7 (i.e., M_h/τ_h is diffeomorphic to $\mathbf{R}P^7$)
- ▶ Combining the above three theorems, one gets

The Milnor fibration The Eells-Kuiper quaternionic projective plane Main results

Main results

- Theorem (Tang-Zhang, 2013) The involution τ_h on $M_h \equiv S^7$ is equivalent to the standard antipodal involution on S^7 (i.e., M_h/τ_h is diffeomorphic to $\mathbf{R}P^7$)
- Combining the above three theorems, one gets
- Corollary (Tang-Zhang, 2013) Every Eells-Kuiper quaternionic projective plane admits an SC^p structure.

The Milnor fibration The Eells-Kuiper quaternionic projective plane Main results

An exotic involution on S^7 (due to Milnor, 1967)

• Consider $\mathbf{R}P^7$ and the connected sum $\mathbf{R}P^7 \# 14M_2$

The Milnor fibration The Eells-Kuiper quaternionic projective plane Main results

An exotic involution on S^7 (due to Milnor, 1967)

- Consider $\mathbf{R}P^7$ and the connected sum $\mathbf{R}P^7 \# 14M_2$
- The double covering of both is S^7 , while

 $\mu(\mathbf{R}P^7) \neq \mu(\mathbf{R}P^7 \# 14M_2),$

where μ is the Eells-Kuiper invariant

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

A result of Mayer

► By a result of Mayer (1970), one knows that M_h/τ_h has only two possible diffeomorphism types :

$\mathbf{R}P^7$ and $\mathbf{R}P^7 \# 14M_2$

(this is known to Bérard-Bergery in his 1977 paper)

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

A result of Mayer

► By a result of Mayer (1970), one knows that M_h/τ_h has only two possible diffeomorphism types :

$\mathbf{R}P^7$ and $\mathbf{R}P^7 \# 14M_2$

(this is known to Bérard-Bergery in his 1977 paper)

 Combining with Milnor's result, one need only to show that

$$\mu(M_h/\tau_h) = \mu(\mathbf{R}P^7)$$

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The Eells-Kuiper μ -invariant

• M closed spin 7-manifold with $H^4(M, \mathbf{R}) = 0$. If N is a spin 8-manifold with boundary M, then the first Pontryajin class $p_1(N)$ is well-defined

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The Eells-Kuiper μ -invariant

• M closed spin 7-manifold with $H^4(M, \mathbf{R}) = 0$. If N is a spin 8-manifold with boundary M, then the first Pontryajin class $p_1(N)$ is well-defined

•
$$\mu(M) \in \mathbf{R}/\mathbf{Z}$$
 defined by

$$\mu(M) \equiv \frac{p_1^2(N)}{2^7 \cdot 7} - \frac{\text{Sign}(N)}{2^5 \cdot 7} \mod \mathbf{Z}$$

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The Eells-Kuiper μ -invariant

• M closed spin 7-manifold with $H^4(M, \mathbf{R}) = 0$. If N is a spin 8-manifold with boundary M, then the first Pontryajin class $p_1(N)$ is well-defined

►
$$\mu(M) \in \mathbf{R}/\mathbf{Z}$$
 defined by

$$\mu(M) \equiv \frac{p_1^2(N)}{2^7 \cdot 7} - \frac{\operatorname{Sign}(N)}{2^5 \cdot 7} \mod \mathbf{Z}$$

▶ Let N_h be the disk bundle associated to M_h . By Milnor and Eells-Kuiper, one has

$$\frac{p_1^2(N_h)}{2^7 \cdot 7} - \frac{\text{Sign}(N_h)}{2^5 \cdot 7} = \frac{h(h-1)}{56} \in \mathbf{Z}$$

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

Main result

► By Milnor, $\mu(\mathbf{R}P^7) = \pm \frac{1}{32}$, $\mu(\mathbf{R}P^7 \# 14M_2) = \pm \frac{1}{32} + \frac{1}{2}$

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

Main result

- ▶ By Milnor, $\mu(\mathbf{R}P^7) = \pm \frac{1}{32}, \ \mu(\mathbf{R}P^7 \# 14M_2) = \pm \frac{1}{32} + \frac{1}{2}$
- Theorem (Tang-Zhang, 2013) $\mu(M_h/\tau_h) = \pm \frac{1}{32}$

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

Main result

- ► By Milnor, $\mu(\mathbf{R}P^7) = \pm \frac{1}{32}, \ \mu(\mathbf{R}P^7 \# 14M_2) = \pm \frac{1}{32} + \frac{1}{2}$
- Theorem (Tang-Zhang, 2013) $\mu(M_h/\tau_h) = \pm \frac{1}{32}$
- ► Main difficulty : hard to find a spin manifold N' such that $\partial N' = M_h / \tau_h$

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

Main result

- ► By Milnor, $\mu(\mathbf{R}P^7) = \pm \frac{1}{32}, \ \mu(\mathbf{R}P^7 \# 14M_2) = \pm \frac{1}{32} + \frac{1}{2}$
- Theorem (Tang-Zhang, 2013) $\mu(M_h/\tau_h) = \pm \frac{1}{32}$
- ► Main difficulty : hard to find a spin manifold N' such that $\partial N' = M_h / \tau_h$
- Resolution : using the intrinsic formula due to Donnelly and Kreck-Stolz for μ-invariant, not relying on the bounding manifold (η-invariant appears !)

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The formula of Donnely and Kreck-Stolz I

Weiping Zhang Chern Institute of Mathem η -invariant and closed geodesics

 $\begin{array}{c} \text{Introduction}\\ \text{The SC^p structure of a Riemannian metric}\\ \text{The Eells-Kuiper quaternionic projective plane}\\ \text{The Eells-Kuiper μ-invariant} \end{array}$

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The formula of Donnely and Kreck-Stolz I

- M closed spin manifold such that $H^4(M, \mathbf{R}) = 0$
- ▶ g^{TM} a Riemannian metric on TM, ∇^{TM} the associated Levi-Civita connection

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The formula of Donnely and Kreck-Stolz I

- M closed spin manifold such that $H^4(M, \mathbf{R}) = 0$
- ▶ g^{TM} a Riemannian metric on TM, ∇^{TM} the associated Levi-Civita connection
- ▶ D_M , B_M the associated Dirac and Signature operators

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The formula of Donnely and Kreck-Stolz I

- M closed spin manifold such that $H^4(M, \mathbf{R}) = 0$
- ▶ g^{TM} a Riemannian metric on TM, ∇^{TM} the associated Levi-Civita connection
- ▶ D_M , B_M the associated Dirac and Signature operators
- ▶ $p_1(TM, \nabla^{TM})$ the first Pontryajin form, then there is a 3-form $\hat{p}_1(TM, \nabla^{TM})$ such that

$$d\,\widehat{p}_1(TM,\nabla^{TM}) = p_1(TM,\nabla^{TM})$$

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The formula of Donnely and Kreck-Stolz II

▶ The formula of Donnelly and Kreck-Stolz :

$$\mu(M) \equiv \overline{\eta}(D_M) + \frac{\eta(B_M)}{2^5 \cdot 7}$$

$$-\frac{1}{2^7 \cdot 7} \int_M p_1(TM, \nabla^{TM}) \wedge \widehat{p}_1(TM, \nabla^{TM}) \mod \mathbf{Z}$$

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The formula of Donnely and Kreck-Stolz II

▶ The formula of Donnelly and Kreck-Stolz :

$$\mu(M) \equiv \overline{\eta}(D_M) + \frac{\eta(B_M)}{2^5 \cdot 7}$$

$$-\frac{1}{2^7 \cdot 7} \int_M p_1(TM, \nabla^{TM}) \wedge \widehat{p}_1(TM, \nabla^{TM}) \mod \mathbf{Z}$$

 Here for a self-adjoint elliptic operator D, η(D) is the η-invariant of D in the sense of Atiyah-Patodi-Singer and η
(D) is the reduced η-invariant defined by

$$\overline{\eta}(D) = \frac{\dim(\ker D) + \eta(D)}{2}$$

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The μ -invariant of M_h/τ_h I

• Our purpose is to compute

$$\mu(M_h/\tau_h) \equiv \overline{\eta}(D_{M_h/\tau_h}) + \frac{\eta(B_{M_h/\tau_h})}{2^5 \cdot 7}$$
$$-\frac{1}{2^7 \cdot 7} \int_{M_h/\tau_h} p_1(T(M_h/\tau_h)) \wedge \widehat{p}_1(T(M_h/\tau_h)) \mod \mathbf{Z}$$

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The μ -invariant of M_h/τ_h I

• Our purpose is to compute

$$\mu(M_h/\tau_h) \equiv \overline{\eta}(D_{M_h/\tau_h}) + \frac{\eta(B_{M_h/\tau_h})}{2^5 \cdot 7}$$

$$-\frac{1}{2^7 \cdot 7} \int_{M_h/\tau_h} p_1(T(M_h/\tau_h)) \wedge \widehat{p}_1(T(M_h/\tau_h)) \mod \mathbf{Z}$$

• Lift everything from M_h/τ_h to M_h , one gets

$$\mu(M_h/\tau_h) \equiv \overline{\eta}(P_h D_{M_h}) + \frac{\eta(P_h B_{M_h})}{2^5 \cdot 7}$$

$$-\frac{1}{2^8 \cdot 7} \int_{M_h} p_1(TM_h) \wedge \widehat{p}_1(TM_h) \mod \mathbf{Z},$$

where $P_h = \frac{1+\tau_h}{2}$ denotes the induced projections.

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The μ -invariant of M_h/τ_h II

► One needs to compute the (equivariant) η -invariants in the above formula

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The μ -invariant of M_h/τ_h II

- ► One needs to compute the (equivariant) η -invariants in the above formula
- The good thing is that M_h bounds N_h , the disk bundle and the involution τ_h extends on N_h (but not freely)

 $\begin{array}{c} \text{Introduction}\\ \text{The SC^p structure of a Riemannian metric}\\ \text{The Eells-Kuiper quaternionic projective plane}\\ \textbf{The Eells-Kuiper μ-invariant} \end{array}$

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The μ -invariant of M_h/τ_h II

- ► One needs to compute the (equivariant) η -invariants in the above formula
- The good thing is that M_h bounds N_h , the disk bundle and the involution τ_h extends on N_h (but not freely)
- One can apply Donnelly's equivariant generalizations of the Atiyah-Patodi-Singer index theorem for manifolds with bounday to compute the η-invariants

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The μ -invariant of M_h/τ_h III

▶ By Donnelly (1978) and Atiyah-Patodi-Singer (1974),

$$\overline{\eta}(P_h D_{M_h}) \equiv \frac{1}{2} \int_{N_h} \widehat{A}(TN_h) + \frac{1}{2} \int_{S^4} A_1 \mod \mathbf{Z},$$

where S^4 is the fixed point set of the τ_h action on N_h ;

$$\eta(P_h B_{M_h}) = \frac{1}{2} \int_{N_h} L(TN_h) + \frac{1}{2} \int_{S^4} A_2$$
$$-\frac{\operatorname{Sign}(N_h) + \operatorname{Sign}(N_h, \tau_h)}{2},$$

where $\operatorname{Sign}(N_h, \tau_h)$ is the notation for the equivariant signature

 $\begin{array}{c} {\rm Introduction}\\ {\rm The}\;SC^p\;{\rm structure}\;{\rm of}\;{\rm a}\;{\rm Riemannian}\;{\rm metric}\\ {\rm The}\;{\rm Eells}{\rm -Kuiper}\;{\rm quaternionic}\;{\rm projective}\;{\rm plane}\\ {\rm The}\;{\rm Eells}{\rm -Kuiper}\;\mu{\rm -invariant} \end{array}$

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The μ -invariant of M_h/τ_h IV

▶ Combining the above three formulas, we get

$$\mu(M_h/\tau_h) \equiv \frac{p_1^2(N_h)}{2^8 \cdot 7} - \frac{\operatorname{Sign}(N_h)}{2^6 \cdot 7} + \frac{1}{2} \int_{S^4} A_1 + \frac{1}{2} \int_{S^4} A_2 - \frac{\operatorname{Sign}(N_h, \tau_h)}{2} \mod \mathbf{Z}$$

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The μ -invariant of M_h/τ_h IV

▶ Combining the above three formulas, we get

$$\mu(M_h/\tau_h) \equiv \frac{p_1^2(N_h)}{2^8 \cdot 7} - \frac{\operatorname{Sign}(N_h)}{2^6 \cdot 7} + \frac{1}{2} \int_{S^4} A_1 + \frac{1}{2} \int_{S^4} A_2 - \frac{\operatorname{Sign}(N_h, \tau_h)}{2} \mod \mathbf{Z}$$

▶ But we have seen that

$$\frac{p_1^2(N_h)}{2^7 \cdot 7} - \frac{\operatorname{Sign}(N_h)}{2^5 \cdot 7} = \frac{h(h-1)}{56}$$

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The μ -invariant of M_h/τ_h V

▶ The fixed point set contributions can also be computed explicitly. In summary, one gets

$$\mu(M_h/\tau_h) = \frac{h(h-1)}{112} \pm \frac{2h-1}{32} \mod \mathbf{Z}$$

 $\begin{array}{c} \text{Introduction}\\ \text{The SC^p structure of a Riemannian metric}\\ \text{The Eells-Kuiper quaternionic projective plane}\\ \textbf{The Eells-Kuiper μ-invariant} \end{array}$

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

The μ -invariant of M_h/τ_h V

▶ The fixed point set contributions can also be computed explicitly. In summary, one gets

$$\mu(M_h/\tau_h) = \frac{h(h-1)}{112} \pm \frac{2h-1}{32} \mod \mathbf{Z}$$

▶ Since $\frac{h(h-1)}{56} \in \mathbb{Z}$, one has $h \equiv 0, 1, 8, 49 \mod 56\mathbb{Z}$. By direct verification, one has

$$\mu(M_h/\tau_h) \equiv \pm \frac{1}{32} \mod \mathbf{Z}$$

as required. Q.E.D.

A result of Mayer The Eells-Kuiper μ -invariant The μ -invariant of M_h/τ_h

Thanks

Weiping Zhang Chern Institute of Mathem η -invariant and closed geodesics