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Abstract This paper generalizes the family quantization formula of Zhang to the case of manifolds
with boundary. As an application Tian-Zhang’ s analytic version of the Guillemin-Kalkman-Martin
residue formula is generalized to the family case.
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In a series of papers ' analytic approaches of the Guillemin-Sternberg geometric quanti-
zation conjecture * as well as generalizations to the cases of symplectic manifolds with boundary
and a family of symplectic manifolds without boundary were developed. In this paper we gener-
alize the work of Tian and Zhang to prove a family quantization formula for symplectic manifolds
with boundary. As an application we prove a family residue formula which generalizes the corre-

sponding formulas of Guillemin-Kalkman-Martin ° and Tian-Zhang > to the family case.

1 A family quantization formula for symplectic manifolds with boundary

Let Z—M—>B be a smooth fibration with compact connected fibres and the compact base
B. Let dZ denote the boundary of Z. Then d Z—>Jd M— B is also a smooth fibration where d M
= U ,e 597, is the boundary of M. For any b & B we denote by iy: Z, =n"' b —M the
canonical embedding. Let TZ be the associated vertical tangent bundle. We make the basic as-
sumption that there exists a smooth 2-form w & I A* T Z  such that for any bE B w, =
i, w is a symplectic form over Z, .
Let J be an almost complex structure on TZ such that
guv =wuJyp wovel TZ 1.1
defines a smooth Euclidean metric on 7Z. The existence of J is clear. Then with respect to J
of. ref. 1 we have the canonical splitting
T7C=T'""2®T°" Z. 1.2
We assume that there exists a Hermitian line bundle L over M with a Hermitian connection

21
Vh=i;Vton Ly =i, L.

VE satisfying V% 2=w. Then for any b€ B we get an induced Hermitian connection

* Current address Department of Mathematics SUNY at Stony Brook Stony Brook NY11794 U.S.A.
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Forany bE B let 2° * Z, L, denote the space of smooth sections of A* T°' * 7,
@ L,. Asinref. 2 Definitions 1.1 1.2 for each & B we define the Spin‘-Dirac opera-

tor

DY e 7, L, Q" 7, I, 1.3
from w, J, = J| 12, and L, V% and the canonically induced formally self-adjoint Spin‘-
Dirac operator on the boundary J Z,

L )
D} . .QO even Z[, Lb |(7Zl - \QO even Zb Lb |JZ1 . 1.4

(7Zb +
Let G be a compact connected Lie group with Lie algebra g. We assume that the total man-
ifold M admits a smooth G-action such that G preserves each Z;, and thus each boundary 97, .
We also assume that there exists a G- equivariant smooth map z«: M—>g ™ such that the G-action

on each fiber Z, b& B is Hamiltonian with the moment map given by ¢, = ¢ | 7, Z,—>g’ .

Furthermore we make the assumption that 0€ g * is a regular value of y as well as p, for each
b€ B and that G acts freely on #~' 0 . We make the assumption in this paper that g~ 0
(1OM = @. Then on each fibre Z, one has as in ref. 2 the Marsden-Weinstein reduction

Zey=pyp Y0 /G wey . Asinref. 3 1.3 these reduction spaces together form a
smooth fibration of closed symplectic manifolds

Z¢ w¢ = Mg =p'0/G3B. 1.5

We also assume that the G-action preserves the almost complex structure J and the Hermitian
line bundle L V"  which induce canonically the almost complex structure J; on TZ; and the
Hermitian line bundle L; V% over My respectively. As in refs. 1 2  one defines the
Spin‘-Dirac operator for each b € B

D0 e Zoy Loy > Q0N Zoy Ley . 1.6
Thus one has a smooth family of operators D jfr g .= D Lf " ¢ g which admits a well-defined
index bundle ° ’
ind Dy, €K B . 1.7

Let g and thus g° be equipped with an AdG-invariant metric. Let .77 = |y |? be the
norm square of 2. Let X”€ ' TZ be such that for any bE B X7 7, is the Hamiltonian

vector field associated with .77, = 77| 7, Clearly X7 z, &I TZ, and X‘7/|(7Z[ &I 192,
which we denote by X and X;/} respectively. Set

BX’ = xe€M:X"x =0.
We assume that B X7 oM = 0.
Forany b&€ B and v& TZ, asinrefs. 1 2 let ¢ v be the Clifford action of v on
2% 7, L, which interchanges Qe 7, Ly and Q°°Y Z, L, . Let ey, denote the

unit inward normal vector field on dM . Then for each & B  the restriction e, gimz = €dimz Z, is

the unit inward normal vector field on d Z,. As in ref. 2 3.5 for any b€ B and v €
TZ,|o7 setc v =—c e gimz € U . Following ref. 2 1.19 1.20 we define the

deformed operators for any b€ B and TE R
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VT

L L A "
D ‘: ;= D +b + > c X.7 I .QO even Zb Lb > QO odd Zb Lb 1.8
L L v -1T T 0 ev 0 ev
b —_ b - - - b . even even
D Z, + T = D IZ, + 7 ¢ Xazb 10 Zy L |azh — () Zy Ly |sz-

1.9

. L} L} I L
We denote the family D™ , ,ep resp. Da’z, . p bes by Dyyp o presp. Doysp o 71

: : . . : L
Since the G-action preserves everything it commutes with the operators D! . and

L . : . %
D7}, . . respectively. For each b& B when restricted to the G-invariant part "z, L ¢
‘b

of Q° " 7, L, resp. 7z, L, °l, z, of Q°* 7, L, |, 7, we get the corresponding

. . L L L
= b b b
G-invariant operator D . resp. D 76T We denote D}, ; wep and
D" by D" and D" respectively. In sec. 2 below we will
92,6 + T ,cp Y Ym/B ¢ o+ T IM/B G + T P y- .

L[)
92,6 + T

prove that for T large enough the operators D b€ B are invertible. Hence for suf-

ficiently large T we can and will choose the Atiyah-Patodi-Singer boundary condition ’

) . I L .
Py ¢ + 1 =0 associated with DJ”Zb ¢ . p for each operator D! , . b € B. Then the family
. . . . L .
Py ¢ + 1 =0 e p s continuous and provides a spectral section for D, . . , ;in the sense of
. I
ref. 8 which we denote by P; , 7 -0. Denote D)., Pycir=0 vep by

L - . . . .
Dyp ¢+ 7 aps Which is a continuous family of Fredholm operators and determines an index

bundle
ind D}, p o pups €K B . 1.10

Now we can state the main result of this section as follows

Theorem 1.1. There exists Ty >0 such that for any 7 = Ty ind D]LW B s Toaps <
K B does not depend on T'. Moreover the following identity holds in K B
ind DZII;IC,/B , = ind D][l;[/B G+ T APS 111

2  Proof of Theorem 1.1

This section is organized as follows. In subsec. 2.1 we prove the invertibility of the opera-
tor D(L7’7h ¢ + r for sufficiently large 7> 0 and any b & B. In subsec. 2.2 we prove Theorem
1.1 by combining the arguments in refs. 2 3

2.1 The invertibility of Ds”Zb pPa—

Asinref. 2 for each b& B there exists €9 >0 such that 9Z, x 0 e, can be identi-
fied with some neighborhood of the boundary J Z,, by the inward geodesic flow which is perpendic-
ular to Z,. Let ¢, ey dimz-1 €b dimz be an orthonormal basis of 77, on dZ,; x 0 ¢
such that when restricted to dZ, ej gmz is the unit inward normal vector field on Jd Z, and

ey €y dimz-1 1s an oriented orthonormal basis of T7Jd Z; . Here €, can be chosen uniformly
on B by the compactness of B.
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Let h, hgime be an orthonormal basis of g* . Then p has the expression p =
> dim@ pih;  where each y; is a real function on M. For any b& B set y1, ; = ;1 , and denote

by V, ; the Killing vector field on Z, induced by the dual of h; .

Now we recall a Bochner type formula from ref. 2 Theorem 3.3 ' to which we also refer
for the corresponding notation .

Theorem 2.1. For each & B the following identity on J Z, holds

dimZ-1 dimG
Db “ ph _ ph “pl, LY 1T E - L v 0V
aZ, + T aZ, + T = 27, + 9Z, + 2 C €y € Ve A
b b b j=1 =1
/\/_1 T dimG 77 dimG 7 10 7
o7 - ~ S~ 3 / y
+ 47T 77, - ) 2 C €p dimz C MUp i veb ‘]Zmz Vb i = - ITZ; Tr V b A iVb i
dimG dimG 2
T _ Lz ~ 9z 2 T o
+52 Vele d%yy e Vi 41 d % _2M_1TZI)M Ly, o+ VX1

2.1

From Theorem 2.1 one can proceed as in ref. 2 to get
Theorem 2.2. There exist C >0 ¢ >0 and Ty >0 such that for any b€ B T =T and
any s € Qe 7oLy Cl, z, the following Sobolev norm estimate holds

I 2 2
I D(7hzb + 1 az o =C | s 27,0

Proof. In ref. 2 2.2 is proved fiberwisely. As B is compact one sees easily that

ot T=c s 2.2

the constants C ¢ and T can be chosen not depending on b & B.

2.2 Proof of Theorem 1.1
For each b€ B we define for ¢ =0 that E} + resp. F H . s the set of sections of

Acreedd P 01 70 @I, resp. AVl 7OV 7 QLg, over Z, resp. over Zg

which lie in the g-th Sobolev space with the Sobolev g-norm || || , respectively. We denote

q
the G-invariant parts of Ef . by EZ i respectively. For any T =0 set

16 16
Eb T = SGEb+:PbG+T>03|f7Zb=O- 2.3
16 . . .
Then E, T is a Hilbert space with respect to Il Il;. Set
I I
D(;”+Tp];o= Déir Pycirso
I I 2.4
Dwpcsrars = D, p,=0 bEB-
For any b€ B DY :E.© T —E ° is a Fredholm operator 7 . By Theorem 2.2
or any ¢+ 1p=0 b » _ is a Fredholm operator * . By Theore .

. I . : .
when T is large enough Dy, 5 ¢ 4 7 aps is a continuous family of Fredholm operators ® .

Recall that we have assumed =" 0 (IM = (.

Let UC M be a sufficiently small G-invariant open neighborhood of s« 10 with UNOM
=@. Denote U, = U() Z, for each bE B. Then as in ref. 2 sec. 4b there is a linear

map Jr b:FZ i—>EZ (; such that for any u€ Q° * Z;, Lg, one has Jp u€ Q" " Z,

VAT s
2

1 Note that the extra term R SN X7 inref. 2 Theorem 3.3 has been eliminated here.
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q G
Tb +

L, © with Supp Jrwu CU,. Let E be the image of FZ , in E} 2 by Jr 4. Then Jy ,:
F(;), iﬂE(;(b; , 1s an isometry. Clearly E;i . C Eg T . Let E; bGi | be the orthogonal

06 . 06
space to E in £, . Forany ¢ =0 set

T b +
q 6 B G 06
E1)+LT _EZ TﬂET})+L' 2.5
Let be the orthogonal projecti tors from Ej - to Eo ¢ E°
et pr v + pry + 1 be the orthogonal projection operators from FEj, . to k., | Th + L
. . .. L
b
respectively. Then we have the following decomposition of D , P20
4
I
b J— .
DG+TP,);0_ ZDle 2.6
where
Dyry = DY D, o = b
bT1 = Prbp- (;+pr20pr+ b T2 = Pribh - G+pr;0prb+L
Dyrs = DY Dy pa = Db
b T3 = Prob- | G+pr;0PTb+ b T4 = Prb- | G+TP,,>0pT”+¥
2.7

By ref. 2 Proposition 4.5  we have the following fibrewise estimates
Proposition 2.3. i Forany bE B as T— + o

71 L' L even Of
Jr Do ridry = Dy + O(ﬁ)i Q° Zey Ly QY Zoy Loy

2.8
where Dg“ " is the Dirac type operator on Z ;, defined in ref. 1 Definition 3.12 .
ii There exist C, | >0 C;,,>0 and T, o >0 such that for any T =T, any s €
E° T §€E ° _ then

b + L b + T
ruquoscmﬂLLb+\sHJ 29
7T
nmrﬁwusc“thih+y|q 210
7T

and

1Dy raslo=Cool sl +vTlsl). 2.11

By the compactness of B one can construct the J; ;" s in such a way that J; , depends
smoothly on b & B. Moreover one can choose the positive constants T, o C, ; Cj 5 in Propo-
sition 2.3 so that they do not depend on b& B.

Now following ref. 3 2.8 for any u©€R and bE B set

I
DGI'+TP,]>0u :DbT1+DbT4+UDbT2+DbT3- 2.12
T e . L : .
Since U(NIM = one verifies easily that D/ , p=o U bEB form a continuous B-family

of operators which is also continuous with respect to u & 0 1
The following lemma plays a key role in our proof of Theorem 1.1.

Lemma 2.4. There exists T >0 such that for any T =T Dé" . 7 p=o W I1salFred-

holm operator for each b€ B and u & 0 1 . Hence Dé" O0su <1

+rp=0 U bEB
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forms a continuous curve of continuous B-families of Fredholm operators.
Proof. Since B is compact we only need to show the Fredholm property on each fibre.

From the second part of Proposition 2.3 one sees that there exists C3 >0 such that for any T =
To u€ 01 and SGE; “ T one has

L

,, < s Il
_DG+7‘l’b;0us‘O\C3

| D + 1 slol. 2.13

¢+ T P=0%

On the other hand by the Bochner type formula in ref. 2 2.6 one deduces easily that there
exist C4 Cs5>0 such that for any T =T

I
I D¢, T P,=0% H0264H5H1—Cs“/—THSHO- 2.14
From 2.13 and 2.14 we get
3
HDG+TP>O DGb+TPb>OuSH0\ 4f G+TP,);OS||0+ Ci+ Cs | sllo.

2.15

From 2.15 and the Fredholm property of Dl we obtain the Fredholm property of

G + T P=0

DL[;

¢+ 1m0l for sufficiently large T'.

Clearly the index bundle construction in ref. 6 applies well to our continuous families of
Fredholm operators. Moreover the homotopy invariance property for index bundle still holds.
Thus by Lemma 2.4 we have the following identity of index bundles

ind D P o ven = ind Dy, rpzo O ven = ind Dyry+ Dyragen
=ind Dy 71 yep +ind Dy 74 4ep in K B 2.16
where in the last line each D, 7| resp. Dy 74 bE B is now regarded as a Fredholm opera-
tor mapping from EITZ’ ., resp. E; (; T 1o E(;Z _ resp. ET b -
Now by an obvious analogue of the first part of ref. 9 Prop. 9.16  which follows from
the second part of Proposition 2.3 and its adjoint analogue one finds

ind D[,T4 bGBzO in K B . 2.17
From 2.16 2.17  we have
ind DWB ¢+ 7 aps = ind Dé"+ 1P =0 bER = ind Dy 71 e in K B .
2.18

By the first part of Proposition 2.3 one also knows that when T is large enough
lIld ,]TbDbjljj b ],ggzlnd DQ+ bEB in K B . 219

By 2.18 2.19 and again the homotopy invariance property of the index bundle °
one obtains for T sufficiently large that

ind D, = ind D' yep = ind D, in KB 220

M/B + M/B G + T APS

which is exactly 2.11 . The proof of Theorem 1.1 is completed.

3 Applications to circle actions

Inref. 2 sec.5 an analytic version of a residue formula of Guillemin-Kalkman-Martin °
is given. In this section we will generalize it to the family case.
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This section is organized in three parts. In subsec. 3.1 we prove a special family quanti-
zation formula which holds for any auxiliary bundle. In subsec. 3.2 we apply the trick intro-
duced in ref. 2 sec. 5Sb  and also the concept of higher spectral flow in ref. 10 to reduce
the calculation of the index bundle on the family of symplectic quotients to a certain kind of in-
variant higher spectral flow which no longer involves the symplectic conditions. In subsec. 3.3
we identify the above invariant higher spectral flow in a specific situation which implies our family
extension of the Guillemin-Kalkman-Martin residue formula.

3.1 A simple family quantization formula for a family of symplectic manifolds with boundary
In this subsection we replace the line bundle L by a G-equivariant Hermitian vector bundle
E over M with a G-equivariant Hermitian connection V ¥ and get the following family extension of

Theorem 5.1 in ref. 2 .
Theorem 3.1. IfB X7 (N M\ "' 0 =@ then there exists Ty =0 such that for
any T =T,
ind Dy, =ind Digg,ras in KB 3.1

Proof. Since now X is never zero on M \ =" 0 one proceeds fiberwisely as in ref.

2 sec. 5a  and uses the compactness of B to show that the problem can be localized directly

to arbitrary sufficiently small neighborhoods of 2=' 0 . One then proceeds as in sec. 2 to com-
plete the proof of 3.1

3.2 Specialization to G = S' case
We now consider the special case where G = S'. Note that y is now a real function on M .
Let V denote the Killing vector field generated by the unit base of the Lie algebra of S'. Let V,,
and V; z, be the restrictions of V on Z; and d Z, for each b & B respectively. Clearly V, &
TZ, and VgaG TaZ,.
For any bEB and TER set
Dy r = Dy o+ = 1Te v, : 0% 7, B, ©—>0°" 7, E, ©

G +

Da'z CeT = Jz ¢tV =T Vog 2 Q0 Z, By © 1oy > Q0" Zy By © Moy
3.2

By proceeding as in subsec. 3.1 when | T'| is large enough we get the invertibility of

D b

07 G e T for each b€ B. Thus D7 7 ¢+ 1 bEB form a continuous family of invertible oper-

We will use the notation P, ¢ + 1 =0 to denote the

for each b€ B . Then the continu-

~F
ators which we denote by D, . . . ;.

Atiyah-Patodi-Singer projection ’ associated with D% 07 G e T

ous family Pyc.r ~0 pc p is a spectral section in the sense of ref. 8  which we denote by

P¢ + 7 =0. Now we have a continuous family of Fredholm operators
~F
—_ b
DM/BG+TAPS_ DG+T PbG+T20 beB- 3.3

The following family extension of Proposition 5.2 in ref. 2 follows obviously from the compact-
ness of B.
Proposition 3.2. Under the same conditions as in Theorem 3.1 for the G = S' case there

exists Ty >0 such that for any T =T
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ind Dyp o opps =0 in KB, 3.4
Set
Dé},cu = l_uD?Zh(;JrT"'ungzchrT 3.5
Dflz, ¢cuw = l-u Bé[zl ¢+ -7t ”ngz, G+ T 3.6
DgM/B ¢c U = 51?7,(, u hesn DfM/B ¢ U = Dlg},c U peB- 3.7

By a G-invariant version of Theorem 5.2 in ref. 10 and Theorem 3.1 Proposition 3.2 we
get the following important consequence which is a family version of Corollary 5.3 in ref. 2 .
Corollary 3.3. Under the assumption of Theorem 3.1 and that G = S' there exists T >

0 such that for any T = T, one has the following identities in K B

) £ ~f ~ £
G - — ~ ~
ind DMC/B+ ==st Dyypc, v Por-r=0 Dyypec.r Posrso
~ ~ b
==st Dyypc.r Posrso DJM/BG+TPG+T;0 3.8

where' sf” is the notation of higher spectral flow in the sense of ref. 10 .

We now decompose each d Z, into two disjoint parts dZ, = JdZ, + U dZ, _ such that
/,lbl iz, . >0 and /1b| iz, _ <0. Set IM R UbGB aZb + -

By Lemma 5.4 of ref. 2 and the compactness of B one gets

Lemma 3.4. There exists Ty >0 such that for any 7 = Tp and u & 0 1  the operator

AE’) v |

DY, . u resp. D, . u isinvertible on dZ, , resp. JZ, _ foreach bEB.

From Corollary 3.3 Lemma 3.4 and the additivity of higher spectral flow we get the fol-
lowing main result of this subsection which extends Theorem 5.5 in ref. 2 .
Theorem 3.5. Under the same condition as Theorem 3.1 and that G = S' there exists T,

>0 such that for any T =T

. E E = =~ =
G = —
ind DML/B + T Sf”M . DJM/B G+ -T PC + -T =0 DJM/B G+ T P(; + T =0
—p ~ ~F _
:—SfaM_ DUM/B(;+T P(;+T;0 DJM/BC+—T P(;+_T;0 . 39

3.3 A relative family index theorem for symplectic quotients of circle actions
In this subsection we assume again that G = S' but we no longer assume that the fibration

Z—>M->B has compact fibres. However we will assume that the smooth map p: M—R is
proper.

Asinref. 2 sec. 5¢c  for any regular value ¢ € R of p as well as p, for each b& B
we can construct fibrewise the symplectic quotient M, = ;' ¢ /S' w, . . Here for simplici-
ty we also make the assumption that S' acts on ;' ¢ freely.

Let ¢; < ¢, be two regular values of z as well as p;, for each b & B and assume that S! acts

on both 1 ¢, and 7 “! ¢, freely. Let E, be the induced Hermitian vector bundles over

M. i =1 2. In what follows we will express the difference ind D> =

. r
ind Dy poe

B
1

through quantities on the S'-fixed point set in 2= ¢; ¢,
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Since y is proper one knows that z~' ¢, ¢, is compact. One also knows that

/u;,_l ¢; 1=1 2 areconnected foreach b& B cf. ref. 11 . Let F| ¢; ¢ F, ¢
¢, be the connected components of the fixed point set F ¢; ¢, of the S'-action in 7 -
¢y . Inother words F; ¢y ¢ 1 =<j <gq are the connected components of the zero set

F ¢ ¢y of the Killing vector field V. Then for each j=1 2 q the projection 7: M— B

induces a fibration 7;: F; ¢, ¢, =B with each fibre F; ;, ¢, ¢, =7 j_l b being one of the

connected components of the fixed point set of the S'-action on Z,. Asin ref. 2 Appendix

. £
to any F;, ¢; ¢y one has two natural Dirac-type operators D, ., 'V, and

ib 12

Dy . _y Then for each j we get two continuous families of Fredholm operators
Jjb 172 b
E E
Dﬁ} 6 F v = DF/, p €1 €6 T Vb bes
E B 3.10
DF], c e, + -V = DFJ, P - Vb be B
which admit the index bundles ind D | V. andind D, , ., ., -V inK B re-
i ‘1 % i 1%

spectively. These index bundles give the local contributions of F; ¢; ¢, to an S'-invariant in-

j
dex bundle.

For each j=1 2 g set v, . =dimgN jlboi where N jlbOi is a fibrewise analogue of
what in ref. 2 Appendix . Clearly v, . are well-defined.

We can now state the main result of this subsection which is the family generalization of

Theorem 5.7 in ref. 2
Theorem 3.6. The following identity holds in K B

ind DM?/B ¢, —ind Dy oo

. s E . E
=2 -1%idD,, .,V - =1%indD,,, , -V . 3.1l
— S PN
Proof./As in the proof of ref. 2 Theorem 5.7  we assume that ¢; resp. ¢, is not the
minimal resp. the maximal value of each y, on Z, b& B. Thus there exists a sufficiently
small € >0 such that no critical value of ;2 as well as p, liesin ¢;—€ ¢ +e resp. c¢r—
€ c+te and that x =" ¢, —¢ resp. 4" ¢, +¢e s not empty. By applying Theorem
3.5t pu L ¢i—e ¢;+e and 7 ! ¢y—e c¢r+e  one derives easily the following equali-

ties in K B for any T =T, with Ty >0 large enough

E ~E -
ind DML/B c+ sfyt e D,[l c-e G+ T Pe w120
, » i
D’l-l c-e G4 -T PC+ -T =0
. £ — _
ind D/I;IZ/B c. =~ sf, ! o b D/jl e Goa - Pe o 120
2 ~F -
D}[l cre G+ T PG + T =0 . 312
Thus one gets
ind D’ —ind DY

M /B G + M /B G +

< o
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~p - —p -
— -1 ~ - ~
= - sf, ¢ -e D,[‘cl_e ¢+-r Pev 120 D/zlcl—s ¢.r Pos+r=0
— sf, D P D P 3.13
no cyte p e G4 -7 TG+ =T 20 p e C4T TG+ T =0 - .
Considering the operator in 3.2 on z;' ¢j—¢ cr+¢ we have the deformed oper-
ator
~E
b
DG + T
E - ;
=Dy, +V-1Tc V, : Q""" u3' c1-¢ cr+e K, °
_’QO odd /1;] cp — €& Cr+ ¢ E}, ¢ 3.14

and its associated boundary operator

b, :‘QOe»enﬂgl Cl—€ ¢+ € Ebcl

- -1
dp, c-ecve G+ T Ip, ¢ —e c,+e

0 even -1 G _
— () Hb cp — € C)+ ¢ Eb |(7/lhI c,-¢ c,4e - 3.15

One verifies similarly that D Jj&b" cre G4 TS invertible when | T'| is large enough and

thus one gets the corresponding continuous family of Fredholm operators ®

Doy vups= Diyr Poesrso0 sen- 3.16

N . . ~E
On the other hand one also has the localization principle corresponding to D, , . ,ps. Then ap-
plying the results in ref. 2 sec. 5¢  to the family case one deduces easily that there exists
Ty >0 such that for any T =T, the following family analogue of 5.21 and 5.22 in ref.
2 holdin K B'

q

. ~E . E
ind Dy, 1 s ZZ; —L e ind Dy 3.17
-
q
. . ~E A . E
ind Dy, ,ps =20 =1 %ind D, . =V . 3.18
~ =1 j 12
From 3.17 3.18 and Theorem 5.2 in ref. 10 one deduces that
q
1 k E
-1 %+ind D V. — —-1%-ind D -V
%14 ! chl ¢, + / F/cl ¢, +
— - g -
== Sfﬂ_l €,m¢ D/til c-e G+ =T Pe o o1 =0 D;f] c-e G+ T Pe 1 =0
— - g -
- sf, e, te D;[‘ cyte G+ =T Pe s -1 20 D,[’ eyt G+ T Peyrzo - 319

From 3.13 and 3.19 weget 3.11
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