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Abstract. We present a direct analytic approach to the Guillemin-Sternberg
conjecture [GS] that `geometric quantization commutes with symplectic
reduction', which was proved recently by Meinrenken [M1], [M2] and
Vergne [V1], [V2] et al. Besides providing a new proof of this conjecture, our
methods also lead immediately to further extensions in various contexts.

0. Introduction

Let �M ;x� be a closed symplectic manifold such that there is a Hermitian
line bundle L over M admitting a Hermitian connection rL with the prop-
erty that

�����ÿ1p
2p �rL�2 � x. Let J be an almost complex structure on TM so that

gTM �u; v� � x�u; Jv� de®nes a Riemannian metric on TM . Then one can
construct canonically a Spinc-Dirac operator

DL : X0;��M ; L� ! X0;��M ; L� ; �0:1�
which gives the ®nite dimensional virtual vector space

Q�M ; L� � X0;even�M ; L� \ kerDL ÿ X0;odd�M ; L� \ kerDL : �0:2�
Now suppose that �M ;x� admits a Hamiltonian action of a compact

connected Lie group G with Lie algebra g. Let l : M ! g� be the corre-
sponding moment map. We assume 0 2 g� is a regular value of l, and for
simplicity, we also assume G acts on lÿ1�0� freely. Then MG � lÿ1�0�=G is
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smooth. Furthermore, x descends to a symplectic form xG on MG. Thus one
gets the Marsden-Weinstein symplectic reduction �MG;xG�. On the other
hand, a formula due to Kostant [Ko] (cf. (1.13) in Section 1) induces a
natural g action on L. We make the assumption that this g action can be lifted
to a G action on L. Then this G action preserves rL. One can also assume,
after an integration over G if necessary, that G preserves the Hermitian
metric on L, as well as the almost complex structure J and thus also the metric
gTM . Furthermore, the pair �L;rL� descends to a pair �LG;rLG� over MG so

that the corresponding curvature condition
�����ÿ1p
2p �rLG�2 � xG holds (cf. [GS]).

The G-invariant almost complex structure J also descends to an almost
complex structure on TMG. Thus one can construct the corresponding Spin

c-
Dirac operator on MG, as well as the virtual vector space Q�MG; LG�.

Since G preserves everything, it commutes with DL. Thus Q�M ; L�
becomes a virtual representation of G. Denote by Q�M ; L�G its G-trivial
component.

We can now state the geometric quantization conjecture of Guillemin-
Sternberg [GS] as follows.
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Theorem 0.1. The following identity holds,

dimQ�M ; L�G � dimQ�MG; LG� : �0:3�
Theorem 0.1 was ®rst proved by Guillemin-Sternberg [GS] in the holo-

morphic situation when �M ;x� is KaÈ hler. They raised the conjecture for
general symplectic manifolds. When G is abelian, this conjecture was
®rst proved by Guillemin [G] in a special case, and later in general by
Meinrenken [M1] and Vergne [V1], [V2] independently. The remaining
nonabelian case was proved by Meinrenken [M2] using the symplectic cut
techniques of Lerman [Le]. There are also closely related papers by Duis-
termaat-Guillemin-Meinrenken-Wu [DGMW], where the symplectic cut
techniques were applied to the circle action case, and by Je�rey-Kirwan
[JK1], where the authors prove (0.3) under some extra conditions by using
the nonabelian localization formulas of Witten [W1] and Je�rey-Kirwan
[JK2]. See also the survey paper by Sjamaar [S]. In all these works, the
equivariant index theorem of Atiyah-Segal-Singer [AS], which expresses the
analytic equivariant index through topological data on the ®xed point sets,
plays essential roles.
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The purpose of this paper is, among other things, to give a direct analytic
proof of Theorem 0.1.

The basic point is trying to consider the problem in the framework of
Morse theory. Recall that H � jlj2, the norm square of the moment map,
was taken by Kirwan [K1] as a kind of Morse function in her study of the
cohomology of MG. This function and in particular its associated Hamil-
tonian vector ®eld XH were also used in an essential way by Witten in his
paper [W1] on nonabelian localizations. They further appeared in the papers
of Je�rey-Kirwan [JK2], Liu [Liu], Vergne [V3] and Wu [Wu] on this subject.
Here for our purpose, we deform the Spinc-Dirac operator DL by using
the Cli�ord action of XH. To be more precise, we deform DL to
DL

T � DL �
�����ÿ1p

T
2 c�XH� and study its properties as T ! �1.

Our ®rst main result, proved in Theorem 2.1, is that under this de-
formation, the proof of Theorem 0.1 can be `localized' to arbitrary small
neighborhoods of lÿ1�0�. Now as 0 2 g� is a regular value of l, one ®nds
that lÿ1�0� is a nondegenerate critical submanifold of H in the sense of
Bott. This allows one to apply almost directly the techniques of Bismut-
Lebeau [BL, Sects. 8, 9] near lÿ1�0� to complete the proof. It is remarkable
that although the techniques in [BL] do not apply to DL

T directly, they
work perfectly when restricted to G-invariant subspaces. Consequently, the
in¯uence of [BL] on the present paper can be felt in many places in the
text.

If G does not act on lÿ1�0� freely, then MG is an orbifold. Our methods
can also be applied to get the corresponding orbifold version of Theorem
0.1, which was also proved by Meinrenken [M2] in the nonabelian case. For
simplicity, we only discuss in detail the case where G acts on lÿ1�0� freely.

Our methods also lead immediately to further generalizations of
Theorem 0.1 in various contexts. Here we mention three of them.

For the ®rst one, let E be a Hermitian G-equivariant vector bundle over
M , admitting a Hermitian G-equivariant connection. Then E descends to a
Hermitian vector bundle EG over MG. And we can de®ne the corresponding
virtual vector spaces Q�M ;E 
 L� and Q�MG;EG 
 LG� respectively.

Theorem 0.2. There exists m0 > 0 such that for any integer m � m0,

dimQ�M ;E 
 Lm�G � dimQ�MG;EG 
 Lm
G� : �0:4�

The second result may be seen as an invariance property under reduc-
tion. It holds without the existence assumption of L.

Theorem 0.3. If lÿ1�0� is not empty, then we have the equality of Todd genus,
hTd�TM�; �M �i � hTd�TMG�; �MG�i.

For the third one, we restrict ourselves to the holomorphic situation where
�M ;x� is KaÈ hler and L is holomorphic over M . In this case, we ®nd that the
above deformation corresponds exactly to the deformation of the Dolbeault
operator by certain exponentials of H. If we denote by H0;p�M ; L� the pth
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Dolbeault cohomology and by H 0;p�M ; L�G itsG-invariant part, then what we
obtain is the following re®ned version of Theorem 0.1.

Theorem 0.4. The following Morse type inequality holds for any integer p,

dimH 0;p�M ; L�G ÿ dimH0;pÿ1�M ; L�G � � � � � �ÿ1�p dimH0;0�M ; L�G
� dimH0;p�MG;LG� ÿ dimH0;pÿ1�MG; LG� � � � � � �ÿ1�p dimH 0;0�MG; LG� :

�0:5�

Theorem 0.3 has also been obtained independently by Meinrenken and
Sjamaar [MS].

This paper is organized as follows. In Section 1, we introduce the basic
analytic deformation of the Spinc-Dirac operator and prove an essential
Bochner type formula for the Laplacian of the deformed operator. In
Section 2, we prove the basic result which allows us to localize the proof of
Theorem 0.1 to su�ciently small neighborhoods of lÿ1�0�. Section 3 is
devoted to the proof of Theorem 0.1 by using the techniques of [BL]. The
®nal Section 4 contains various extensions of Theorem 0.1 which can be
proved with little modi®cations from our proof of Theorem 0.1. They in-
clude all of the three theorems mentioned above as well as some further
extensions.

The results presented in this paper, which were contained in the preprint
[TZ2], were announced in [TZ1]. The present paper is a revision of [TZ2],
following various suggestions mainly due to J.-M. Bismut and one of the
referees.

1. Hamiltonian actions and a deformation of Dirac operators

In this section, we recall the basic geometric setup, construct the corre-
sponding Spinc-Dirac operator and introduce a deformation which is the
key to our proof of Theorem 0.1. In particular, a basic Bochner type
formula for the Laplacian of the deformed operator is proved.

This section is organized as follows. In a), we review the construction of
Spinc-Dirac operators on symplectic manifolds. In b), we present the basic
geometric setup about Hamiltonian actions on symplectic manifolds. In c),
we introduce a deformation of Spinc-Dirac operators and prove a formula
for the Laplacian of the deformed operator.

a) Spinc-Dirac operators on symplectic manifolds

Let �M ;x� be a compact symplectic manifold. Let J be an almost complex
structure on TM such that

gTM�v;w� � x�v; Jw� �1:1�
de®nes a Riemannian metric on TM . It is well-known that such a J always
exists, and that it is unique up to homotopy (cf. [McS, Prop. 4.1]). Let
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TMC � TM 
 C denote the complexi®cation of the tangent bundle TM . Then
one has the canonical splittings

TMC � T �1;0�M � T �0;1�M ;

^�;��T �M� � a
dimC M

i;j�0
^i;j�T �M� ; �1:2�

where

T �1;0�M � fz 2 TMC; Jz �
�������
ÿ1
p

zg;
T �0;1�M � fz 2 TMC; Jz � ÿ

�������
ÿ1
p

zg;
^i;j�T �M� � ^i�T �1;0��M� 
 ^j�T �0;1��M� ; �1:3�

and dimC M � 1
2 dimM is the complex dimension of M .

The almost complex structure J determines a canonical Spinc-structure
on TM (cf. [LM, Appendix D]). Furthermore, with gTM , the fundamental Z2

Spinc-bundle is given by

^0;��T �M� � ^0;even�T �M� � ^0;odd�T �M� : �1:4�
For any X 2 TM whose complexi®cation has the decomposition

X � X1 � X2 2 T �1;0�M � T �0;1�M , let �X1
� 2 T �0;1��M be the metric dual of X1

(cf. [BL, Sect. 5]). Then c�X � � ���
2
p

�X1
� ^ ÿ ���

2
p

iX2
de®nes the canonical

Cli�ord action of X on ^0;��T �M� (cf [LM, Appendix D]). It interchanges
^0;even�T �M� and ^0;odd�T �M�.

Let k be the complex line bundle

k � det�T �1;0�M� : �1:5�
We now temporarily assume that M is spin. In this case one can con-

struct a square root k1=2 of k, which together with the canonically induced
Spinc-structure on TM determine a Spin structure on TM . Let
S�TM� � S��TM� � Sÿ�TM� be the corresponding Z2-graded bundle of
spinors associated to �M ; gTM �. Then, one has the following canonical
identi®cations of Cli�ord modules (cf. [LM, Appendix D]),

S��TM� 
 k1=2 � ^0;even�T �M�;
Sÿ�TM� 
 k1=2 � ^0;odd�T �M�;

S�TM� 
 k1=2 � ^0;��T �M� : �1:6�
Let rTM be the Levi-Civita connection of gTM . Then rTM together with

the almost complex structure J induce via projection a canonical Hermitian

connectionrT �1;0�M on T �1;0�M . This, in turn, induces a Hermitian connection
rk on k and thus a Hermitian connection rk1=2 on k1=2.

Also, rTM lifts to a Hermitian connection rS�TM� on S�TM� preserving
S��TM�. Let rS�TM�
k1=2 be the tensor product connection on S�TM� 
 k1=2

de®ned by
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rS�TM�
k1=2 � rS�TM� 
 Idk1=2 � IdS�TM� 
 rk1=2 : �1:7�

Then rS�TM�
k1=2 is a well-de®ned Hermitian connection on ^0;��T �M� �
S�TM� 
 k1=2 and preserves the Z2-grading. We will also denote this con-
nection by r^0;��T �M�.

Now for the general case without the assumption that M is spin, it is
well-known that although k1=2 and S�TM� might not exist, one can still
construct their product which does exist (cf. [LM, Appendix D]). Further-
more, one can still construct the tensor product connection as above locally
and get in fact a globally well-de®ned connection r^0;��T �M� on ^0;��T �M�. In
particular, when doing local computations, one can use the above
identi®cations just as in the spin case. From now on, we will drop the spin
condition on M and adopt the above convention.

Now let E be a Hermitian vector bundle over M with a Hermitian
connection rE. Then the tensor product connection

r^0;��T �M�
E � r^0;��T �M� 
 IdE � Id^0;��T �M� 
 rE �1:8�
de®nes a Hermitian connection on ^0;��T �M� 
 E.

Denote by X0;��M ;E� the set of smooth sections of ^0;��T �M� 
 E.
Let e1; . . . ; edimM be an orthonormal base of TM .

De®nition 1.1. The Spinc-Dirac operator DE is de®ned by

DE �
XdimM

j�1
c�ej�r^0;��T �M�
E

ej
: X0;��M ;E� ! X0;��M ;E� : �1:9�

Clearly, DE is a formally self-adjoint ®rst order elliptic di�erential op-
erator on X0;��M ;E�. Let Q�M ;E� be the virtual vector space de®ned by

Q�M ;E� � X0;even�M ;E� \ kerDE ÿ X0;odd�M ;E� \ kerDE : �1:10�

b) Hamiltonian group actions and the norm square of the moment map

From now on through the end of Section 3, we assume that there is a
Hermitian line bundle L over M with a Hermitian connection rL such that�������ÿ1p

2p
�rL�2 � x : �1:11�

Now suppose that �M ;x� admits a Hamiltonian action of a compact
connected Lie group G with Lie algebra g. Let l : M ! g� be the corre-
sponding moment map. Then for any V 2 g�, one has by de®nition1

iV x � dhl; V i : �1:12�

1 In this paper we will use the same notation for V and its induced vector ®eld on M .
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The following Kostant formula [Ko] de®nes an action of g on sections of L,

LV s � rL
V sÿ 2p

�������
ÿ1
p

hl; V is; s 2 C�L�; V 2 g : �1:13�

We make the basic assumption that this g action can be lifted to a G action
on L. From (1.11)±(1.13), one sees easily that this G action preserves rL.
After an integration over G when necessary, we can also assume that G
preserves the Hermitian metric on L, the almost complex structure J and
thus also the Riemannian metric gTM .

Let g (and thus g� also) be equipped with an AdG-invariant metric. Let
H � jlj2 be the norm square of the moment map l. Then H is a
G-invariant function on M . In particular, its Hamiltonian vector ®eld,
denoted by XH, is G-invariant. The following formula for XH is clear,

XH � ÿJ�dH�� : �1:14�
Let h1; . . . ; hdimG be an orthonormal base of g�. Then l has the expres-

sion

l �
XdimG

i�1
lihi ; �1:15�

where each li is a real valued function on M . Denote by Vi the Killing vector
®eld on M induced by the dual of hi.

By (1.15), one has

H � jlj2 �
XdimG

i�1
l2i : �1:16�

Also by (1.12) one has for each 1 � i � dimG that,

iVix � dli : �1:17�

From (1.17) and (1.1), one ®nds that

J�dli�� � ÿVi : �1:18�

From (1.14), (1.16) and (1.18) one obtains that

XH � ÿ2J
XdimG

i�1
li�dli�� � 2

XdimG

i�1
liVi : �1:19�

By (1.19) and (1.15), it is clear that lÿ1�0� is contained in the set of
critical points ofH. An important fact is that there might be other critical
points ofH as well. This is the ®rst di�culty which would make a proof of
Theorem 0.1 non-trivial. Another important observation, which is essential
for the analysis near lÿ1�0�, is that by (1.19), XH lies in the space of vector
®elds generated by g over M .
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c) A deformation of Dirac operators and a Bochner type formula

For an integer m, let Lm be the mth tensor power of the line bundle L.
In using the same notation and assumptions as in a) and b), we now

introduce a deformation which is fundamental to this paper.

De®nition 1.2. For any T 2 R, let DLm

T be the operator de®ned by

DLm

T � DLm �
�������ÿ1p

T
2

c�XH� : X0;��M ; Lm� ! X0;��M ; Lm� : �1:20�

Clearly, DLm

T is a formally self-adjoint ®rst order elliptic di�erential op-
erator. Furthermore, since G preserves everything and XH is G-invariant,
one sees that DLm

T is G-equivariant.

Remark 1.3. The Hamiltonian vector ®eld XH, or its dual one form, has
played an important role in Witten's paper on nonabelian localizations
[W1]. In some sense the above deformation might be viewed as a quantized
version of the deformation used in [W1]. A similar deformation has also
been used by Vergne [V2] on the symbol level.

Remark 1.4. When J is integrable so that �M ;x� is KaÈ hler, one veri®es that

DLm

T �
���
2
p �

eÿT jlj2=2 �@
Lm

eT jlj2=2 � eT jlj2=2
�

�@
Lm��

eÿT jlj2=2
�
: �1:21�

In view of Kirwan [K1] and Witten [W2] (see also Mathai-Wu [MW]), one
may regard DLm

T as a Morse theoretic deformation of DLm
.

Now for any V 2 g, denote by LV the in®nitesimal action induced by V
on the corresponding vector bundles. Also, we will omit the superscripts Lm,
TM , etc., from the context, when there will be no confusion.

Lemma 1.5. The following formula for operators acting on X0;��M ; Lm� holds,

LV � rV ÿ 2mp
�������
ÿ1
p

hl; V i ÿ 1

4

XdimM

j�1
c�ej�c�rej V � ÿ

1

2
Tr rT �1;0�M

: V jT �1;0�M
h i

:

�1:22�

Proof. Since the formula to be proved is purely local, we may well assume
that both S�TM� and k1=2 are well-de®ned. As G preserves everything, it is
clear that the identi®cations of Cli�ord modules in (1.6) are all G-equivar-
iant. In particular, G preserves S�TM�, k1=2 and the associated connections.
On the other hand, recall that the Lie derivative LV on TM is given by

LV X � rTM
V X ÿrTM

X V ; X 2 C�TM� : �1:23�
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Thus the following formulas of in®nitesimal actions are clear,

LV jS�TM� � rS�TM�
V ÿ

XdimM

j;k�1

1

4
hrTM

ej
V ; ekic�ej�c�ek�;

LV jk1=2 � rk1=2

V ÿ 1

2
Tr�rT �1;0�M

: V jT �1;0�M � : �1:24�

(1.22) follows from (1.24) and the Kostant formula (1.13). (

Theorem 1.6. The following Bochner type formula holds,

DLm;2
T � DLm;2 �

�������ÿ1p
T

4

XdimM

j�1
c�ej�c�rTM

ej
XH� ÿ

�������ÿ1p
T

2
Tr rT �1;0�M

: XHjT �1;0�M
h i

� T
2

XdimG

i�1
�
�������
ÿ1
p

c�JVi�c�Vi� � jVij2� � 4mpTH

ÿ 2
�������
ÿ1
p

T
XdimG

i�1
liLVi �

T 2

4
jXHj2 : �1:25�

Proof. From (1.20), one deduces easily that

D2
T � D2 �

�������ÿ1p
T

2

XdimM

j�1
�c�ej�rej c�XH� � c�XH�c�ej�rej� �

T 2

4
jXHj2

� D2 �
�������ÿ1p

T
2

XdimM

j�1
c�ej�c�rej X

H� ÿ
�������
ÿ1
p

TrXH � T 2

4
jXHj2 : �1:26�

Now from (1.16), (1.18), (1.19) and Lemma 1.5, one deduces that

rXH � 2
XdimG

i�1
liLVi � 4mp

�������
ÿ1
p

H� 1

4

XdimM

j�1
c�ej�c�rej X

H�

ÿ 1

2

XdimG

i�1
c��dli���c�Vi� � 1

2
Tr�rT �1;0�M XH�

ÿ
XdimG

i�1

XdimM

j�1

1

2
1� J�������ÿ1p
� �

�iej dli�Vi; ej

� �

� 2
XdimG

i�1
liLVi � 4mp

�������
ÿ1
p

H

� 1

4

XdimM

j�1
c�ej�c�rej X

H� � 1

2
Tr rT �1;0�M XH
h i
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ÿ 1
2

XdimG

i�1
c�JVi�c�Vi� �

�������ÿ1p

2

XdimG

i�1
jVij2 : �1:27�

(1.25) follows from (1.26) and (1.27). (

Corollary 1.7. The following formula holds when restricted to the G-invariant
part, X0;�

G �M ; Lm�, of X0;��M ; Lm�,

DLm;2
T � DLm;2 �

�������ÿ1p
T

4

XdimM

j�1
c�ej�c�rTM

ej
XH� ÿ

�������ÿ1p
T

2
Tr rT �1;0�M

: XHjT �1;0�M
h i

� T
2

XdimG

i�1

�������
ÿ1
p

c�JVi�c�Vi� � jVij2
� �

� 4mpTH� T 2

4
jXHj2 : �1:28�

Proof. (1.28) follows from Theorem 1.6 by noting that for any
s 2 X0;�

G �M ; Lm� and 1 � i � dimG,

LVi s � 0 : �1:29�
(

De®nition 1.8. For any T 2 R, let F Lm

T be the di�erential operator acting on
X0;��M ; Lm� de®ned by

F Lm

T � DLm;2
T � 2

�������
ÿ1
p

T
XdimG

i�1
liLVi : �1:30�

Remark 1.9. Observe that the coe�cient of T in F Lm

T is of order zero. This
makes it possible to apply the methods and techniques in the paper of
Bismut-Lebeau [BL] to our problem.

2. Localization to neighborhoods of lÿ1�0�

In this section, we prove a key estimate which will allow us to localize our
problem to su�ciently small neighborhoods of lÿ1�0�. To do this, one must
overcome some di�culties near the critical points of H � jlj2 outside of
lÿ1�0�. As we will show, the presence of the term 4mpTH in (1.28) is exactly
the key to resolve these di�culties.

This section is organized as follows. In a), we state the main result of this
section. In b) and c), we prove the main result stated in a).

a) An estimate outside of lÿ1�0�

The main result of this section can be stated as follows.
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Theorem 2.1. If m > 0, then for any open neighborhood U of lÿ1�0�, there
exist constants C > 0; b > 0 such that for any T � 1 and any s 2 X0;�

G �M ; Lm�
with Supp s � MnU , one has the following estimate of Sobolev norms,

DLm

T s
 2

0
� C sk k21��T ÿ b� sk k20

� �
: �2:1�

First of all note that if m0 > 0 veri®es the following inequality over MnU ,

4m0pH�
�������ÿ1p

4

XdimM

j�1
c�ej�c�rej X

H� ÿ
�������ÿ1p

2
Tr rT �1;0�M

: XHjT �1;0�M
h i

� 1
2

XdimG

i�1

�������
ÿ1
p

c�JVi�c�Vi� � jVij2
� �

> 0 ; �2:2�

then Theorem 2.1 follows trivially for any m � m0 from Corollary 1.7 and
De®nition 1.8. Thus what we need is a proof for those `small' m's. Without
loss of generality we now assume m � 1.

b) A local estimate around each point outside of lÿ1�0�

The proof of Theorem 2.1 is divided into two steps. The ®rst step is to prove
the following result.

Proposition 2.2. For any x 2 Mnlÿ1�0�, there exists an open neighborhood Ux

of x such that there exist Cx > 0; bx > 0 such that for any T � 1 and any
s 2 X0;��M ; L� with Supp s � Ux, one has

hF L
T s; si � Cx�ksk21 � �T ÿ bx�ksk20� : �2:3�

The rest of this subsection is devoted to a proof of Proposition 2.2, which
is divided into two cases: x is or isn't a critical point of H.

Case 1. x is not a critical point of H. In this case, XH�x� 6� 0. (2.3) then
follows trivially from (1.28) and (1.30).

Case 2. x is a critical point of H. This is the more di�cult case. Let
e1; . . . ; edimM be an orthonormal base of TM . Let

D �
XdimM

j�1
r2

ej
ÿrrTM

ej
ej

� �
�2:4�

be the Bochner Laplacian acting on X0;��M ; L�. From the Lichnerowicz
formula for DL;2 ([Li], [LM, Appendix D]), one ®nds

DL;2 � ÿD� O�1� : �2:5�
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From (1.28), (1.30) and (2.5), one gets,

F L
T � ÿD�

�������ÿ1p
T

4

XdimM

j�1
c�ej�c�rej X

H� ÿ
�������ÿ1p

T
2

Tr rT �1;0�M
: XHjT �1;0�M

h i

� T
2

XdimG

i�1

�������
ÿ1
p

c�JVi�c�Vi� � jVij2
� �

� 4pTH� T 2

4
jXHj2 � O�1� :

�2:6�
Now let f1; � � � ; fdimM be an orthonormal base of TxM . Let �y1; � � � ; ydimM �

be the normal coordinate systemwith respect to f fjgdimM
j�1 near x. Clearly, one

can choose f1; � � � ; fdimM so thatH � jlj2 has the following expression near x,

H�y� �H�x� �
XdimM

j�1
ajy2j � O�jyj3� ; �2:7�

where the aj's may possibly be zero.

Lemma 2.3. The following inequality holds at the point x,�������ÿ1p

4

XdimM

j�1
c�ej�c�rej X

H� ÿ
�������ÿ1p

2
Tr rT �1;0�M

: XHjT �1;0�M
h i

� ÿ
XdimM

j�1
jajj ;

�2:8�
where the inequality is strict if at least one of the aj's is negative.

Proof. For any e 2 TM , write its complexi®cation as e � e1;0 � e0;1 with
e1;0 2 T �1;0�M ; e0;1 2 T �0;1�M . Then one deduces easily that,

c�e�c�Je� �
�������
ÿ1
p

jej2 ÿ 4ie0;1e1;0
�^

� �
�

�������
ÿ1
p

�4e1;0
� ^ ie0;1 ÿ jej2� ; �2:9�

where e1;0
� 2 T �0;1��M is the metric dual of e1;0 as in Section 1a).

Now let e1; . . . ; edimM be an orthonormal base of TM near x so that
ej � fj; 1 � j � dimM , at x. From (2.7) and (1.14), one ®nds that

XH � ÿ2
XdimM

j�1
hj�y�Jej �2:10�

with each

hj�y� � ajyj � O�jyj2� : �2:11�

From (2.9)±(2.11), one deduces that at the point x,�������ÿ1p

4

XdimM

j�1
c�ej�c�rej X

H� ÿ
�������ÿ1p

2
Tr rT �1;0�M

: XHjT �1;0�M
h i
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� ÿ
�������ÿ1p

2

XdimM

j�1
ajc�fj�c�Jfj� ÿ

�������
ÿ1
p XdimM

j�1

1

2
1� J�������ÿ1p
� �

�ÿajJfj�; fj

� �

� ÿ2
XdimM

j�1
ajif 0;1

j
f 1;0

j

�
^ � ÿ

XdimM

j�1
jajj ; �2:12�

where the last inequality is strict if at least one of the aj's is negative. (

On the other hand, from (2.9) one ®nds that for any 1 � i � dimG,�������
ÿ1
p

c�JVi�c�Vi� � jVij2 � 0 : �2:13�

One also gets from (2.10) that

jXH�y�j2 � 4
XdimM

j�1
hj�y�2 : �2:14�

From (2.6), (2.8), (2.13) and (2.14), one ®nds that near x,

F L
T � ÿDÿ T

XdimM

j�1
jajj � 4pTH�x� � T 2

XdimM

j�1
h2j � O�1� T jyj� : �2:15�

Now let a > 0, which will be further ®xed later, be su�ciently small so
that the orthonormal base fejgdimM

j�1 is well de®ned over

Ba�x� � y 2 M ; d�y; x� < af g : �2:16�

For any 1 � j � dimM , let �rej�� be the formal adjoint of rej on Ba�x�. Set

ÿDT �
XdimM

j�1
��rej�� � T �sgn aj�hj��rej � T �sgn aj�hj� : �2:17�

Clearly, ÿDT is nonnegative when acting on compactly supported sections
over Ba�x�. Furthermore, with (2.11) one veri®es easily that

ÿDT � ÿDÿ T
XdimM

j�1
jajj � T 2

XdimM

j�1
h2j � O�@ � 1� T jyj� ; �2:18�

where by O�@ � 1� T jyj� we mean a ®rst order di�erential operator

XdimM

j�1
bj�y� @

@yj
� c�y� �2:19�
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with

bj�y� � O�1�; c�y� � O�1� T jyj� : �2:20�

We will also use similar notation for other operators.
From (2.15), (2.17) and (2.18), one deduces that, when acting on sections

with compact support in Ba�x�,

F L
T � ÿDT � 4pTH�x� � O�@ � 1� T jyj�

� ÿ 1
k
Dÿ T

k

XdimM

j�1
jajj � 4pTH�x� � O�@ � 1� T jyj� �2:21�

for any k � 1.
Now for any s 2 X0;��M ; L� with Supp s � Ba�x�, it is standard that

hÿDs; si � C1ksk21 ÿ C2ksk20 �2:22�

for some constants C1 > 0; C2 > 0. Also, by Cauchy inequality, one has

hO�@�s; si � C3aksk21 �
C4

a
ksk20 �2:23�

for some constants C3 > 0; C4 > 0. Finally, one veri®es the obvious esti-
mate

hO�1� T jyj�s; si � C5�1� T a�ksk20 �2:24�

for some constant C5 > 0. From (2.21) through (2.24) one gets

hF L
T s; si � C6

k
ÿ C7a

� �
ksk21 � T 4pH�x� ÿ C8aÿ C9

k

� �
ksk20

ÿ C10

a
� C11

� �
ksk20 �2:25�

for some constants Ci > 0; i � 6; . . . ; 11.
Now since l�x� 6� 0, we ®rst choose k large enough so that

4pH�x� ÿ C9

k
>

C9

k
: �2:26�

Then choose a small enough so that

C6

k
ÿ C7a > 0;

C9

k
ÿ C8a > 0 : �2:27�

With this choice of a, by (2.25)±(2.27), we get (2.3) at x.
The proof of Proposition 2.2 is completed. (
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c) The global estimate outside of lÿ1�0�

In this subsection we prove Theorem 2.1 by gluing together the estimate
(2.3) outside of lÿ1�0�. This follows for example from an easy trick used in
[BL, pp. 115±117]. To be more precise, since U is open in M , MnU is
compact. So by the ®nite covering principle and by Proposition 2.2, there is
a ®nite number of open subsets fUigl

i�1 so that [iUi � MnU and that (2.3)
holds on each Ui, i � 1; . . . ; l. The next step, as in [BL], is to construct a
family of smooth functions f/ig so that f/2

i g forms a partition of unity
subordinating to the family of open subsets fUig. Then by proceeding
exactly the same as in [BL, pp. 115±117], one sees that (2.3) actually holds
for any section with compact support in MnU .

Now for any s 2 X0;�
G �M ; L� with Supp s � MnU , one has by (1.29) and

(1.30) that,

DL;2
T s; s

D E
� F L

T s; s

 �

: �2:28�

Theorem 2.1 follows from (2.28) and the discussions above. (

Remark 2.4. As one might have noticed, one of the key points to the proof of
Theorem 2.1 is the inequality (2.26) at each critical point x 2 Mnlÿ1�0� of
H. If at each such x, at least one of the aj's is negative, then by Lemma 2.3
we have a strict inequality in (2.8). This allows us to replace (2.26) by a
similar inequality without appealing to H and get a proof of Theorem 2.1
for the case of m � 0. In particular, the existence of L is no longer necessary.

3. A proof of Theorem 0.1

In this section, we prove Theorem 0.1. As will be seen, Theorem 2.1 enables
us to localize the problem to arbitrary small neighborhoods of lÿ1�0�. Now
since 0 2 g� is a regular value of the moment map l, lÿ1�0� is a nonde-
generate critical submanifold, in the sense of Bott, of H � jlj2. Thus near
lÿ1�0�, we have a situation closely related to what is considered in the paper
of Bismut and Lebeau [BL, Sects. 8, 9]. It turns out that the methods and
techniques in [BL] can be applied here directly, with little modi®cations, to
complete the proof of Theorem 0.1.

A surprising feature is that the resulting Dirac type operator on
lÿ1�0�=G through this procedure is not identical to DLG .

The present version of this section di�ers from that in [TZ2]. Here
we follow a suggestion, ®rst proposed to us by Bismut, to consider the
canonical G-principal ®bration on any su�ciently small G-invariant neigh-
borhood of lÿ1�0� and then apply [BL] to the base manifold to get the
result. Similar suggestion was also proposed to us by one of the referees.

This section is organized as follows. In a), we review Theorem 0.1 for
convenience. In b), we examine the canonical G-principal ®bration structure
near lÿ1�0�. In c), we identify the restriction of DL

T on G-invariant sections
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to an operator on the base manifold. In the self-contained subsection d), we
prove a basic result concerning the Spinc-Dirac operator and the harmonic
oscillator on a ¯at space. In e), we apply [BL] to our situation to give a proof
of Theorem 0.1. Finally in f), we present an explicit formula for the Dirac
type operator, obtained through this procedure, on lÿ1�0�=G.

a) Symplectic reduction and the quantization formula

From now on, we assume that 0 2 g� is a regular value of the moment map
l. Then lÿ1�0� is a closed submanifold of M , and is invariant under the
action of G. For simplicity, we assume that G acts on lÿ1�0� freely so that
we have a canonical principal ®bration with smooth base MG � lÿ1�0�=G,

G! lÿ1�0� !p MG � lÿ1�0�=G : �3:1�
Denote by i : lÿ1�0� ,! M the canonical embedding. Then i�x is a G-
invariant closed two form on lÿ1�0�. It descends to a symplectic form xG on
MG such that

p�xG � i�x : �3:2�
On the other hand, L descends through i�L to a Hermitian line bundle LG

over MG. Moreover, by the Kostant formula (1.13), rL induces a Hermitian
connection rLG on LG such that�������ÿ1p

2p
�rLG�2 � xG ; �3:3�

(cf. [GS]). Let DLG be the Spinc-Dirac operator acting on X0;��MG; LG� and
Q�MG; LG� the associated virtual vector space de®ned by (1.10). Now since
DL is G-equivariant, Q�M ; L� is a virtual representation of G. Denote by
Q�M ; L�G its G-invariant part.

The purpose of this section is to give an analytic proof of Theorem 0.1,
which we recall for convenience as follows.

Theorem 3.1. The following identity holds,

dimQ�M ; L�G � dimQ�MG; LG� : �3:4�
Our proof of Theorem 3.1 is based on the following simple observation.

Since DL
T is G-equivariant, for any T 2 R, one has

dimQ�M ; L�G � dim�kerDL
T � \ X0;even

G �M ; L� ÿ dim�kerDL
T � \ X0;odd

G �M ; L�:
�3:5�

One then takes T ! �1 and examines the behavior of the eigenvalues of
DL

T jX0;�
G �M ;L� under this limit. The result in Section 2 allows us to reduce the
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problem to su�ciently small neighborhoods of lÿ1�0�, on which the prob-
lem will be worked out in this section.

b) A principal ®bration near lÿ1�0�

Since G acts on lÿ1�0� freely, it is clear that there exists a su�ciently small
G-invariant open neighborhood U of lÿ1�0� such that G acts on U freely.
Thus U=G is a smooth open manifold.

Now consider the canonical G-principal ®bration

G! U !p U=G: �3:6�

Let E (resp. T H U ) be the vertical (resp. horizontal) tangent bundle of the
®bration (3.6), determined by the Levi-Civita connection rTU � rTM jU of
the Riemannian metric gTU � gTM jU on U . Then one has the following
orthogonal splittings of the tangent bundle TU and the corresponding
metric,

TU � E � T H U ; gTU � gE � gT H U : �3:7�

It is clear that the above constructions are G-equivariant. This in particular
determines a Riemannian metric gT �U=G� on U=G so that one has the fol-
lowing identi®cations,

p�T �U=G� � T H U ; p�gT �U=G� � gT H U : �3:8�

c) The restriction of DL
T to the G-invariant part and the induced Dirac operator

on U=G

In this subsection, we identify the restriction of DL
T on X0;�

G �U ; L�, the
G-invariant part of X0;��U ; L�, with a Dirac type operator on U=G.

If F is a G-equivariant Hermitian vector bundle over U , then it induces
canonically a Hermitian vector bundle FU=G over U=G such that
p�FU=G � F . We will denote by pF

G : CG�F � ! C�FU=G� the canonical iso-
morphism which maps a G-invariant section of F to the corresponding
section of FU=G. We will usually omit the superscript F from pF

G when there
will be no confusion in the context. Also, if rF is a G-equivariant Hermitian
connection on F , then one veri®es easily that

rFU=G
e s :� pGrF

p�ep
ÿ1
G s; e 2 C�T �U=G��; s 2 C�FU=G� ; �3:9�

where p�e 2 T H U is determined by the identi®cation (3.8), gives rise to a
Hermitian connection rFU=G on FU=G.

Now let h be the smooth positive function on U=G de®ned by
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h�x� �
������������������������
vol�pÿ1�x��

q
; x 2 U=G ; �3:10�

the square root of the volume of the ®bered group over x.

De®nition 3.2. Let R be the bounded operator de®ned by

R � hpG : X0;�
G �U ; L� ! C��^0;��T �U� 
 L�U=G� : �3:11�

Clearly, the map R is an isometry. We now try to write R DL
T Rÿ1 explicitly

as a Dirac type operator on U=G. We start with the following easy but
essential observation.

Lemma 3.3. If e1; . . . ; edimG is an orthonormal base of the vertical tangent

bundle E, then ~B :�PdimG
i�1 c�ei�r^

0;��T �U�
L
ei is a bounded operator, when

acting on X0;�
G �U ; L�.

Proof. We need only to show that each r^0;��T �U�
L
ei is bounded. Clearly, the

Killing vector ®elds Vi, 1 � i � dimG, are linearly independent over U and
span the vertical tangent bundle E. Thus each ei, 1 � i � dimG, can be
expressed through a linear combination of the Vi's with smooth functions as
coe�cients. Lemma 3.3 then follows from (1.29) and the trivial fact that
each LVi ÿr^

0;��T �U�
L
Vi

is a bounded operator on X0;��U ; L�. (

If S is an endomorphism of ^0;��T �U� 
 L, we will denote by

SU=G � pGSpÿ1G �3:12�

its induced endomorphism over U=G.
Let f1; . . . ; fdimU=G be an orthonormal base of T �U=G�. For simplicity,

we use the following notation for Cli�ord actions on the corresponding
vector bundles over U=G,

c�fj� � pGc�p�fj�pÿ1G ; 1 � j � dimU=G : �3:13�

De®nition 3.4. Let DL
U=G be the di�erential operator acting on pGX0;�

G �U ; L� �
C��^0;��T �U� 
 L�U=G� de®ned by

DL
U=G �

XdimU=G

j�1
c�fj�r�^

0;��T �U�
L�U=G

fj
: �3:14�

Proposition 3.5. The following identity holds for operators acting on
pGX0;�

G �U ; L�,

RDLRÿ1 � DL
U=G ÿ

1

h
c��dh��� � ~BU=G : �3:15�
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Proof. (3.15) follows from De®nition 1.1, Lemma 3.3, (3.10), (3.14) and a
direct veri®cation. (

On the other hand, one knows from (1.19) that the G-invariant Hamil-
tonian vector ®eld XH lies in C�E� over U . The induced Cli�ord action
pGc�XH�pÿ1G acts on pGX0;�

G �U ; L�. We denote this action by c�pGXH�. From
Proposition 3.5, De®nition 1.2 and the fact that R is an isometry, one gets

Corollary 3.6. The following identity holds for the formally self-adjoint
operators acting on pGX0;�

G �U ; L�,

RDL
T Rÿ1 � DL

U=G ÿ
1

h
c��dh��� � ~BU=G �

�������ÿ1p
T

2
c�pGXH� : �3:16�

Remark 3.7. As a simple but important observation, one sees from (1.19)
that c�pGXH� anticommutes with every c�fj�, 1 � j � dimU=G.

Remark 3.8. As another important observation from (1.19), one sees that if U
is small enough, then there exists a constant C > 0 such that jXHj2 � CH on
U . When pushing everything down to U=G, one then gets on U=G that

ÿc�pGXH�2 � CHU=G : �3:17�

(3.17) is a natural analogue of [BL, Prop. 8.14]. By this and by Corollary
3.6 and Remark 3.7, one sees that the operator R DL

T Rÿ1 on U=G is of the
same nature as the operator DX � TV studied in [BL]. Thus one is able to
apply the results in [BL] almost directly to our situation.

d ) Spinc-Dirac operators and harmonic oscillators

The result in this subsection will play an important role in our proof of
Theorem 3.1, in the same way as [BL, Theorem 7.4] plays in [BL, Sect. 9].
This subsection is otherwise self-contained.

Let W � V � V 0 be a Z2-vector space such that dim V � dim V 0. We
assume V and V 0 be Euclidean with the Euclidean metrics gV , gV 0 respec-
tively. Then W carries the orthogonal direct sum metric. Let J 2 Endodd�W �
be an isometry so that J 2 � ÿId. We assume the existence of J . Then J
de®nes a complex structure on W . Let f1; . . . ; fdim V be an orthonormal base
of V , then Jf1; . . . ; Jfdim V is an orthonormal base of V 0. They together form
an orthonormal base of W .

We consider ^0;��T �W � as a vector bundle over V . Let r be the ¯at
covariant derivative acting on C�^0;��T �W ��. Set

DV �
Xdim V

i�1
c�fi�rfi : C�^0;��T �W �� ! C�^0;��T �W �� : �3:18�
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Let ai > 0; 1 � i � dim V be positive constants. Let �y1; . . . ; ydim V � be
the coordinate system associated to f1; . . . ; fdim V . For any T 2 R, set

DV
T � DV ÿ

�������
ÿ1
p

T
Xdim V

i�1
aiyic�Jfi� : �3:19�

Let D be the Laplacian

D �
Xdim V

i�1
�rfi�2 : �3:20�

Proposition 3.9. The following identity holds,

�DV
T �2 � ÿDÿ

�������
ÿ1
p

T
Xdim V

i�1
aic�fi�c�Jfi� � T 2

Xdim V

i�1
a2i y2i : �3:21�

Proof. (3.21) follows from (3.19), (3.20) and a direct veri®cation. (

Theorem 3.10. (i) If T > 0, then the kernel of �DV
T �2 is one dimensional and

is generated by exp�ÿ T
2

Pdim V
i�1 aiy2i �. Furthermore, there exists a positive

number C > 0 such that all the nonzero eigenvalues of �DV
T �2 are larger than

CT ; (ii) If T < 0, then the kernel of �DV
T �2 is one dimensional and is generated

by exp�T2
Pdim V

i�1 aiy2i � f 1;0
1

�
^ � � � ^ f 1;0

dim V

�
. Furthermore, there exists a positive

number C0 > 0 such that all the nonzero eigenvalues of �DV
T �2 are larger than

ÿC0T .

Proof. Assume ®rst T > 0. Consider the orthogonal splitting,

^0;��T �W � � C� a
dim V

i�1
^0;i�T �W � : �3:22�

From Proposition 3.9 and (2.9), one sees easily that when restricted to
C � ^0;0�T �W �,

�DV
T �2 � ÿDÿ T

Xdim V

i�1
ai � T 2

Xdim V

i�1
a2i y2i ; �3:23�

while when restricted to �dim V
i�1 ^0;� �T �W �,

�DV
T �2 � ÿDÿ T

Xdim V

i�1
ai � T 2

Xdim V

i�1
a2i y2i � 2T minfai; 1 � i � dim V g : �3:24�

Now by the standard properties of harmonic oscillators, ÿDÿ
T
Pdim V

i�1 ai � T 2
Pdim V

i�1 a2i y2i is a nonnegative operator with a one dimen-

sional kernel generated by exp ÿ T
2

Pdim V
i�1 aiy2i

� �
and all the nonzero eigen-
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values are larger than CT for some C > 0. Combining this fact with (3.23),
(3.24), we complete the proof of the part (i). The proof of the part (ii) is
entirely similar. (

e) A proof of Theorem 3.1

Let NG be the normal bundle to MG � lÿ1�0�=G in U=G. Let
iG : MG ,! U=G denote the canonical isometric embedding. Then one has
the obvious orthogonal splittings

T �U=G�jMG
� NG � TMG;

gT �U=G�jMG
� gNG � gTMG : �3:25�

On the other hand, if we denote by JG the canonically induced almost
complex structure on �TU�U=GjMG

� �i�TU�U=G,

JG � pGi�J � i�GJU=G ; �3:26�

then from (1.1) and (1.12) one veri®es easily that

JGN � �i�E�U=G : �3:27�

From (3.25)±(3.27) one gets easily the orthogonal splittings

�TU�U=GjMG
� NG � JGNG � TMG;

g�TU�U=G jMG
� gNG � gJGNG � gTMG ;

�3:28�

with JG preserves NG;J � NG � JGNG and TMG. Thus one can construct ca-
nonically the Hermitian vector bundles N �1;0�G;J and T �1;0�MG etc, which further
give the canonical identi®cation of Hermitian vector bundles,

^0;��T �U�U=GjMG
� ^0;��N�G;J �
̂ ^0;� �T �MG� : �3:29�

Let LG � LU=GjMG
be the Hermitian vector bundle over MG with the

Hermitian connection rLG � i�GrLU=G . Then one veri®es easily that (cf. [GS])

�������ÿ1p

2p
�rLG�2 � xG : �3:30�

De®nition 3.11. Let DLG be the canonical Spinc Dirac operator acting on
X0;��MG; LG� de®ned in the same way as in De®nition 1.1 from JGjTMG

, gTMG

and the pair �LG;rLG�.
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On the other hand, from (3.14), (3.29) one can de®ne a di�erential op-
erator DH acting on C�^0;��N�G;J �
̂ ^0;� �T �MG� 
 LG� de®ned by

DH �
XdimU=G

j�1
c�fj��i�Gr�^

0;��T �U�
L�U=G��fj� ; �3:31�

where we use the same notation for the fj's and their restriction on MG.
Clearly, if we assume that when restricted to MG, f1; . . . ; fdimMG is an
orthonormal base of TMG, then one has

DH �
XdimMG

j�1
c�fj��i�Gr�^

0;��T �U�
L�U=G��fj� : �3:32�

Let p be the canonical orthogonal projection

p : ^0;��N�G;J �
̂ ^0;� �T �MG� 
 LG ! ^0;��T �MG� 
 LG ; �3:33�

which acts as identity on ^0;0�N�G;J �
 ^0;� �T �MG� 
 LG ' ^0;��T �MG� 
 LG

and maps each ^0;i�N �G;J � 
 ^0;��T �MG� 
 LG, i � 1, to zero.
Let ~M 2 End�^0;��T �MG� 
 LG� be de®ned by

~M � p�� ~BU=G ÿ 1

h
c��dh����jMG

�p : �3:34�

De®nition 3.12. The di�erential operator DLG
Q acting on X0;��MG; LG� is de®ned

by

DLG
Q � pDH p � ~M : �3:35�

Clearly, DLG
Q is a ®rst order elliptic di�erential operator.

We can now apply the techniques and results of Bismut-Lebeau [BL,
Sects. 8, 9] to complete the proof of Theorem 3.1.

In fact, Theorem 2.1, which is the analogue of [BL, Prop. 9.13], allows us
to localize the problem to an arbitrary small neighborhood U of lÿ1�0�. By
(3.6) and Corollary 3.6, one can further reduce the problem to the study
of the operator RDL

T Rÿ1 on U=G, to which the arguments in [BL] can
be applied directly (see Remarks 3.7 and 3.8). In particular, the part (i) of
Theorem 3.10 plays exactly the same role as [BL, Theorem 7.14] plays in
[BL], while (3.31)±(3.35), De®nitions 3.4, 3.11, Corollary 3.6 and again the
part (i) of Theorem 3.10 give rise to the limiting operator DLG

Q on MG

(compare with [BL, (8.94) and (9.20)]).
In doing all these, note that here we are no longer in the holomorphic

situation as in [BL], where many estimates have actually taken the advan-
tage of the holomorphic properties there. However, it is easy to see that this
does not cause any trouble in modifying the estimates in [BL] so that all the
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arguments can actually go through here. As a typical example, we do not
have direct analogues of [BL, (9.68), (9.69)] with zero on the right hand side,
but with O�jZj� and O�jZj@ � 1� respectively instead. And one sees easily
how to modify the estimates in [BL] to work for our situation.

To summarize, by proceeding in exactly the same way as in [BL, Sects. 8,
9], we get the following analogue of [BL, (9.156)].

Theorem 3.13. (i) The operator DLG
Q is a formally self-adjoint Dirac type op-

erator which has the same principal symbol as that of DLG ; (ii) There exist
C > 0; T0 > 0 such that there are no nonzero eigenvalues of DLG;2

Q in �0;C�,
and that for any T � T0, the number of eigenvalues of DL;2

T jX0;�
G �M ;L� in �0;C� is

equal to the dimension of the kernel of DLG
Q .

Now it is a simple fact that the positive and negative eigenvalues of
DL

T jX0;�
G �M ;L� are in 1±1 correspondence to each other. Thus one gets from

Theorem 3.13 that

dim�kerDL
T � \ X0;even

G �M ; L� ÿ dim�kerDL
T � \ X0;odd

G �M ; L�
� ind DLG

Q jX0;even�MG;LG� : �3:36�

(3.4) then follows from (3.5), (3.36) and the trivial identity

ind DLG jX0;even�MG;LG� � ind DLG
Q jX0;even�MG;LG� : �3:37�

The proof of Theorem 3.1 is completed. (

Remark 3.14. In [BL], one can go further to obtain an equality between the
kernels of Dirac type operators (cf. [BL, (9.161)]). Since here we have no
analogue of [BL, Theorem 1.7], the non-zero small eigenvalues appearing in
Theorem 3.13 may well exist.

f ) An explicit formula for DLG
Q

We present a more explicit formula for DLG
Q by evaluating the terms pDH p

and ~M in (3.35) separately.

Proposition 3.15. The following identity holds for operators acting on
X0;��MG; LG�,

pDH p � DLG : �3:38�

Proof. Let us go back to the embedding i : lÿ1�0� ,! U . Let N be the
normal bundle to lÿ1�0� in U . Then by (1.1) and (1.12) one ®nds that
Ejlÿ1�0� � JN . Thus one has the canonical orthogonal splittings

TU jlÿ1�0� � N � JN � p��TMG�;
gTU jlÿ1�0� � gN � gJN � p�gTMG ; �3:39�
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with J preserves NJ � N � JN and WJ � p��TMG�. Thus one can construct
the Hermitian vector bundles N �1;0�J , W �1;0�

J which in turn give the canonical
identi®cation of Hermitian vector bundles

^0;��T �U�jlÿ1�0� � ^0;��N�J � 
̂ ^0;� �W �
J � : �3:40�

Let P (resp. P?) be the orthogonal projection from TU jlÿ1�0� to NJ (resp.
WJ ). Set

rNJ � Pi�rTU P ;

rWJ � P?i�rTU P? ; �3:41�
and

A � i�rTU ÿrNJ ÿrWJ : �3:42�

Then rNJ (resp.rWJ ) is a Euclidean connection on NJ (resp. WJ ), while A is a
one form taking values in skew-endomorphisms on TU jlÿ1�0� which exchange
NJ and WJ .

The connections rNJ , rWJ and the almost complex structure J induce
canonically the Hermitian connections rdet�N �1;0�J �, rdet�W �1;0�J � on det�N �1;0�J �,
det�W �1;0�

J � respectively. Also, recall that the Hermitian line bundle k has
been de®ned in (1.5). The following identi®cation of Hermitian line bundles
is clear,

i�k � det�N �1;0�J � 
 det�W �1;0�
J � : �3:43�

By (3.41) and (3.42), one further has the corresponding identi®cation of
Hermitian connections

ri�k � i�rk � rdet�N �1;0�J � 
 Id
det�W �1;0�J � � Id

det�N �1;0�J � 
 rdet�W �1;0�J � : �3:44�

Now the almost complex structure J induces canonical Spinc structures
on NJ , WJ respectively (cf. [LM, Appendix D]). Thus one has the following
identi®cations of Cli�ord modules analogous to those in (1.6) (cf. [LM,
Appendix D]),

^0;� �N �J � � S�NJ � 
 det1=2�N �1;0�J � ;
^0;� �W �

J � � S�WJ � 
 det1=2�W �1;0�
J � : �3:45�

Furthermore, by proceeding similarly as in Section 1a) and [LM, Appendix
D], one constructs from rNJ , rdet�N �1;0�J � (resp. rWJ , rdet�W �1;0�J �) the canonical
Hermitian connection r^0;��N�J � (resp. r^0;��W �J �) on ^0;��N �J � (resp. ^0;��W �

J �).
We denote by 0r�^0;��T �U�
L�jlÿ1�0� the tensor product connection of r^0;��N�J �,
r^0;��W �J � and i�rL.

From the de®nitions of these connections and from (3.41), (3.42) and
(3.44), one veri®es easily that if e1; . . . ; edim lÿ1�0� is an orthonormal base of
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Tlÿ1�0� such that ej 2 WJ for 1 � j � dimMG, then one has for any
1 � i � dim lÿ1�0�,

r^0;��T �U�
L
ei

jlÿ1�0� � 0r�^
0;��T �U�
L�jlÿ1�0�

ei

� 1

2

XdimMG

s�1

Xdim lÿ1�0�

t�dimMG�1
hA�ei�es; etic�es�c�et�

� 1

2

XdimMG

s�1

Xdim lÿ1�0�

t�dimMG�1
hA�ei�es; Jetic�es�c�Jet� : �3:46�

Now one veri®es directly that

ppG

XdimMG

i�1
c�ei�0r�^

0;��T �U�
L�jlÿ1�0�
ei pÿ1G p � DLG ; �3:47�

and that

ppGc�ei�c�es�c�et�pÿ1G p � ppGc�ei�c�es�c�Jet�pÿ1G p � 0 �3:48�

for 1 � i � dimMG, 1 � s � dimMG and dimMG � 1 � t � dim lÿ1�0�.
(3.38) follows from (3.32), (3.33) and (3.46)±(3.48). (
We now compute pi�G� ~BU=G�p.
Set ~p � pÿ1G ppG. From Lemma 3.3, (3.40), (3.46), (2.9) and the de®nition

of the connection 0r�^0;��T �U�
L�jlÿ1�0� , one veri®es directly that

pÿ1G pi�G� ~BU=G�ppG � ~p ~B~p

� 1

2

Xdim lÿ1�0�

i�dimMG�1

XdimMG

s�1

Xdim lÿ1�0�

t�dimMG�1
hA�ei�es; eti~pc�ei�c�es�c�et�~p

� 1

2

Xdim lÿ1�0�

i�dimMG�1

XdimMG

s�1

Xdim lÿ1�0�

t�dimMG�1
hA�ei�es; Jeti~pc�ei�c�es�c�Jet�~p

� 1

2

Xdim lÿ1�0�

i�dimMG�1

XdimMG

s�1
hA�ei�Jei; esi~pc�es�c�ei�c�Jei�~p

ÿ 1

2

Xdim lÿ1�0�

i�dimMG�1
c�A�ei�ei�

� ÿ
�������ÿ1p

2

Xdim lÿ1�0�

i�dimMG�1
c�A�ei�Jei�

ÿ 1

2

Xdim lÿ1�0�

i�dimMG�1
c�A�ei�ei� : �3:49�
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Now set ~h � hjMG
. One veri®es directly (cf. [BGV, Ch. 10]) that

ÿ 1
2

~h
Xdim lÿ1�0�

i�dimMG�1
pG�A�ei�ei� � �d~h�� : �3:50�

Combining (3.34), (3.38), (3.49), (3.50) and De®nition 3.12, one gets

Theorem 3.16. If b1; . . . ; bdimG is an orthonormal base of the vertical tangent
bundle Ejlÿ1�0� of the ®bration (3.1), then one has,

DLG
Q � DLG ÿ

�������ÿ1p

2

XdimG

i�1
c�pG�A�bi�Jbi�� : �3:51�

Remark 3.17. The fact that DLG
Q and DLG might not be identical was ®rst

suggested to us by Bismut.

Now we assume that the almost complex structure J is integrable so that
�M ;x� is KaÈ hler. Then A commutes with J . By (3.50), one gets

�������ÿ1p

2

XdimG

i�1
pG�A�bi�Jbi� �

�������ÿ1p

2

XdimG

i�1
JGpG�A�bi�bi� � ÿ

�������ÿ1p
~h

JG�d~h�� :

�3:52�
Also one veri®es in this case that �MG;xG� is KaÈ hler (cf. [GS]). Furthermore,
by (1.11) and (3.3) one ®nds that both L and LG admit unique holomorphic
structures with the Hermitian holomorphic connections rL, rLG respec-
tively. Thus one has the standard formula (cf. [BGV])

DLG �
���
2
p

�@LG � � �@LG��ÿ �
: �3:53�

From (3.51)±(3.53), we obtain the important formula

DLG
Q �

���
2
p

~h �@LG ~hÿ1 � ~hÿ1� �@LG��~hÿ �
; �3:54�

which is essential to the proof of Theorem 0.4 in Section 4d).

4. Generalizations and further comments

In this section, we present various generalizations of Theorem 0.1. All the
proofs are very short and are readily given using the arguments in previous
sections with little modi®cations.

This section is organized as follows. In a), we state and prove a gener-
alized version of Theorem 0.1 which includes Theorem 0.2 as a special case.
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We also give a proof of Theorem 0.3 in this subsection. In b), we prove a
dual version of Theorem 0.1. In c), we prove the negative quantization
formula for the case where G is abelian. Finally in d), we restrict ourselves to
the holomorphic situation and prove certain Morse type inequalities which
include Theorem 0.4 as a special case.

a) A generalized quantization formula

From now on, we no longer assume the existence of the line bundle L unless
stated otherwise. The other assumptions and notation are the same as in the
previous sections.

Let E be a G-equivariant Hermitian vector bundle over M admitting a
G-equivariant Hermitian connection rE. Then E induces canonically a
Hermitian vector bundle EG over MG with a canonically induced Hermitian
connection.

For any V 2 g, set

rE
V � LV jE ÿrE

V : �4:1�

By proceeding exactly the same as in Sections 1±3, one can prove the
following result.

Theorem 4.1. If at each critical point x 2 Mnlÿ1�0� of H, one has

�������
ÿ1
p XdimG

i�1
li�x�rE

Vi
�x� > 0 ; �4:2�

then the following identity holds,

dimQ�M ;E�G � dimQ�MG;EG� : �4:3�

Proof. The condition (4.2) simply replaces the conditionH�x� > 0 in (2.26)
to make the arguments in Section 2 work in the present situation. Fur-
thermore, the arguments in Section 3 work for general E. (

When the line bundle L exists, Theorem 0.1 follows from Theorem 4.1 by
taking E � L. Similarly, Theorem 0.2 also follows as a special case of
Theorem 4.1.

In view of Remark 2.4, if at each critical point x 2 Mnlÿ1�0� of H, at
least one of the aj's de®ned in (2.7) is negative, then the arguments in Section
2 still go through even if the inequality in (4.2) is replaced by the equality. A
result of Kirwan (cf. [K1, 4.18, 4.20] and [K2, pp. 549]) implies that this
actually happens when lÿ1�0� is nonempty. Thus one gets the following
improved version of Theorem 4.1.
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Theorem 4.2. If lÿ1�0� is nonempty and if at each critical point x 2 Mnlÿ1�0�
of H, �������

ÿ1
p XdimG

i�1
li�x�rE

Vi
�x� � 0 ; �4:4�

then (4.3) holds.

As a special case of this theorem, one can take E � C, the trivial line
bundle. The rigidity theorem for the canonical Spinc-Dirac operator on an
almost complex manifold (cf. [H]) states that

dimQ�M ;C� � dimQ�M ;C�G : �4:5�

Combining these two results with the Atiyah-Singer index theorem [AS], one
obtains Theorem 0.3. (

b) A dual quantization formula

Let E be as in a) and the line bundle k be as de®ned in (1.5). Let �E be the
Hodge star operator (cf. [GH, pp. 151]),

�E : ^0;q�T �M� 
 E! ^0;dimC Mÿq�T �M� 
 kÿ1 
 E� : �4:6�

Clearly �E is G-equivariant. Furthermore, one veri®es directly that

�EDE�ÿ1E : X0;��M ; kÿ1 
 E�� ! X0;��M ; kÿ1 
 E�� �4:7�

is a G-equivariant Dirac type operator with the same principal symbol as
that of Dkÿ1
E� .

From (4.6) and (4.7) one gets immediately that

dimQ�M ;E�G � �ÿ1�dimC M dimQ�M ; kÿ1 
 E��G;

dimQ�MG;EG� � �ÿ1�dimC MG dimQ�MG; k
ÿ1
G 
 E�G� : �4:8�

Combining (4.8) with Theorem 4.1, one gets

Theorem 4.3. If the condition in Theorem 4.1 holds, then

dimQ�M ; kÿ1 
 E��G � �ÿ1�dimG dimQ�MG; k
ÿ1
G 
 E�G� : �4:9�

As an immediate consequence, in the case that L exists, one can take
E � Lm 
 kÿ1 to get

Corollary 4.4. There exists m0 > 0 such that for any m � m0,
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dimQ�M ; Lÿm�G � �ÿ1�dimG dimQ�MG; Lÿm
G � : �4:10�

Remark 4.5. Theorem 4.3 as well as Corollary 4.4 can also be proved directly
using the same arguments as in Sections 2, 3 by taking T ! ÿ1 instead of
taking T ! �1. In doing so, one uses the part (ii) of Theorem 3.10 instead
of the part (i) of Theorem 3.10, when proceeding the arguments in Section 3.
In fact, this was the approach taken in [TZ2]. The approach we now adopt
here was suggested by one of the referees.

c) Negative quantization formula for abelian actions

In this subsection we prove the following improved version of Corollary 4.4.

Theorem 4.6. If G is abelian, then (4.10) holds for any m � 1.

Proof.We need only to prove the case when m � 1. By (4.8) it is su�cient to
prove (4.3) for E � L
 kÿ1. In this case, (4.2) does not hold in general.
However, in the special case that G � S1, one veri®es that

�������
ÿ1
p

lrE
V �

�������ÿ1p

4

XdimM

j�1
c�ej�c�rej X

H� ÿ
�������ÿ1p

2
Tr rT �1;0�M

: XH
h i

> ÿ
XdimM

j�1
jajj ;

�4:11�
at each critical point x 2 Mnlÿ1�0� of H. This is su�cient for the argu-
ments in Section 2 to work to give a proof of (4.9). The higher rank case
then follows from a standard `reduction in stage' procedure (cf. [V2]). (

Remark 4.7. Theorem 4.6 has also been proved in Je�rey-Kirwan [JK1,
Theorem 6.2]. Furthermore, an example due to Vergne (cf. [JK1, pp. 686])
shows that the abelian condition in Theorem 4.6 is necessary.

d ) Quantization on KaÈhler manifolds: holomorphic Morse inequalities

In this subsection we restrict ourselves to the case where J is integrable.
Then �M ;x� is a KaÈ hler manifold and G acts holomorphically on M . One
veri®es easily (cf. [GS]) that the induced almost complex structure JG on MG

is also integrable so that �MG;xG� is KaÈ hler.
Now let E be a G-equivariant holomorphic Hermitian vector bundle.

Then its unique holomorphic Hermitian connection is also G-equivariant.
These together induce canonically a holomorphic Hermitian vector bundle
EG over MG. Thus one has formulas (1.21) and (3.54), with Lm, LG there
being replaced by E, EG respectively.
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Now note that in the holomorphic category all the arguments in Sections
1±3 preserve the Z-grading nature of the problem. Therefore, one actually
gets the following re®ned version of Theorem 4.1, where one still uses the
superscript G to denote the G-invariant part.

Theorem 4.8. If (4.2) holds at each critical point x 2 Mnlÿ1�0� ofH, then for
any integer p, one has the following Morse type inequality for Dolbeault
cohomologies,

dimH 0;p�M ;E�G ÿ dimH0;pÿ1�M ;E�G � � � � � �ÿ1�p dimH 0;0�M ;E�G

� dimH 0;p�MG;EG� ÿ dimH 0;pÿ1�MG;EG� � � � � � �ÿ1�p dimH 0;0�MG;EG� :
�4:12�

Remark 4.9. If the line bundle L exists, then one can take E � L in Theorem
4.8 to get Theorem 0.4. In this case, Guillemin-Sternberg [GS] proved that
there is actually an equality between the dimensions of spaces of holo-
morphic sections,

dimH0;0�M ; L�G � dimH 0;0�MG; LG� : �4:13�

Remark 4.10. As a holomorphic re®nement of Theorem 0.3, it is proved in
Wu-Zhang [WuZ] that if G is abelian and lÿ1�0� is nonempty, then one has
the equality of Hodge numbers for any integer p,

dimH 0;p�M ;C� � dimH0;p�MG;CG� : �4:14�
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