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Abstract. We present a direct analytic approach to the Guillemin-Sternberg
conjecture [GS] that ‘geometric quantization commutes with symplectic
reduction’, which was proved recently by Meinrenken [M1], [M2] and
Vergne [V1], [V2] et al. Besides providing a new proof of this conjecture, our
methods also lead immediately to further extensions in various contexts.

0. Introduction

Let (M, ®) be a closed symplectic manifold such that there is a Hermitian
line bundle L over M admitting a Hermitian connection V* with the prop-

erty that g (VE)? = w. Let J be an almost complex structure on 7M so that
9™ (u,v) = w(u,Jv) defines a Riemannian metric on 7M. Then one can
construct canonically a Spin‘-Dirac operator

DF Q" (M, L) — Q" (M,L) , (0.1)
which gives the finite dimensional virtual vector space
OM, L) = Q™" (M, L) Nker D" — Q"% (M, L) Nker D" . (0.2)

Now suppose that (M, ») admits a Hamiltonian action of a compact
connected Lie group G with Lie algebra g. Let u : M — g* be the corre-
sponding moment map. We assume 0 € g* is a regular value of u, and for
simplicity, we also assume G acts on y~'(0) freely. Then Mg = u~'(0)/G is
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smooth. Furthermore, @ descends to a symplectic form wg on Mg. Thus one
gets the Marsden-Weinstein symplectic reduction (Mg, ®wg). On the other
hand, a formula due to Kostant [Ko] (cf. (1.13) in Section 1) induces a
natural g action on L. We make the assumption that this g action can be lifted
to a G action on L. Then this G action preserves V*. One can also assume,
after an integration over G if necessary, that G preserves the Hermitian
metric on L, as well as the almost complex structure J and thus also the metric
g™ . Furthermore, the pair (L, V%) descends to a pair (Lg, V) over Mg so
that the corresponding curvature condition ‘/2—’:1 (VLG)2 = wg holds (cf. [GS]).
The G-invariant almost complex structure J also descends to an almost
complex structure on 7M. Thus one can construct the corresponding Spin‘-
Dirac operator on Mg, as well as the virtual vector space Q(Mg, Lg).

Since G preserves everything, it commutes with D*. Thus Q(M,L)
becomes a virtual representation of G. Denote by Q(M 7L)G its G-trivial
component.

We can now state the geometric quantization conjecture of Guillemin-
Sternberg [GS] as follows.
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Theorem 0.1. The following identity holds,
dim Q(M, L)’ = dim OQ(Mg, L;) . (0.3)

Theorem 0.1 was first proved by Guillemin-Sternberg [GS] in the holo-
morphic situation when (M, ) is Kdhler. They raised the conjecture for
general symplectic manifolds. When G is abelian, this conjecture was
first proved by Guillemin [G] in a special case, and later in general by
Meinrenken [M1] and Vergne [V1], [V2] independently. The remaining
nonabelian case was proved by Meinrenken [M2] using the symplectic cut
techniques of Lerman [Le]. There are also closely related papers by Duis-
termaat-Guillemin-Meinrenken-Wu [DGMW], where the symplectic cut
techniques were applied to the circle action case, and by Jeffrey-Kirwan
[JK1], where the authors prove (0.3) under some extra conditions by using
the nonabelian localization formulas of Witten [W1] and Jeffrey-Kirwan
[JK2]. See also the survey paper by Sjamaar [S]. In all these works, the
equivariant index theorem of Atiyah-Segal-Singer [AS], which expresses the
analytic equivariant index through topological data on the fixed point sets,
plays essential roles.
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The purpose of this paper is, among other things, to give a direct analytic
proof of Theorem 0.1.

The basic point is trying to consider the problem in the framework of
Morse theory. Recall that # = | ,u\z, the norm square of the moment map,
was taken by Kirwan [K1] as a kind of Morse function in her study of the
cohomology of M. This function and in particular its associated Hamil-
tonian vector field X” were also used in an essential way by Witten in his
paper [W1] on nonabelian localizations. They further appeared in the papers
of Jeffrey-Kirwan [JK2], Liu [Liu], Vergne [V3] and Wu [Wu] on this subject.
Here for our purpose, we deform the Spin‘-Dirac operator D* by using
the Clifford action of X”. To be more precise, we deform D* to
Dt =DF + @c()(”) and study its properties as T — +oo.

Our first main result, proved in Theorem 2.1, is that under this de-
formation, the proof of Theorem 0.1 can be ‘localized’ to arbitrary small
neighborhoods of u~'(0). Now as 0 € g* is a regular value of u, one finds
that u='(0) is a nondegenerate critical submanifold of # in the sense of
Bott. This allows one to apply almost directly the techniques of Bismut-
Lebeau [BL, Sects. 8, 9] near u~!(0) to complete the proof. It is remarkable
that although the techniques in [BL] do not apply to D% directly, they
work perfectly when restricted to G-invariant subspaces. Consequently, the
influence of [BL] on the present paper can be felt in many places in the
text.

If G does not act on u~'(0) freely, then Mg is an orbifold. Our methods
can also be applied to get the corresponding orbifold version of Theorem
0.1, which was also proved by Meinrenken [M2] in the nonabelian case. For
simplicity, we only discuss in detail the case where G acts on u~'(0) freely.

Our methods also lead immediately to further generalizations of
Theorem 0.1 in various contexts. Here we mention three of them.

For the first one, let £ be a Hermitian G-equivariant vector bundle over
M, admitting a Hermitian G-equivariant connection. Then £ descends to a
Hermitian vector bundle £ over M. And we can define the corresponding
virtual vector spaces Q(M,E ® L) and Q(Mg, Eg ® Lg) respectively.

Theorem 0.2. There exists my > 0 such that for any integer m > my,
dim Q(M, E @ L™)® = dim Q(Mg, E¢ ® L) . (0.4)

The second result may be seen as an invariance property under reduc-
tion. It holds without the existence assumption of L.

Theorem 0.3. If 1~ '(0) is not empty, then we have the equality of Todd genus,
(Td(TM), [M]) = (Td(TMg), [M]).

For the third one, we restrict ourselves to the holomorphic situation where
(M, w) is Kdhler and L is holomorphic over M. In this case, we find that the
above deformation corresponds exactly to the deformation of the Dolbeault
operator by certain exponentials of #. If we denote by H%?(M, L) the pth
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Dolbeault cohomology and by H%?(M, L)G its G-invariant part, then what we
obtain is the following refined version of Theorem 0.1.

Theorem 0.4. The following Morse type inequality holds for any integer p,

dim H*?(M, L)° — dim H*?~"(M,L)° + - - 4+ (1) dim H**(M, L)
< dim H*? (Mg, Lg) — dim H*?~'(Mg,Lg) + - - + (—1)" dim H** (Mg, L¢) .
(0.5)

Theorem 0.3 has also been obtained independently by Meinrenken and
Sjamaar [MS].

This paper is organized as follows. In Section 1, we introduce the basic
analytic deformation of the Spin‘-Dirac operator and prove an essential
Bochner type formula for the Laplacian of the deformed operator. In
Section 2, we prove the basic result which allows us to localize the proof of
Theorem 0.1 to sufficiently small neighborhoods of u~'(0). Section 3 is
devoted to the proof of Theorem 0.1 by using the techniques of [BL]. The
final Section 4 contains various extensions of Theorem 0.1 which can be
proved with little modifications from our proof of Theorem 0.1. They in-
clude all of the three theorems mentioned above as well as some further
extensions.

The results presented in this paper, which were contained in the preprint
[TZ2], were announced in [TZ1]. The present paper is a revision of [TZ2],
following various suggestions mainly due to J.-M. Bismut and one of the
referees.

1. Hamiltonian actions and a deformation of Dirac operators

In this section, we recall the basic geometric setup, construct the corre-
sponding Spin¢-Dirac operator and introduce a deformation which is the
key to our proof of Theorem 0.1. In particular, a basic Bochner type
formula for the Laplacian of the deformed operator is proved.

This section is organized as follows. In a), we review the construction of
Spin¢-Dirac operators on symplectic manifolds. In b), we present the basic
geometric setup about Hamiltonian actions on symplectic manifolds. In c),
we introduce a deformation of Spin¢-Dirac operators and prove a formula
for the Laplacian of the deformed operator.

a) Spin°-Dirac operators on symplectic manifolds

Let (M, ) be a compact symplectic manifold. Let J be an almost complex
structure on 7M such that
g™ (v, w) = w(v,Jw) (1.1)

defines a Riemannian metric on 7M. It is well-known that such a J always
exists, and that it is unique up to homotopy (cf. [McS, Prop. 4.1]). Let
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TM¢ = TM ® C denote the complexification of the tangent bundle 7M. Then
one has the canonical splittings

TMc =T"OM & 7OV M,

dimCM .
NN TM)= P ANI(T'M) , (1.2)
ij=0

where

T0OM = {z € TMc; Jz = V=1z},
7O = {z € TM¢;Jz = =V -1z},
NI(T*M) = N(THO*M) @ A (TOD* M) | (1.3)

and dim¢ M = %dimM is the complex dimension of M.

The almost complex structure J determines a canonical Spin®-structure
on TM (cf. [LM, Appendix D]). Furthermore, with g™, the fundamental Z,
Spin¢-bundle is given by

AO,*(T*M) _ /\O,even(T*M) o /\0,0dd(T*M) . (14)

For any X € TM whose complexification has the decomposition
X=X +X, € TOOM @ TODM let X;" € TOD*M be the metric dual of X;
(cf. [BL, Sect. 5]). Then c(X)=v2X;" A —/2ix, defines the canonical
Clifford action of X on A%*(T*M) (cf [LM, Appendix D]). It interchanges
/\O,even(T*M) and /\Oﬁodd(T*M).

Let 4 be the complex line bundle

A =det(T"O0) . (1.5)

We now temporarily assume that M is spin. In this case one can con-
struct a square root A2 of 2, which together with the canonically induced
Spin‘-structure on 7M determine a Spin structure on 7M. Let
S(TM) =S (TM) ® S_(TM) be the corresponding Z,-graded bundle of
spinors associated to (M,g™). Then, one has the following canonical
identifications of Clifford modules (cf. [LM, Appendix D]),

S+(TM) ® ;LI/Z _ /\O,even(T*}V[)7
S_(TM) @ 1% = Avodd(Tpr),
S(TM) @ 2M? = Ao (T*M) (1.6)

Let V™ be the Levi-Civita connection of g™ . Then V™ together with
the almost complex structure J induce via projection a canonical Hermitian
connection V7'M on 710 )7, This, in turn, induces a Hermitian connection
V* on / and thus a Hermitian connection V*"* on 2!/2.

Also, V™ lifts to a Hermitian connection V(™) on S(TM) preserving
S+ (TM). Let VS9! be the tensor product connection on S(TM) @ A1/

defined by
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VSO — S @ 1d s + Idsy @ V2 (1.7)

Then VS™)24” s a well-defined Hermitian connection on A% (T*M) =
S(TM) ® A2 and preserves the Z,-grading. We will also denote this con-
nection by VA" (T"M),

Now for the general case without the assumption that M is spin, it is
well-known that although 2'/? and S(ZM) might not exist, one can still
construct their product which does exist (cf. [LM, Appendix D]). Further-
more, one can still construct the tensor product connection as above locally
and get in fact a globally well-defined connection VA" (M) on A%*(T*M). In
particular, when doing local computations, one can use the above
identifications just as in the spin case. From now on, we will drop the spin
condition on M and adopt the above convention.

Now let £ be a Hermitian vector bundle over M with a Hermitian
connection VZ. Then the tensor product connection

VAIMSE — g TM) @ Td 4 1d pos (o) © VE (1.8)

defines a Hermitian connection on A% (T*M) ® E.
Denote by Q% (M, E) the set of smooth sections of A%*(T*M) ® E.
Let ey,...,edimm be an orthonormal base of 7M.

Definition 1.1. The Spin‘-Dirac operator DF is defined by

dim M
DF =" c(e) V) IMSE Q0 (M E) — Q° (M, E) . (1.9)

€
J=1

Clearly, Df is a formally self-adjoint first order elliptic differential op-
erator on Q™ (M, E). Let Q(M, E) be the virtual vector space defined by

O(M,E) = Q*"(M, E) Nnker D — Q"4 (M, E) Nker DF . (1.10)

b) Hamiltonian group actions and the norm square of the moment map

From now on through the end of Section 3, we assume that there is a
Hermitian line bundle L over M with a Hermitian connection V% such that

V=1
2n

(VY=o . (1.11)

Now suppose that (M, ®) admits a Hamiltonian action of a compact
connected Lie group G with Lie algebra g. Let 4 : M — g* be the corre-
sponding moment map. Then for any ¥ € g*, one has by definition'

iyo=d{p, V) . (1.12)

"'In this paper we will use the same notation for ¥ and its induced vector field on M.
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The following Kostant formula [Ko] defines an action of g on sections of L,
Lys =Vhs —2nv/—1{u,V)s, se€T(L), Veg. (1.13)

We make the basic assumption that this g action can be lifted to a G action
on L. From (1.11)~(1.13), one sees easily that this G action preserves V.
After an integration over G when necessary, we can also assume that G
preserves the Hermitian metric on L, the almost complex structure J and
thus also the Riemannian metric g™

Let g (and thus g* also) be equipped with an AdG-invariant metric. Let
A# = |u|* be the norm square of the moment map u. Then # is a
G-invariant function on M. In particular, its Hamiltonian vector field,
denoted by X”, is G-invariant. The following formula for X is clear,

X" =—Jdx) . (1.14)
Let Ay, ..., h4imc be an orthonormal base of g*. Then u has the expres-
sion
dim G

p=> whi, (1.15)
i=1

where each y; is a real valued function on M. Denote by V; the Killing vector
field on M induced by the dual of ;.
By (1.15), one has

A=’ =>4 (1.16)

Also by (1.12) one has for each 1 < i < dim G that,
iyo=dy; . (1.17)
From (1.17) and (1.1), one finds that
J(dw) =~V . (1.18)
From (1.14), (1.16) and (1.18) one obtains that
dim G

dim G
X0 =20 ) wldp) =2 b (1.19)
i=1 i=1

By (1.19) and (1.15), it is clear that u~'(0) is contained in the set of
critical points of . An important fact is that there might be other critical
points of »# as well. This is the first difficulty which would make a proof of
Theorem 0.1 non-trivial. Another important observation, which is essential
for the analysis near u~'(0), is that by (1.19), X lies in the space of vector
fields generated by g over M.
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¢) A deformation of Dirac operators and a Bochner type formula

For an integer m, let L be the m™ tensor power of the line bundle L.
In using the same notation and assumptions as in a) and b), we now
introduce a deformation which is fundamental to this paper.

Definition 1.2. For any T € R, let DX" be the operator defined by

DY =DM + ‘/“T (X)) : Q¥ (M, L") — Q¥ (M, L™) . (1.20)

Clearly, D%" is a formally self-adjoint first order elliptic differential op-
erator. Furthermore, since G preserves everything and X” is G-invariant,
one sees that DL is G-equivariant.

Remark 1.3. The Hamiltonian vector field X, or its dual one form, has
played an important role in Witten’s paper on nonabelian localizations
[W1]. In some sense the above deformation might be viewed as a quantized
version of the deformation used in [W1]. A similar deformation has also
been used by Vergne [V2] on the symbol level.

Remark 1.4. When J is integrable so that (M, ) is Kdhler, one verifies that
D = A{e R (Y ) (2

In view of Kirwan [K1] and Witten [W2] (see also Mathai-Wu [MW]), one
may regard D5 as a Morse theoretic deformation of D",

Now for any V' € g, denote by Ly the infinitesimal action induced by V
on the corresponding vector bundles. Also, we will omit the superscripts L™,
M, etc., from the context, when there will be no confusion.

Lemma 1.5. The following formula for operators acting on Q** (M, L™) holds,

dim M
1
LV = VV — 2m7‘cv —1<,U7 V> — Z Z C(ej)C(vej V) — ETI' V'T(])0>MV|T(1,())M
Jj=1
(1.22)

Proof. Since the formula to be proved is purely local, we may well assume
that both S(7M) and 2'/? are well-defined. As G preserves everything, it is
clear that the identifications of Clifford modules in (1.6) are all G-equivar-
iant. In particular, G preserves S(7TM), /> and the associated connections.
On the other hand, recall that the Lie derivative Ly on TM is given by

LyX =VMx - vMy X cT(TM) . (1.23)
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Thus the following formulas of infinitesimal actions are clear,

dim M
S(TM 1
Lyls ™) = VV( ) - Z Z<VeTJMV7 ex)c(ej)c(ex),
Jik=1
1 .
Lyl = V5" fETr[VT(](])MV|T(1_o>M] . (1.24)
]

(1.22) follows from (1.24) and the Kostant formula (1.13).

Theorem 1.6. The following Bochner type formula holds,

\/—leimM . V/EIT P
> eI ) = YT [V X |

J=1

P2 _ pia

d1m G

22 (V=1ec(V)e(Vi) + Vi) + dmnTH

dim G
(1.25)

—2v- TZMzLV‘f' ‘X/|

Proof. From (1.20), one deduces easily that

dim M
V1T Z (c(e)Ve,e(X) + (X7 )e(e;)Ve,) + T; bed

=

/_leimM ]
5 c(e)c(VeX") = V—1TVyn +— |Xff\2 . (1.26)
=1
Now from (1.16), (1.18), (1.19) and Lemma 1.5, one deduces that

dim G dim M

1 ,
Vyr =2 Z WLy, —|—4mn\/—1e#‘—|—z Z c(e))e(Ve,X7)

=1

D2 =D+

=D? +

i=1
ldlmG
2 i=1

=1 =1

1 . :
c((dp) )e(V) +5 Te[V ™ "Mx ]

dim G

=2 Z Ly, + 4mnv/—1.#

e H Ty | TOM y
4; (e))c VX)+2 r[9 ]
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d1m G

EZ c(JV)e +—Z Vi|? (1.27)
(1.25) follows from (1.26) and (1.27). O

Corollary 1.7. The following formula holds when restricted to the G-invariant
part, QU (M, L"), of Q" (M, L™),

T0OM v
Tr| V! X7 | r0om

Dé 2_ ptray V .

J=1

clepe(viix )y - Y21

7&d 2 2
5;(\/ Te(JV)e )+|I/,—|)+4mnryf+4|x | (1.28)

Proof. (1.28) follows from Theorem 1.6 by noting that for any
s € Q¥ (M,L™) and 1 <i < dimG,

Lys=0 . (1.29)
O

Definition 1.8. For any T € R, let F£" be the differential operator acting on
Q" (M, L™) defined by
dim G

Ff" =Dy +2V=1T > ply . (1.30)
i=1

Remark 1.9. Observe that the coefficient of 7 in F£" is of order zero. This
makes it possible to apply the methods and techniques in the paper of
Bismut-Lebeau [BL] to our problem.

2. Localization to neighborhoods of u~!(0)

In this section, we prove a key estimate which will allow us to localize our
problem to sufficiently small neighborhoods of u~!(0). To do this, one must
overcome some difficulties near the critical points of # = |u|* outside of
1 (0). As we will show, the presence of the term 4mnT# in (1.28) is exactly
the key to resolve these difficulties.

This section is organized as follows. In a), we state the main result of this
section. In b) and c), we prove the main result stated in a).

a) An estimate outside of u='(0)

The main result of this section can be stated as follows.
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Theorem 2.1. If m > 0, then for any open neighborhood U of u='(0), there
exist constants C > 0, b > 0 such that forany T > 1 and any s € Qg:* (M,L™)
with Supp s C M\U, one has the following estimate of Sobolev norms,

w2
1%'sllg = c(Isli+(T = b)) - (2.1)
First of all note that if my > 0 verifies the following inequality over M\ U,

dim M \/__1

1 .
dmon A + T Z c(ej)c(vgiX%)) _ 5 Tr |:V'T(l O)MX:%/plT(l,0>M:|
)

df(ﬁcumcm) +IhP) >0, (2.2)

i=1

+

N —

then Theorem 2.1 follows trivially for any m > m(y from Corollary 1.7 and
Definition 1.8. Thus what we need is a proof for those ‘small’ m’s. Without
loss of generality we now assume m = 1.

b) A local estimate around each point outside of =" (0)

The proof of Theorem 2.1 is divided into two steps. The first step is to prove
the following result.

Proposition 2.2. For any x € M\u~'(0), there exists an open neighborhood Uy
of x such that there exist C, >0, b, > 0 such that for any T > 1 and any
s € Q" (M, L) with Supp s C Uy, one has

(Ffs,s) > Col[lsllf + (T = b)sll5) - (2.3)

The rest of this subsection is devoted to a proof of Proposition 2.2, which
is divided into two cases: x is or isn’t a critical point of .

Case 1. x is not a critical point of #. In this case, X (x) # 0. (2.3) then
follows trivially from (1.28) and (1.30).

Case 2. x is a critical point of #. This is the more difficult case. Let

€1,...,edimy be an orthonormal base of 7M. Let
dim M
A::E;(v;-vvgq) (2.4)
=

be the Bochner Laplacian acting on Q*(M,L). From the Lichnerowicz
formula for D“? ([Li], [LM, Appendix D]), one finds

DM = —-A+0(1) . (2.5)
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From (1.28), (1.30) and (2.5), one gets,

—1rdimd VAT P
FE==A+ Yo S c(e)el Vo) - YT (97X |y |
=

7 4m& 2 72 2
5;(\/ Te(JV))e )+|V,~|)+4nT3i”+Z|X Pyo(l) .

(2.6)
Now let f1,- -, faima be an orthonormal base of T.M. Let (v, -, Vdimam)

be the normal coordinate system with respect to { f,}d’mM near x. Clearly, one

can choose f1, - - -, faimas SO that # = |,u| has the followmg expression near x,
dim M 3

H(y)=H(x)+ Y ay; +0(b) , (2.7)

=1
where the a;’s may possibly be zero.

Lemma 2.3. The following inequality holds at the point x,

dlmM ” — HUO o dim M
= Z ele)e(Ve X ™) = S T [V M ] = =Y e

J=1
(2.8)

where the inequality is strict if at least one of the a;’s is negative.

Proof. For any e € TM, write its complexification as e =e!? +e%! with
el e 7U0p &% e TODM . Then one deduces easily that,

c(e)c(Je) = V=1 (|e|2 - 41-60.1@%) = V140 N — ), (2.9)
where el0 € TOD*)f is the metric dual of e as in Section la).

Now let ey,...,eqimy be an orthonormal base of TM near x so that
e; =f;, 1 <j<dimM, at x. From (2.7) and (1.14), one finds that

dim M
X7 =23 hi(y)e (2.10)
=
with each
hi(v) = aw; + O(yl°) (2.11)

From (2.9)—-(2.11), one deduces that at the point x,

dim M ., \/:—1
2

4 > elep)e(Ve ™) — Tr [VT IOMX%‘TU~°>M:|
=
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_ldimM dim M 1 J

==Y aetnpeun v Y (3 (145 ) )
dim M S dim M

= a,if/p.lf_}vo A== gl , (2.12)
= =1

where the last inequality is strict if at least one of the a;’s is negative. [

On the other hand, from (2.9) one finds that for any 1 <i < dimG,
V=1V e(V) + V> >0 . (2.13)

One also gets from (2.10) that
X7 =4 m)?* (2.14)

From (2.6), (2.8), (2.13) and (2.14), one finds that near x,

dim M dim M
Ff>=A=T Y || +4nT A (x)+T> > b +O0(1+Ty) . (2.15)
Jj=1 Jj=1
Now let o > 0, which will be further fixed later, be sufficiently small so

that the orthonormal base {ej}qimM is well defined over

=1

By,(x)={yeM; diy,x) <o} . (2.16)

Forany 1 < j < dimM, let (V,,)" be the formal adjoint of V., on B,(x). Set
dimM

—Ar =Y ((Ve)" + T(sgnaj)h))(Ve, + T(sgna))hy) . (2.17)

J=1

Clearly, —Ar is nonnegative when acting on compactly supported sections
over B,(x). Furthermore, with (2.11) one verifies easily that

dim M dim M
“Ar=-A=TY |a|+T*> W +00+1+Tly) , (2.18)
j=1 j=1

where by O(0+ 1 + T|y|) we mean a first order differential operator

—+c(y) (2.19)
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with
bjy) =0(), cly)=001+Tyl) . (2.20)
We will also use similar notation for other operators.
From (2.15), (2.17) and (2.18), one deduces that, when acting on sections

with compact support in B,(x),

FE > —Ar +4nT A (x) + 00 + 1+ T|y|)

1 dim M

> == -7 j 44 .
>—2A k;Ia,|+4nT7f(x)+0(a+1+T|y|) (2.21)

for any £ > 1.
Now for any s € Q"*(M, L) with Supp s C B,(x), it is standard that

(=As,s) > Cisll; = Callsllo (2.22)
for some constants C; > 0, C; > 0. Also, by Cauchy inequality, one has
Cy
(0(@)s.5) < Csallsl + 2l (223)
for some constants C; > 0, C4 > 0. Finally, one verifies the obvious esti-
mate

(O(1 + Ty|)s,s) < Cs(1 + Ta)]s]lg (2.24)

for some constant Cs > 0. From (2.21) through (2.24) one gets

C C
(Ffs,s) > (—6 - Cﬂ) lsllF + T<4”’%p(x) — G- f) sl

k
C
- (S )t (2.29)
for some constants C; >0, i =6,...,11.

Now since u(x) # 0, we first choose k large enough so that

Cy Gy
dnH (x) —— > — . 2.26
) - 2> (2:26)
Then choose « small enough so that
C C
767070»0, ffcgwo . (2.27)

With this choice of a, by (2.25)-(2.27), we get (2.3) at x.
The proof of Proposition 2.2 is completed. O
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¢) The global estimate outside of u'(0)

In this subsection we prove Theorem 2.1 by gluing together the estimate
(2.3) outside of u~!(0). This follows for example from an easy trick used in
[BL, pp. 115-117]. To be more precise, since U is open in M, M\U is
compact. So by the finite covering principle and by Proposition 2.2, there is
a finite number of open subsets {U;}._, so that U;U; > M\U and that (2.3)
holds on each U;, i = 1,...,I. The next step, as in [BL], is to construct a
family of smooth functions {¢,} so that {¢7} forms a partition of unity
subordinating to the family of open subsets {U;}. Then by proceeding
exactly the same as in [BL, pp. 115-117], one sees that (2.3) actually holds
for any section with compact support in M\U.

Now for any s € QU (M, L) with Supp s C M\U, one has by (1.29) and
(1.30) that,

<D§”2s,s> = (Ffs,s) . (2.28)

Theorem 2.1 follows from (2.28) and the discussions above. O

Remark 2.4. As one might have noticed, one of the key points to the proof of
Theorem 2.1 is the inequality (2.26) at each critical point x € M\u~'(0) of
A . If at each such x, at least one of the a;’s is negative, then by Lemma 2.3
we have a strict inequality in (2.8). This allows us to replace (2.26) by a
similar inequality without appealing to # and get a proof of Theorem 2.1
for the case of m = 0. In particular, the existence of L is no longer necessary.

3. A proof of Theorem 0.1

In this section, we prove Theorem 0.1. As will be seen, Theorem 2.1 enables
us to localize the problem to arbitrary small neighborhoods of u~!(0). Now
since 0 € g* is a regular value of the moment map u, u~'(0) is a nonde-
generate critical submanifold, in the sense of Bott, of # = | ,u|2. Thus near
1~ '(0), we have a situation closely related to what is considered in the paper
of Bismut and Lebeau [BL, Sects. 8, 9]. It turns out that the methods and
techniques in [BL] can be applied here directly, with little modifications, to
complete the proof of Theorem 0.1.

A surprising feature is that the resulting Dirac type operator on
1~ '(0)/G through this procedure is not identical to D*s.

The present version of this section differs from that in [TZ2]. Here
we follow a suggestion, first proposed to us by Bismut, to consider the
canonical G-principal fibration on any sufficiently small G-invariant neigh-
borhood of x~'(0) and then apply [BL] to the base manifold to get the
result. Similar suggestion was also proposed to us by one of the referees.

This section is organized as follows. In a), we review Theorem 0.1 for
convenience. In b), we examine the canonical G-principal fibration structure
near 1~ 1(0). In c), we identify the restriction of D% on G-invariant sections
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to an operator on the base manifold. In the self-contained subsection d), we
prove a basic result concerning the Spin‘-Dirac operator and the harmonic
oscillator on a flat space. In e), we apply [BL] to our situation to give a proof
of Theorem 0.1. Finally in f), we present an explicit formula for the Dirac
type operator, obtained through this procedure, on u~'(0)/G.

a) Symplectic reduction and the quantization formula

From now on, we assume that 0 € g* is a regular value of the moment map
. Then p~1(0) is a closed submanifold of M, and is invariant under the
action of G. For simplicity, we assume that G acts on u~'(0) freely so that
we have a canonical principal fibration with smooth base M = u~'(0)/G,

G— u'(0) 5 Mg =pu'(0)/G . (3.1)

Denote by i : u~'(0) < M the canonical embedding. Then i*w is a G-
invariant closed two form on p~!(0). It descends to a symplectic form wg on
Mg such that

T'og =10 . (3.2)
On the other hand, L descends through i*L to a Hermitian line bundle Lg

over Mg. Moreover, by the Kostant formula (1.13), V£ induces a Hermitian
connection V¢ on Lg such that

\/_—1 Lg 2
b (V)" =g , (3.3)
(cf. [GS]). Let D*¢ be the Spin°-Dirac operator acting on Q" (Mg, L;) and
O(Mg, Lg) the associated virtual vector space defined by (1.10). Now since
D! is G-equivariant, Q(M, L) is a virtual representation of G. Denote by
O(M, L)Y its G-invariant part.
The purpose of this section is to give an analytic proof of Theorem 0.1,
which we recall for convenience as follows.

Theorem 3.1. The following identity holds,
dim (M, L) = dim Q(Mg, L¢) . (3.4)

Our proof of Theorem 3.1 is based on the following simple observation.
Since D% is G-equivariant, for any T € R, one has

dim Q(M, L)¢ = dim(ker D%) N Q%" (M, L) — dim(ker Dk) N Q% (M, L).
(3.5)

One then takes T — +oo and examines the behavior of the eigenvalues of
D%-|QO;*<M 1) under this limit. The result in Section 2 allows us to reduce the
o (M,
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problem to sufficiently small neighborhoods of x~!(0), on which the prob-
lem will be worked out in this section.

b) A principal fibration near u='(0)

Since G acts on u~'(0) freely, it is clear that there exists a sufficiently small
G-invariant open neighborhood U of u~!(0) such that G acts on U freely.
Thus U/G is a smooth open manifold.

Now consider the canonical G-principal fibration

G—USU/JG. (3.6)

Let E (resp. T"U) be the vertical (resp. horizontal) tangent bundle of the
fibration (3.6), determined by the Levi-Civita connection VIV = V™|, of
the Riemannian metric g’V = ¢™|,, on U. Then one has the following
orthogonal splittings of the tangent bundle 7U and the corresponding
metric,

TU=EaTHU, ¢V =g¢fag"l. (3.7)

It is clear that the above constructions are G-equivariant. This in particular
determines a Riemannian metric g”(Y/%) on U/G so that one has the fol-
lowing identifications,

T'T(U/G) =T'U, n*g" W0 =40 (3.8)

¢) The restriction of D% to the G-invariant part and the induced Dirac operator
onU/G

In this subsection, we identify the restriction of D% on Q¥ (U,L), the
G-invariant part of Q**(U, L), with a Dirac type operator on U/G.

If F is a G-equivariant Hermitian vector bundle over U, then it induces
canonically a Hermitian vector bundle Fy/; over U/G such that
n*Fy 6 = F. We will denote by nf; : T'g(F) — I'(Fy,g) the canonical iso-
morphism which maps a G-invariant section of F to the corresponding
section of Fy/g. We will usually omit the superscript F from nf, when there
will be no confusion in the context. Also, if V¥ is a G-equivariant Hermitian
connection on F, then one verifies easily that

Vellos = nVE mgls, e e [(T(U/G)), seT(Fyq) , (3.9)

where n*e € THU is determined by the identification (3.8), gives rise to a
Hermitian connection Vs on Fy /.
Now let 4 be the smooth positive function on U/G defined by
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h(x) = 4/vol(n~'(x)), xeU/G , (3.10)
the square root of the volume of the fibered group over x.

Definition 3.2. Let R be the bounded operator defined by
R=hng: QY (U,L) = T((\(T"U) @ L)y ) - (3.11)

Clearly, the map R is an isometry. We now try to write R DZR™! explicitly
as a Dirac type operator on U/G. We start with the following easy but
essential observation.

Lemma 3.3. If ey,...,edimg is an orthonormal base of the vertical tangent

bundle E, then B :=Y""%¢(e )Ve, (TUSL s 4 bounded operator, when
acting on QO (U,L).

Proof. We need only to show that each Ve MIUEL s hounded. Clearly, the

Killing vector fields V;, 1 <i < dim G, are linearly independent over U and
span the vertical tangent bundle E. Thus each ¢;, 1 <i < dimG, can be
expressed through a linear combination of the ¥;’s with smooth functions as
coefficients. Lr;f:mma 3.3 then follows from (1.29) and the trivial fact that
each Ly, — VV ("UBL s a bounded operator on Q"*(U, L). ]

If S is an endomorphism of A**(T*U) ® L, we will denote by
Su/6 = ngSmg' (3.12)

its induced endomorphism over U/G.

Let f1,..., faéimu/c be an orthonormal base of T(U/G). For simplicity,
we use the following notation for Clifford actions on the corresponding
vector bundles over U/G,

c(fy) = nge(n* fi)ng', 1<;<dimU/G . (3.13)

Definition 3.4. Let D%, . be the differential operator acting on nGQ?;’*( U,L) =
F((A(T*U) ® L), ) defined by

dimU/G

Dhg=3 cpyvy e (3.14)

=

Proposition 3.5. The following identity holds for operators acting on
QU (U, L),

— 1 * =
RD'R™ =Dy — Zc((dh) )+ By - (3.15)
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Proof. (3.15) follows from Definition 1.1, Lemma 3.3, (3.10), (3.14) and a
direct verification. [

On the other hand, one knows from (1.19) that the G-invariant Hamil-
tonian vector field X lies in I'(E) over U. The induced Clifford action
ne(X 7 )ng! acts on 1gQY" (U, L). We denote this action by ¢(ngX” ). From
Proposition 3.5, Definition 1.2 and the fact that R is an isometry, one gets

Corollary 3.6. The following identity holds for the formally self-adjoint
operators acting on ngﬁgl*(U,L),

c((dh)") + By + c(ngX™) . (3.16)

_ 1
RDLTR 1:D%//G*z

Remark 3.7. As a simple but important observation, one sees from (1.19)
that ¢(ngX”) anticommutes with every ¢(f;), 1 <j <dim U/G.

Remark 3.8. As another important observation from (1.19), one sees that if U
is small enough, then there exists a constant C > 0 such that [X”|* > C# on
U. When pushing everything down to U/G, one then gets on U/G that

—c(ngX ") > CHyj6 - (3.17)

(3.17) is a natural analogue of [BL, Prop. 8.14]. By this and by Corollary
3.6 and Remark 3.7, one sees that the operator RD:R™! on U/G is of the
same nature as the operator DX 4 TV studied in [BL]. Thus one is able to
apply the results in [BL] almost directly to our situation.

d) Spin°-Dirac operators and harmonic oscillators

The result in this subsection will play an important role in our proof of
Theorem 3.1, in the same way as [BL, Theorem 7.4] plays in [BL, Sect. 9].
This subsection is otherwise self-contained.

Let W=V & V' be a Z,-vector space such that dim ¥V =dimV’'. We
assume ¥ and 7’ be Euclidean with the Euclidean metrics ¢”, ¢” respec-
tively. Then W carries the orthogonal direct sum metric. Let J € End® ()
be an isometry so that J> = —Id. We assume the existence of J. Then J
defines a complex structure on W. Let f1, ..., fqim » be an orthonormal base
of ¥, then Jfi,...,Jfamy is an orthonormal base of V’. They together form
an orthonormal base of W.

We consider A%*(T*W) as a vector bundle over V. Let V be the flat
covariant derivative acting on T(A%*(T*W)). Set

DVzdiZm:Vc(ﬁ)vﬁ L T(AY (T W) — TN (T W) . (3.18)
i=1
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Let a; >0, 1 <i<dimV be positive constants. Let (yi,...,ydgimr) be

the coordinate system associated to fi,..., fgimy. For any T € R, set
dim V
Dy =D —V=IT Y ayic(Jfi) . (3.19)
i=1
Let A be the Laplacian
dim V 5
A= (Vy)?. (3.20)

Proposition 3.9. The following identity holds,

dimV dim V
(DF)? = =A=V=IT Y " aic(fi)e(Jfi) + T* Y @iy} . (3.21)
i=1 i=1
Proof. (3.21) follows from (3.19), (3.20) and a direct verification. O

Theorem 3.10. (i) If T > 0, then the kernel of (DV) is one dimensional and
is generated by exp(— Zdlm V). Furthermore, there exists a positive
number C > 0 such that all the nonzero ezgenvalues of (DV) are larger than
CT; (i) If T < 0, then the kernel of (DV) is one dimensional and is generated

by exp(7 Z?ﬁ? d a;y; 2) fll'o A fdim y - Furthermore, there exists a positive
number C' > 0 such that all the nonzero eigenvalues of (D} )2 are larger than
—C'T.
Proof. Assume first 7 > 0. Consider the orthogonal splitting,

dim V )

NHT W)y =Ca D A (Tw) . (3.22)

i=1
From Proposition 3.9 and (2.9), one sces ecasily that when restricted to
C =N (T*W),

dim V' dim V'

D) =-A=T> a;+T"> ay} (3.23)
i=1 i=1

while when restricted to &dm” A% (T W),

dim V/ dim V'

(DY)} > —A-T> a;+T?) aly? +2Tmin{a;1 <i<dimV} . (3.24)
- -

Now by the standard properties of harmonic oscillators, —A—

dimV 2 dimV 2 2 - . . .
TZ ai+T Zi:l a:y; 18 a nonnegative operator with a one dimen-

sional kernel generated by exp(— —Zd‘mV ,yl.z) and all the nonzero eigen-
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values are larger than CT for some C > 0. Combining this fact with (3.23),
(3.24), we complete the proof of the part (i). The proof of the part (ii) is
entirely similar. [

e) A proof of Theorem 3.1

Let Ng be the normal bundle to Mg=p'(0)/G in U/G. Let
i : Mg — U/G denote the canonical isometric embedding. Then one has
the obvious orthogonal splittings

T(U/G)|y, = N6 ® TMg,

gT(U/G) |MG — gNG e gTMG . (325)

On the other hand, if we denote by Js; the canonically induced almost
complex structure on (TU)y Gly, = (*TU)y 6.

Jo = ngi'J = igJyg (3.26)
then from (1.1) and (1.12) one verifies easily that
JoN = (I"E)y g - (3.27)
From (3.25)—(3.27) one gets easily the orthogonal splittings

( )U/G‘MG:NG @ JgNg b TMg,

(TU)U/(,| = g @ g/No gy g™o (3.28)
with Jg preserves Ng,; = Ng @ JgNg and TM. Thus one can construct ca-
nonically the Hermitian vector bundles N a 0) and 719 M etc, which further
give the canonical identification of Hermltlan vector bundles,

AO**(T*U)U/G\MG = /\0’*(N57J)® A (T*M) . (3.29)

Let Lg = Ly/cly, be the Hermitian vector bundle over Mg with the
Hermitian connection V¢ = i,V u/6. Then one verifies easily that (cf. [GS])

v

s (V) =6 . (3.30)

Definition 3.11. Let D' be the canonical Spin® Dirac operator acting on
Q" (Mg, L;) defined in the same way as in Definition 1.1 from J6l g g™e
and the pair (Lg, V*9).
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On the other hand, from (3.14), (3.29) one can define a differential op-
erator D' acting on T(A%* (N )@ A% (T*Mg) ® L) defined by

dimU/G

DH: Z C(fj)(igvmo.s(T*U)@L)U/G)(fj) , (331)
=1

where we use the same notation for the f;’s and their restriction on M.
Clearly, if we assume that when restricted to Mg, fi,..., famum, 1S an
orthonormal base of TM;, then one has

dimMG

D= 3" ()i TV e () (3.32)
j=1

Let p be the canonical orthogonal projection
P A (NE )& A (T"Mg) ® Lg — A (T*Mg) ® Lg (3.33)

which acts as identity on A®*(Ng )@ A% (T*Mg) ® Lg ~ A" (T*Mg) ® Lg
and maps each A% (N, ;) ® A" (T*Mg) ® Lg, i > 1, to zero.
Let M € End(A%(T*Mg) ® Lg) be defined by

1 = p((Buja — 7 e((@h) D, )p (334

Definition 3.12. The differential operator DLQG acting on Q" (Mg, L) is defined
by
Dy =pD'p+M . (3.35)

Clearly, DLQG is a first order elliptic differential operator.

We can now apply the techniques and results of Bismut-Lebeau [BL,
Sects. 8, 9] to complete the proof of Theorem 3.1.

In fact, Theorem 2.1, which is the analogue of [BL, Prop. 9.13], allows us
to localize the problem to an arbitrary small neighborhood U of u~'(0). By
(3.6) and Corollary 3.6, one can further reduce the problem to the study
of the operator RDXR™! on U/G, to which the arguments in [BL] can
be applied directly (see Remarks 3.7 and 3.8). In particular, the part (i) of
Theorem 3.10 plays exactly the same role as [BL, Theorem 7.14] plays in
[BL], while (3.31)—(3.35), Definitions 3.4, 3.11, Corollary 3.6 and again the
part (1) of Theorem 3.10 give rise to the limiting operator Déc on Mg
(compare with [BL, (8.94) and (9.20)]).

In doing all these, note that here we are no longer in the holomorphic
situation as in [BL], where many estimates have actually taken the advan-
tage of the holomorphic properties there. However, it is easy to see that this
does not cause any trouble in modifying the estimates in [BL] so that all the



An analytic proof of the geometric quantization conjecture 251

arguments can actually go through here. As a typical example, we do not
have direct analogues of [BL, (9.68), (9.69)] with zero on the right hand side,
but with O(]Z|) and O(|Z|0 + 1) respectively instead. And one sees easily
how to modify the estimates in [BL] to work for our situation.

To summarize, by proceeding in exactly the same way as in [BL, Sects. 8§,
9], we get the following analogue of [BL, (9.156)].

Theorem 3.13. (i) The operator DLG is a formally self-adjoint Dirac type op-
erator which has the same prznczpa[ symbol as that of D"s; (11) There exist
C >0, Ty > 0 such that there are no nonzero elgenvalues 0f DQ° 2 in [0,C],
and that for any T > Ty, the number of eigenvalues ofDL |Qo* (ML) in[0,C] is
equal to the dimension of the kernel of DLG

Now it is a simple fact that the positive and negative eigenvalues of
Do s 1 are in 1-1 correspondence to each other. Thus one gets from
Theorem 3.13 that

dim (kerD%) N QYY" (M, L) — dim(kerDk) N QY°(M, L)
= 1nd DIQG‘QO‘?'V&“(MG,LG) . (3.36)

(3.4) then follows from (3.5), (3.36) and the trivial identity
ll’ld DLG|Q(J.even(MG.’LG) - il’ld DéG|QU'e"e“(MG,LG) . (337)
The proof of Theorem 3.1 is completed. O

Remark 3.14. In [BL], one can go further to obtain an equality between the
kernels of Dirac type operators (cf. [BL, (9.161)]). Since here we have no
analogue of [BL, Theorem 1.7], the non-zero small eigenvalues appearing in
Theorem 3.13 may well exist.

f) An explicit formula for DZG

We present a more explicit formula for DLG by evaluating the terms pD"p
and M in (3.35) separately.

Proposition 3.15. The following identity holds for operators acting on
Q" (Mg, Lg),

pD"p = Db | (3.38)
Proof. Let us go back to the embedding i: u~'(0) — U. Let N be the

normal bundle to x~'(0) in U. Then by (1.1) and (1.12) one finds that
E| w10) =JIN. Thus one has the canonical orthogonal splittings

TU| 19y = N ®JIN @ 7" (TMg),
9" =9 g eng™ (3:39)
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with J preserves N; = N @ JN and W; = n*(TMg). Thus one can construct
the Hermitian vector bundles N}w), WJ(I’O) which in turn give the canonical

identification of Hermitian vector bundles

AT U)oy = A% (N) & AV () (3.40)
Let P (resp. P1) be the orthogonal projection from TU \ ) to Ny (resp.
W;). Set
VN = pirvIVp,
v =ptirvivpt (3.41)
and
Y A VAL VA VA (3.42)

Then VY (resp. V") is a Euclidean connection on N; (resp. Wy), while 4 is a
one form taking values in skew-endomorphisms on 7U | 1 1(0) which exchange
N; and W;.

The connections VY, V" and the dlmost complex structure J induce
canonically the Hermitian connections vt gdet5) o det(NVY),
det(W; wi! ’0)) respectively. Also, recall that the Hermman lme bundle / has
been deﬁned in (1.5). The following identification of Hermitian line bundles
is clear,

i*2. = det(N") @ det(w"?) . (3.43)

By (3.41) and (3.42), one further has the corresponding identification of
Hermitian connections

V=i = v @ 1d )+ 1d @ v (3.44)
J

N(] 0))

Now the almost complex structure J induces canonical Spin® structures
on N;, W, respectively (cf. [LM, Appendix D]). Thus one has the following
identifications of Clifford modules analogous to those in (1.6) (cf. [LM
Appendix D]),

AV (N) = S(Ny) @ det P (N,
A (W7) = S(W)) @ det A (w10 (3.45)

Furthermore, by proceeding s1m11dr1y as in Section la) dnd [LM Appendix
D], one constructs from VNJ Vde‘ (resp v, vdet;")) the canonical
Hermitian connectlon Al (resp VA7) on A0 *(N3) (resp. A% *(W*))
We denote by Qv U)gL)I ~'o the tensor product connection of VAN,
VA" ) and i*VE.

From the definitions of these connections and from (3.41), (3.42) and
(3.44), one verifies easily that if e, ..., egim,1(o) is an orthonormal base of
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T '(0) such that e; € W) for 1 <j<dimMg, then one has for any
1 <i <dimpu'(0),

0,5 (7
VAO.*(T*U)M 0 (AT U)BL)| 1)
e |/r' 0) — e

1 dimMg dimp'(0)
+§ Z Z (A(ei)es, er)c(es)c(er)
s=1 t=dimMg+1
1 dimMg dim p~'(0)
+5 Z Z (A(e)es, Je)c(es)c(Je) . (3.46)

2 s=1 t=dimMg+1

Now one verifies directly that

dim Mg Ot (x
prc Y ele)'Ve g — ple (3.47)
=1
and that
prge(er)cles)c(e)ng' p = prge(er)c(es)c(Je)ng'p =0 (3.48)

for 1 <i<dimMg, 1 <s <dimMg and dim Mg + 1 < ¢ < dim u~'(0).
(3.38) follows from (3.32), (3.33) and (3.46)—(3.43). OJ
We now compute pig(éU/G)p.
Set p = ng'png. Fr(%r*n Lemma 3.3, (3.40), (3.46), (2.9) and the definition
of the connection V" (7 U)®L)|V‘<0), one verifies directly that

nG pig(Bujc)pnG = pBp
1 dimp'(0) dim Mg dim p='(0)

=3 Y Y Y e edpeleele)ele)p

i=dimMg+1 s=1 t=dimMs+1
1 dim 1'(0) dimMg dim p~'(0)

+§ Z Z Z (A(ei)es, Je;)pe(ei)c(es)c(Je)p

i=dimMg+1 s=1 t=dimMg+1
1 dim p='(0) dim Mg

=5 > D (dle)ee)pe(es)e(e)c(Je)p

i=dim Mg+1 s=1

| dim x1(0)
~3 > clAlener)
i=dim Mg+1

\/_—1 dim = 1(0)
=-—5 Z c(A(e;)Je;)
i=dim Mg+1
1 dim x~'(0)
-5 Y cld(eer) (3.49)

i=dim Mg+1
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Now set h = h| Mg One verifies directly (cf. [BGV, Ch. 10]) that

|- dim i 1(0) ~
-3 AZ ng(d(e)e) = (dh)* . (3.50)
i=dim Mg+1

Combining (3.34), (3.38), (3.49), (3.50) and Definition 3.12, one gets

Theorem 3.16. If by, ..., baimc is an orthonormal base of the vertical tangent
bundle E|#,1(0) of the fibration (3.1), then one has,

dim G
Dl =D —

0 T_l ;: c(nG(A(bi)Jbi)) - (3.51)

Remark 3.17. The fact that Dé“ and D" might not be identical was first
suggested to us by Bismut.

Now we assume that the almost complex structure J is integrable so that
(M, w) is Kéhler. Then 4 commutes with J. By (3.50), one gets

dim G dim G
7\/2—_1 > (A (b)Jb;) = —2_ : > Jom(A(bi)bi) = — \/?JG(dﬁ)* _
i=l i=

(3.52)

Also one verifies in this case that (Mg, wg) is Kéhler (cf. [GS]). Furthermore,
by (1.11) and (3.3) one finds that both L and L; admit unique holomorphic
structures with the Hermitian holomorphic connections V%, V%6 respec-
tively. Thus one has the standard formula (cf. [BGV])

Dl = /2(8" + (9%)*) . (3.53)
From (3.51)-(3.53), we obtain the important formula
Dy =V2(hd"h™" +h ' (9")'h) | (3.54)

which is essential to the proof of Theorem 0.4 in Section 4d).

4. Generalizations and further comments

In this section, we present various generalizations of Theorem 0.1. All the
proofs are very short and are readily given using the arguments in previous
sections with little modifications.

This section is organized as follows. In a), we state and prove a gener-
alized version of Theorem 0.1 which includes Theorem 0.2 as a special case.
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We also give a proof of Theorem 0.3 in this subsection. In b), we prove a
dual version of Theorem 0.1. In c), we prove the negative quantization
formula for the case where G is abelian. Finally in d), we restrict ourselves to
the holomorphic situation and prove certain Morse type inequalities which
include Theorem 0.4 as a special case.

a) A generalized quantization formula

From now on, we no longer assume the existence of the line bundle L unless
stated otherwise. The other assumptions and notation are the same as in the
previous sections.

Let E be a G-equivariant Hermitian vector bundle over M admitting a
G-equivariant Hermitian connection VZ. Then E induces canonically a
Hermitian vector bundle E; over Mg with a canonically induced Hermitian
connection.

Forany V € g, set

=Ly, - V5 . (4.1)

By proceeding exactly the same as in Sections 1-3, one can prove the
following result.

Theorem 4.1. If at each critical point x € M\u~'(0) of A, one has

dim G

VTS wrE ) >0, 42)
i=1

i

then the following identity holds,

dim Q(M, E)© = dim Q(Mg, E¢) . (4.3)

Proof. The condition (4.2) simply replaces the condition #(x) > 0 in (2.26)
to make the arguments in Section 2 work in the present situation. Fur-
thermore, the arguments in Section 3 work for general E. O

When the line bundle L exists, Theorem 0.1 follows from Theorem 4.1 by
taking E = L. Similarly, Theorem 0.2 also follows as a special case of
Theorem 4.1.

In view of Remark 2.4, if at each critical point x € M\u~'(0) of A, at
least one of the a;’s defined in (2.7) is negative, then the arguments in Section
2 still go through even if the inequality in (4.2) is replaced by the equality. A
result of Kirwan (cf. [K1, 4.18, 4.20] and [K2, pp. 549]) implies that this
actually happens when p~'(0) is nonempty. Thus one gets the following
improved version of Theorem 4.1.
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Theorem 4.2. If 1~ '(0) is nonempty and if at each critical point x € M\pu~'(0)
of H,

dim G

VEL Y mlw)r(x) 20, (4.4)
i=1

i

then (4.3) holds.

As a special case of this theorem, one can take £ = C, the trivial line
bundle. The rigidity theorem for the canonical Spin‘-Dirac operator on an
almost complex manifold (cf. [H]) states that

dim Q(M, C) = dim O(M, C)“ . (4.5)

Combining these two results with the Atiyah-Singer index theorem [AS], one
obtains Theorem 0.3. O

b) A dual quantization formula

Let E be as in a) and the line bundle 1 be as defined in (1.5). Let *z be the
Hodge star operator (cf. [GH, pp. 151]),

g AM(T*M) @ E — NOmeM—a(pipny @ )~ @ B (4.6)

Clearly #g is G-equivariant. Furthermore, one verifies directly that
spDPsp! QY (M, @ EY) — QY (M, 2 @ E) (4.7)
is a G-equivariant Dirac type operator with the same principal symbol as

that of D/ ®F".
From (4.6) and (4.7) one gets immediately that

dim Q(M, E)° = (—1)*™M dim o(M, 47" @ E*)°,

dim Q(Mg, Eg) = (—1)4™<Me dim Q(Mg, /5! ® E5) . (4.8)

Combining (4.8) with Theorem 4.1, one gets
Theorem 4.3. If the condition in Theorem 4.1 holds, then
dim QM, /' @ ENS = (=)™ dim Q(Mg, 25! ® EL) . (4.9)

As an immediate consequence, in the case that L exists, one can take
E=L1"® )" to get

Corollary 4.4. There exists my > 0 such that for any m > my,
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dim Q(M, L)% = (—=1)™™ dim Q(Mg, L") . (4.10)

Remark 4.5. Theorem 4.3 as well as Corollary 4.4 can also be proved directly
using the same arguments as in Sections 2, 3 by taking 7 — —oo instead of
taking T — +o0. In doing so, one uses the part (ii) of Theorem 3.10 instead
of the part (i) of Theorem 3.10, when proceeding the arguments in Section 3.
In fact, this was the approach taken in [TZ2]. The approach we now adopt
here was suggested by one of the referees.

¢) Negative quantization formula for abelian actions

In this subsection we prove the following improved version of Corollary 4.4.
Theorem 4.6. If G is abelian, then (4.10) holds for any m > 1.

Proof. We need only to prove the case when m = 1. By (4.8) it is sufficient to
prove (4.3) for E=L® /7', In this case, (4.2) does not hold in general.
However, in the special case that G = S', one verifies that

dim M

] ‘
Vel 4= ; cle))e(VeX™) =

0) dim M
Tr[vT ‘ MX’”’} >-3 g ,
=1
(4.11)

p

2

at each critical point x € M\u~'(0) of #. This is sufficient for the argu-
ments in Section 2 to work to give a proof of (4.9). The higher rank case
then follows from a standard ‘reduction in stage’ procedure (cf. [V2]). [

Remark 4.7. Theorem 4.6 has also been proved in Jeffrey-Kirwan [JK1,
Theorem 6.2]. Furthermore, an example due to Vergne (cf. [JK1, pp. 686])
shows that the abelian condition in Theorem 4.6 is necessary.

d) Quantization on Kdhler manifolds: holomorphic Morse inequalities

In this subsection we restrict ourselves to the case where J is integrable.
Then (M, ) is a Kéhler manifold and G acts holomorphically on M. One
verifies easily (cf. [GS]) that the induced almost complex structure Jg on Mg
is also integrable so that (Mg, w¢) is Kéhler.

Now let £ be a G-equivariant holomorphic Hermitian vector bundle.
Then its unique holomorphic Hermitian connection is also G-equivariant.
These together induce canonically a holomorphic Hermitian vector bundle
Eg over Mg. Thus one has formulas (1.21) and (3.54), with L™, Ls there
being replaced by E, E¢ respectively.
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Now note that in the holomorphic category all the arguments in Sections
1-3 preserve the Z-grading nature of the problem. Therefore, one actually
gets the following refined version of Theorem 4.1, where one still uses the
superscript G to denote the G-invariant part.

Theorem 4.8. If (4.2) holds at each critical point x € M\u='(0) of A, then for
any integer p, one has the following Morse type inequality for Dolbeault
cohomologies,

dim H*?(M, E)° — dim H*? "' (M,E)° + - -- + (=1)" dim H** (M, E)°

< dim H? (Mg, E) — dim H*" "' (Mg, Eg) + - - - + (—1) dim H** (Mg, E¢) .
(4.12)

Remark 4.9. If the line bundle L exists, then one can take £ = L in Theorem
4.8 to get Theorem 0.4. In this case, Guillemin-Sternberg [GS] proved that
there is actually an equality between the dimensions of spaces of holo-
morphic sections,

dim H*°(M, L) = dim H** (Mg, Lg) . (4.13)

Remark 4.10. As a holomorphic refinement of Theorem 0.3, it is proved in
Wu-Zhang [WuZ] that if G is abelian and x~'(0) is nonempty, then one has
the equality of Hodge numbers for any integer p,

dim H°?(M, C) = dim H*? (Mg, Cg) . (4.14)
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