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1 Introduction

In this paper, we give a cobordism proof of the higher dimensional Rokhlin congruences

established in [8]. The proof in [8] is K-theoretic and the proof of some special cases given in

[6] is analytic. Here we show that the cobordism method given in [7] (which is never published)

for elliptic genus applies also to the general case of [8].

The original Rokhlin congruence formula is about the signature of four dimensional man-

ifolds. Since, as was indicated in Hirzebruch’s book [4], that Professor Wu Wen-Tsun was the

first one who suggested the correct form of the Signature theorem for four dimensional manifolds

(which was proved by Thom and Rokhlin independently), and the first proof of the Signature

theorem given in [4] uses essentially the cobordism method, we dedicate this short article to

Professor Wu Wen-Tsun for his 90th birthday.

2 Rokhlin Congruences and a Cobordism Proof

Let K be an 8k+4 dimensional oriented manifold. Let B be an 8k+2 dimensional orientable

submanifold of K such that [B] ⊂ H8k+2(K,Z2) is dual to the Stiefel-Whitney class w2(K)

(The submanifold B exists if and only if K is a Spinc-manifold). We fix a spin structure on

K \ B. Then B carries a canonically induced spin structure. Furthermore, the spin cobordism

class of the induced spin structures does not depend on the spin structures chosen on K \ B

(cf. [5]).

Let i : B →֒ K denote the embedding of B into K.

Let c ∈ H2(M,R) be the dual of [B] ⊂ H8k+2(K,Z).
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Let E be a real vector bundle over K. Then i∗E is a real vector bundle over the spin

manifold B. Let ind2(i
∗E) be the mod 2 index in the sense of Atiyah–Singer [2] associated to

i∗E. It is a spin cobordism invariant.

We can now state our higher dimensional Rokhlin congruence, proved in [8] by a K-

theoretic method, as follows.

Theorem 2.1 The following identity holds,
〈
Â(TM)ch (E ⊗ C) exp

( c

2

)
, [K]

〉
≡ ind2 (i∗E) mod 2Z. (2.1)

In what follows, we will give a cobordism proof of this result. The proof uses a trick due

to Ochanine [5]. Such a proof of a special case of (2.1) has been given in [7].

We first show that when the normal bundle to B in K is trivial, then Theorem 2.1 holds.

Lemma 2.2 If the normal bundle N to B in K is trivial, then the following identity

holds, 〈
Â(TM)ch (E ⊗ C) , [K]

〉
≡ ind2 (i∗E) mod 2Z. (2.2)

Proof Let N1 be a tubular manifold of B in K. Then there exists a Riemannian metric

gTM such that it is of product nature near ∂N1 and when restricted to N1 it is the direct

product of the standard gTS
1

with a metric gTB. Moreover, there is a Hermitian metric gE as

well as a Hermitian connection ∇E on E over M such that it is of product nature near N1 and

the restriction of gE on N1 = S1 × B coincides with the one obtained by lifting to N1 from

gi
∗

E , a Hermitian metric on i∗E.

Take any spin structure on K \ N1, let DE⊗C

K\N1

be the Dirac operator (twisted by the

complexification E ⊗C of E) on K \N1 carrying the Atiyah-Patodi-Singer boundary condition

(cf. [1]). Then by the Atiyah-Patodi-Singer index theorem ([1]), one has

ind
(
DE⊗C

K\N1

)
=

∫

K\N1

Â
(
TM,∇TM

)
ch (E ⊗ C) − η

(
Di

∗

N1
E⊗C

)
, (2.3)

where Â(TM,∇TM ) is the Hirzebruch Â-form associated to the Levi-Civita connection of gTM

(cf. [9]), η(Di
∗

N1
E⊗C) is the reduced η-invariant in the sense of Atiyah-Patodi-Singer [1] of the

induced Dirac operator on the boundary, with iN1
: N1 →֒ K denoting the embedding of N1

into K.

Now, by dimensional reason, one has

ind
(
DE⊗C

K\N1

)
∈ 2Z. (2.4)

On the other hand, one verifies easily that
∫

N1

Â
(
TM,∇TM

)
ch (E ⊗ C) = 0, (2.5)

while since N1 = S1 × B, one verifies directly that

η
(
Di

∗

N1
E⊗C

)
=

dim
(
ker

(
Di

∗

E
))

2
, (2.6)

where Di
∗

E is the Dirac operator on B (twisted by i∗E) with respect to the induce spin structure

and the metrics and connections on B.
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From (2.3)–(2.6), one gets

∫

K

Â
(
TM,∇TM

)
ch (E ⊗ C) ≡

dim
(
ker

(
Di

∗

E
))

2
mod 2Z. (2.7)

Now by [2], 1
2 dim(ker(Di

∗

E)) mod 2Z is exactly the analytic definition of ind2(i
∗E). Com-

bining with (2.7), one gets (2.2).

Now we come to the proof of Theorem 2.1 where we no longer assume that the normal

bundle N is trivial.

We denote by the same notation c a closed two form on M which represents the corre-

sponding cohomology class in H2(M,R). According to [5], there exists an 8k + 4 dimensional

oriented closed manifold P (K) ⊂ K × P1(C) satisfying the conditions of Lemma 2.2 such that

the induced spin structures on B ⊂ P (K) are spin cobordant to that on B ⊂ K. Further-

more, there are two closed two forms c1, c2 on K × P1(C) such that 1), c1 is the pull-back

from P1(C) to K × P1(C) of a form representing the first Chern class of the canonical line

bundle over P1(C); 2), c2 is the pull-back of c from K to K × P1(C); 3), c1 + c2 is dual to

[P (K)] ∈ H8k+4(K × P1(C),Q).

Let π : K × P1(C) → K denote the obvious projection. Let f be the function defined by

f(x) =
x/2

sinh(x/2)
.

We can now apply a formula in [4, (9.3)] to get

∫

P (K)

Â (TP (K)) ch
(
i∗
P (K)π

∗ (E ⊗ C)
)

=

∫

K×P1(C)

(c1 + c2) f (c1 + c2)
−1

Â (T (K × P1(C))) ch (π∗(E ⊗ C))

=

∫

K

Â(TK)ch (E ⊗ C) cosh
( c

2

)
. (2.8)

Now by Lemma 2.2 and the cobordism invariance of the mod 2 index, one finds

∫

P (K)

Â (TP (K)) ch
(
i∗
P (K)π

∗ (E ⊗ C)
)
≡ ind2 (i∗E) . (2.9)

From (2.8), (2.9) and the obvious dimensional reason, one gets (2.1), which completes the

proof of Theorem 2.1.

We refer to [6]–[8] and [3] for further information around Theorem 2.1.
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