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Abstract We present a new proof, as well as a C/Q extension (and also certain
C/Z extension), of the Riemann–Roch–Grothendieck theorem of Bismut–Lott for flat
vector bundles. The main techniques used are the computations of the adiabatic limits
of η-invariants associated to the so-called sub-signature operators. We further show
that the Bismut–Lott analytic torsion form can be derived naturally from transgressions
of η-forms appearing in the adiabatic limit computations.

1 Introduction

Let M be a compact smooth manifold. For any complex flat vector bundle F over M
with the flat connection ∇F , one can define a mod Q version of the Cheeger–Chern–
Simons character CC S(F,∇F ) (cf. [19]) as follows. By a result of Atiyah–Hirzebruch
[1], there exists a positive integer k such that k F is a topologically trivial complex vec-
tor bundle. Let∇k F

0 be a trivial connection on k F , which can be determined by choosing
a global basis of k F . Let k∇F be the connection on k F obtained from the direct sum
of k copies of ∇F . Then we define the mod Q version of the Cheeger–Chern–Simons
character as

CC S
(

F,∇F
)

= 1

k
C S

(
∇k F

0 , k∇F
)
, (1.1)
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570 X. Ma, W. Zhang

where C S(∇k F
0 , k∇F ) is the Chern-Simons class associated to (k F, k∇F ,∇k F

0 ). It
determines a well-defined element in Hodd(M,C/Q) (See Sect. 2.4 for more details).

Let Z → M → B be a fibered manifold with compact base and fibers. Let e(T Z)
be the Euler class of the vertical tangent vector bundle T Z . The flat vector bundle
(F,∇F ) over M induces canonically a Z-graded flat vector bundle H∗(Z , F |Z ) =
⊕dim Z

i=0 Hi (Z , F |Z ) over B (cf. [12], see also Sect. 2.1). Let ∇H∗(Z ,F |Z ) = ⊕dim Z
i=0

∇Hi (Z ,F |Z ) denote the corresponding flat connection induced from ∇F .
In [12], Bismut and Lott proved a Riemann–Roch–Grothendieck type formula for

the imaginary part of the Cheeger–Chern–Simons character, which can be stated as
an identity in Hodd(B,R),

∫

Z

e(T Z)Im
(

CC S
(

F,∇F
))

=
dim Z∑
i=0

(−1)i Im
(

CC S
(

Hi (Z , F |Z ) ,∇Hi (Z ,F |Z )
))
.

(1.2)
They actually proved in [12] a refinement of (1.2) on the differential form level, and
constructed a real analytic torsion form T (T H M, gT Z , hF ) (cf. (3.139), (3.137)) such
that

dT
(

T H M, gT Z , hF
)

=
∫

Z

e
(

T Z ,∇T Z
) +∞∑

j=0

1

j !c2 j+1

(
F, hF

)

−
+∞∑
j=0

1

j !
dim Z∑
i=0

(−1)i c2 j+1

(
Hi (Z ,F |Z ), hHi (Z,F |Z )

)
, (1.3)

where e(T Z ,∇T Z ) and c2 j+1(F, hF ) are defined in (3.84) and (2.42).
In this paper, we will present a new approach to (1.2) based on considerations of

η-invariants of Atiyah–Patodi–Singer [2]. Besides giving a new proof of (1.2), our
method also provides an extension of (1.2) to cover the real part of the Cheeger–
Chern–Simons character.

One of the main results of this paper can be stated as the following identity in
Hodd(B,R/Q),

∫

Z

e(T Z)Re
(

CC S
(

F,∇F
))

=
dim Z∑
i=0

(−1)i Re
(

CC S
(

Hi (Z , F |Z ) ,∇Hi (Z ,F |Z )
))
.

(1.4)

Putting (1.2) and (1.4) together, we get the following formula which can be thought
of as a Riemann–Roch–Grothendieck formula for these Cheeger–Chern–Simons cha-
racters.
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Eta-invariants, torsion forms and flat vector bundles 571

Theorem 1.1 We have the following identity in Hodd(B,C/Q),

∫

Z

e(T Z)CC S
(

F,∇F
)

=
dim Z∑
i=0

(−1)i CC S
(

Hi (Z , F |Z ) ,∇Hi (Z ,F |Z )
)
. (1.5)

In particular, if C denotes the trivial complex line bundle over M, then one has

dim Z∑
i=0

(−1)i CC S
(

Hi (Z ,C|Z ) ,∇Hi (Z ,C|Z )
)

= 0 in Hodd(B,C/Q). (1.6)

It turns out that (1.4) has been obtained by Bismut in [9, Theorem 0.2] under the
extra condition that T Z is fiber-wise oriented, while when dim Z is even (1.6) is a
special case of [9, Theorem 3.12].

Our proof of (1.4), in its full generality, is based on an extension of [30, Theorem 0.2],
where Zhang proved a Riemann–Roch type formula for certain extended versions
of the Atiyah–Patodi–Singer ρ-invariant associated to the sub-signature operators
constructed also in [30]. The main method used, as in [30], is the computation of the
adiabatic limits of the constructed sub-signature operators, based on the techniques
developed by Bismut–Cheeger [10] and Dai [20], as well as the local index computa-
tions developed in the papers of Bismut–Lott [12] and Bismut–Zhang [13]. Moreover,
under suitable deformations of these sub-signature operators, the above arguments
also lead to a new proof of (1.2). Thus, we obtain (1.5) solely in the framework of
η-invariants.

It is particularly interesting that in such a process, the analytic torsion form of
Bismut–Lott [12] shows up naturally in a transgression formula of the η-forms asso-
ciated to the deformed operators. This suggests a natural relationship between the η
and torsion invariants.

We should mention that the proof in [9] for (1.4) relies also on the computations
of adiabatic limits of η-invariants. Moreover, when dim Z is even (1.6) plays a role in
our proof of (1.4).

From another aspect, in view of the R/Z-index theory developed by Lott [25] (cf.
Sect. 2.6), one can refine (1.4) to an identity in K −1

R/Z(B) if Z is even dimensional
and spinc (cf. Sect. 3.9): suppose that Z is even dimensional and spinc. Let S(T Z) =
S+(T Z) ⊕ S−(T Z) be the spinor bundle of T Z . In [25, Sect. 4], Lott defined a
topological index Indtop mapping from K −1

R/Z(M) to K −1
R/Z(B). We denote by C the

trivial complex line bundle carrying the trivial metric and connection. Let ∇F,e be the
Hermitian connection on (F,∇F , hF ) defined by (2.7). Then F = [(F, hF ,∇F,e, 0)−
rk(F)C] ∈ K −1

R/Z(M). Set

I (F) =
dim Z∑
i=0

(−1)i
(

Hi (Z , F |Z ), hHi (Z ,F |Z ),∇Hi (Z ,F |Z ),e, 0
)
. (1.7)
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572 X. Ma, W. Zhang

Theorem 1.2 In K −1
R/Z(B), we have

Indtop
((

S+(T Z)∗ − S−(T Z)∗
)⊗ F

) = I (F)− rk(F)I (C). (1.8)

In fact, Bunke [16], Bunke and Schick [18] studied the index problem in their
“smooth K -theory”, when the eta form appears naturally in their formalism. Bunke
explained to us that Theorem 1.2 should hold without the assumption on the fiber Z ,
but one needs to use the twisted version of their theory.

On the other hand, for any integer j ≥ 0, Cheeger and Simons defined in [19] (see
also [9, (2.19), (3.4)]) the secondary character ĉ2 j+1(F,∇F ) ∈ Ĥ2 j+1(M,C/Z).

Similarly, one has the secondary characters ĉ2 j+1(Hi (Z , F |Z ),∇Hi (Z ,F |Z )), 0 ≤ i ≤
dim Z , in Ĥ2 j+1(B,C/Z).

Since e(T Z) has integral periods, in view of Theorem 1.1 as well as its proof in
Sect. 3, it is nature to formulate

Question 1.3 Whether the following identity holds for any integer j ≥ 0 in Ĥ2 j+1

(B,C/Z),

∫

Z

e(T Z )̂c2 j+1

(
F,∇F

)
=

dim Z∑
i=0

(−1)i ĉ2 j+1

(
Hi (Z , F |Z ) ,∇Hi (Z ,F |Z )

)

−rk(F)
dim Z∑
i=0

(−1)i ĉ2 j+1

(
Hi (Z ,C|Z ) ,∇Hi (Z ,C|Z )

)
.

(1.9)

There is also a topological proof of (1.2) given by Dwyer et al. [21]. It is an
interesting question to know whether their method applies to (1.4).

On the other hand, Bloch and Esnault [14] (cf. the earlier works [22,23] and the
survey [29]) defined certain algebraic Chern–Simons classes when E is an algebraic
bundle over a smooth algebraic variety X (over an algebraic closed field k) admitting
an algebraic flat connection ∇E (Note that an algebraic bundle admits an algebraic
connection if and only if its Atiyah class is zero), and developed certain Riemann–
Roch type theorems in algebraic geometry (see [15] and the survey [24] for more
details) which are closely related to the results of Bismut–Lott [12].

This paper is organized as follows. In Sect. 2, as in [12, Sect. 2], we deal with the
finite dimensional situation. In Sect. 3, we develop a proof for both (1.2), (1.4), and
(1.8), and discuss the relations between the η and torsion forms mentioned above.

2 η-invariants and flat cochain complexes

In this section, we discuss the η-invariants associated to a Z-graded flat cochain com-
plex. The framework is a combination of those in [10] and [12, Sect. 1, 2]. We show
that the Bismut–Cheeger η-form is exact in computing the natural adiabatic limit of η
invariants appearing in the context. As a consequence, we deduce an equality relating
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Eta-invariants, torsion forms and flat vector bundles 573

the Cheeger–Chern–Simons characters of this cochain complex and of its cohomo-
logy. Moreover, a torsion form is constructed to transgress the η-form. This torsion
form turns out to be of the same nature as those constructed by Bismut–Lott in [12,
Sect. 2].

This section is organized as follows. In Sect. 2.1, we set up the basic geometric
data. In Sect. 2.2, we introduce a deformation for the twisted signature operator in
the context. In Sect. 2.3, we compute the adiabatic limit of the η-invariants associated
to the deformed twisted signature operators discussed in Sect. 2.2. In Sect. 2.4, we
recall the construction of the mod Q Cheeger–Chern–Simons character as well as its
relation with η-invariants. In Sect. 2.5, we establish a C/Q formula relating various
Cheeger–Chern–Simons characters. In Sect. 2.6, we refine the real part of the formula
proved in Sect. 2.5 to an identity in the K −1

R/Z-group. In Sect. 2.7, we construct the
torsion form transgressing the η-form mentioned above. In Sect. 2.8, we discuss in
more detail the relationships between η and torsion forms.

2.1 Superconnections and flat cochain complexes

Let (E, v) be a Z-graded cochain complex of complex vector bundles over a compact
smooth manifold B,

(E, v) : 0→E0 v→ E1 v→ · · · v→ En → 0. (2.1)

Let ∇E = ⊕n
i=0∇Ei

be a Z-graded connection on E . We call (E, v,∇E ) a flat cochain
complex if the following two identities hold,

(
∇E
)2 = 0,

[
∇E , v

]
= 0, (2.2)

where we have adopted the notation of supercommutator in the sense of Quillen [27].
Let hE = ⊕n

i=0hEi
be a Z-graded Hermitian metric on E .

Let v∗ ∈ C∞(B,Hom(E∗, E∗−1)) be the adjoint of v with respect to hE .
Let (∇E )∗ be the adjoint connection of ∇E with respect to hE .
By [13, (4.1),(4.2)] and [12, Sect. 1(g)], one has

(
∇E
)∗ = ∇E + ω

(
E, hE

)
(2.3)

with

ω
(

E, hE
)

=
(

hE
)−1 (∇E hE

)
. (2.4)

Let A′, A′′ be the superconnections (in the sense of Quillen [27]) on E defined by

A′ = ∇E + v, A′′ =
(
∇E
)∗ + v∗. (2.5)

123



574 X. Ma, W. Zhang

Let N ∈ End(E) be the number operator of E , i.e., N acts on Ei by multiplication
by i . We extend N to an element of C∞(B,End(E)).

Following [12, (2.26), (2.30)], for any u > 0, set

C ′
u = uN/2 A′u−N/2 = ∇E + √

uv,

C ′′
u = u−N/2 A′′uN/2 =

(
∇E
)∗ + √

uv∗,

Cu = 1

2

(
C ′

u + C ′′
u

)
, Du = 1

2

(
C ′′

u − C ′
u

)
.

(2.6)

Let

∇E,e = ∇E + 1

2
ω
(

E, hE
)

(2.7)

be the Hermitian connection on (E, hE ) (cf. [12, (1.33)] and [13, (4.3)]). Then

Cu = ∇E,e +
√

u

2

(
v + v∗) (2.8)

is a superconnection on E , while

Du = 1

2
ω
(

E, hE
)

+
√

u

2

(
v∗ − v

)
(2.9)

is an element in C∞(B, (�(T ∗ B)⊗̂End(E))odd).
On the other hand, for any b ∈ B, let H(E, v)b = ⊕n

i=0 Hi (E, v)b be the cohomo-
logy of the complex (E, v)b. As in [12, Sect. 2(a)], by (2.2), there is a Z-graded complex
vector bundle H(E, v) on B whose fiber over b ∈ B is H(E, v)b. Moreover, H(E, v)
carries a canonically induced flat connection ∇H(E,v) (cf. [12, Proposition 2.5]). In-
deed, let ψ : Ker(v) → H(E, v) be the quotient map. Let s be a smooth section
of H(E, v), then locally, there is a smooth section s̃ of Ker(v) such that ψ(̃s) = s.
By (2.2), ∇E s̃ ∈ T ∗ B ⊗ Ker(v). Then ∇H(E,v)s = ψ(∇E s̃) defines the connection
∇H(E,v).

Also, as in [12, Sect. 2(b)], it follows from the finite dimensional Hodge theory
that for any b ∈ B, there is an isomorphism H(E, v)b � Ker((v + v∗)b). Thus,
there is a smooth Z-graded sub-bundle Ker(v + v∗) of E whose fiber over b ∈ B is
Ker((v + v∗)b), and

H(E, v) � Ker
(
v + v∗) . (2.10)

As a sub-bundle of E , Ker(v + v∗) inherits a Hermitian metric from the Hermitian
metric hE on E . Let hH(E,v) denote the Hermitian metric on H(E, v) obtained via
(2.10).

Let pKer(v+v∗) be the orthogonal projection from E onto Ker(v + v∗). It clearly
preserves the Z-grading.
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Eta-invariants, torsion forms and flat vector bundles 575

By [12, Proposition 2.6], one knows that

pKer(v+v∗)∇E pKer(v+v∗) = ∇H(E,v),

pKer(v+v∗)ω
(

E, hE
)

pKer(v+v∗) = ω
(

H(E, v), hH(E,v)
)
,

pKer(v+v∗)∇E,e pKer(v+v∗) = ∇H(E,v),e.

(2.11)

2.2 Twisted signature operators and their deformations

We assume in the rest of this section that p = dim B is odd and B is oriented.
Let gT B be a Riemannian metric on T B.
For X ∈ T B, let c(X), ĉ(X) be the Clifford actions on �(T ∗ B) defined by

c(X) = X∗ − iX , ĉ(X) = X∗ + iX , (2.12)

where X∗ ∈ T ∗B corresponds to X via gT B (cf. [12, (3.18)] and [13, Sect. 4(d)]).
Then for any X , Y ∈ T B,

c(X)c(Y )+ c(Y )c(X) = −2〈X,Y 〉,
ĉ(X )̂c(Y )+ ĉ(Y )̂c(X) = 2〈X,Y 〉,
c(X )̂c(Y )+ ĉ(Y )c(X) = 0.

(2.13)

Let e1, . . . , ep be a (local) oriented orthonormal basis of T B.
Let NB be the number operator on �(T ∗ B), i.e., NB acts on � j (T ∗ B) by multi-

plication by j .
Set

τ = (
√−1)

p(p+1)
2 (−1)NB+pĉ(e1) · · · ĉ(ep) = (

√−1)
p(p+1)

2 c(e1) · · · c(ep). (2.14)

Then τ is a well-defined self-adjoint element such that

τ 2 = Id|�(T ∗ B).

Let µ be a Hermitian vector bundle on B carrying a Hermitian connection ∇µ with
the curvature denoted by Rµ = ∇µ,2.

Let ∇T B be the Levi-Civita connection on (T B, gT B) with its curvature RT B . Let
∇�(T ∗ B) be the Hermitian connection on �(T ∗B) canonically induced from ∇T B .

Let ∇�(T ∗ B)⊗µ⊗E,e be the tensor product connection on �(T ∗ B)⊗ µ⊗ E given
by

∇�(T ∗ B)⊗µ⊗E,e =∇�(T ∗ B) ⊗ Idµ⊗E +Id�(T ∗ B) ⊗ ∇µ ⊗ IdE +Id�(T ∗ B)⊗µ ⊗ ∇E,e.

(2.15)

Let the Clifford actions c, ĉ extend to actions on �(T ∗ B) ⊗ µ ⊗ E by acting as
identity on µ⊗ E .
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Let ε be the induced Z2-grading operator on E , i.e., ε = (−1)N on E . We extend
ε to an action on �(T ∗B)⊗ µ⊗ E by acting as identity on �(T ∗ B)⊗ µ.

Definition 2.1 Let Dµ⊗E
sig be the (twisted) signature operator defined by

Dµ⊗E
sig = ετ

p∑
i=1

c(ei )∇�even(T ∗ B)⊗µ⊗E,e
ei

: C∞ (
B,�even(T ∗ B)⊗ µ⊗ E

)

→ C∞ (
B,�even(T ∗ B)⊗ µ⊗ E

)
. (2.16)

One verifies that Dµ⊗E
sig is a formally self-adjoint first order elliptic differential operator

(cf. [5, Sect. 3.3]).
Let v, v∗ extend to actions on �even(T ∗B) ⊗ µ ⊗ E by acting as identity on

�(T ∗ B)⊗ µ.
For any u ≥ 0, set

Dµ⊗E
sig,u = Dµ⊗E

sig +
√

u

2
(v + v∗). (2.17)

Remark 2.2 Dµ⊗E
sig,u can be thought of as obtained from a (signature) quantization of

Cu . Indeed, if B is spin, then one can consider the twisted Dirac operators instead of
signature operators.

Let Yu be the skew-adjoint element in End(�even(T ∗ B)⊗ µ⊗ E) defined by

Yu = ετ

2

p∑
i=1

c(ei )ω
(

E, hE
)
(ei )+

√
u

2

(
v∗ − v

)
. (2.18)

Definition 2.3 For any r ∈ R and u ≥ 0, let Dµ⊗E
sig,u (r) be the operator defined by

Dµ⊗E
sig,u (r) = Dµ⊗E

sig,u + √−1rYu : C∞(B,�even(T ∗B)⊗ µ⊗ E)

→ C∞(B,�even(T ∗ B)⊗ µ⊗ E). (2.19)

Clearly, Dµ⊗E
sig,u (r) is still elliptic and formally self-adjoint.

For any X ∈ T B, set

c̃(X) = ετc(X). (2.20)

As p is odd, one verifies that for any X , Y ∈ T B,

c̃(X )̃c(Y )+ c̃(Y )̃c(X) = −2〈X,Y 〉. (2.21)
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From (2.16) to (2.20), one deduces that

Dµ⊗E
sig,u (r) =

p∑
i=1

c̃(ei )

(
∇�even(T ∗ B)⊗µ⊗E,e

ei
+

√−1r

2
ω
(

E, hE
)
(ei )

)

+
√

u

2

((
1 − √−1r

)
v +

(
1 + √−1r

)
v∗) . (2.22)

Remark 2.4 One verifies that c̃(X), X ∈ T B, anti-commutes with elements in Endodd

(E). Thus, we see that we are in a situation closely related to what considered in [10,
Sect. 2(a)].

2.3 A computation of adiabatic limits of η-invariants

Let η(Dµ⊗E
sig,u (r)) be the reduced η-invariant in the sense of Atiyah–Patodi–Singer [2].

More precisely, for s ∈ C,Re(s) ≥ p, set

η
(

Dµ⊗E
sig,u (r)

)
(s)= 1

�( s+1
2 )

+∞∫

0

t
s−1

2 Tr
[
Dµ⊗E

sig,u (r) exp
(
−t Dµ⊗E

sig,u (r)
2
)]

dt. (2.23)

Then η(Dµ⊗E
sig,u (r))(s) extends to a meromorphic function of s ∈ C and is holomorphic

at s = 0.
The reduced η-invariant of Dµ⊗E

sig,u (r) is defined by

η
(

Dµ⊗E
sig,u (r)

)
= 1

2

(
η
(

Dµ⊗E
sig,u (r)

)
(0)+ dim Ker

(
Dµ⊗E

sig,u (r)
))
. (2.24)

By [10, Theorem 2.7], one knows that for any u ≥ 0,

η
(

Dµ⊗E
sig,u (r)

)
≡ η

(
Dµ⊗E

sig (r)
)

mod Z, (2.25)

where Dµ⊗E
sig (r) is the notation for Dµ⊗E

sig,u=0(r) for brevity.

We fix a square root of
√−1 and letϕ : �(T ∗ B) → �(T ∗ B)be the homomorphism

defined by ϕ : ω ∈ �i (T ∗ B) → (2π
√−1)−i/2ω. The formulas in what follows will

not depend on the choice of the square root of
√−1.

Let η̂r be the η-form of Bismut–Cheeger [10, (2.26)] defined by

η̂r =
(

1

2π
√−1

) 1
2

ϕ

+∞∫

0

Trs

[ ((
1 − √−1r

)
v

+
(

1 + √−1r
)
v∗) e−(Cu+√−1r Du

)2] du

4
√

u
, (2.26)
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where Trs is the supertrace on E in the sense of Quillen [27] with respect to the
Z2-grading induced by (−1)N , i.e., Trs[·] = Tr[(−1)N ·].
Remark 2.5 Since Ker(v + v∗) forms a vector bundle over B and

((
1 − √−1r

)
v +

(
1 + √−1r

)
v∗)2 =

(
1 + r2

) (
v + v∗)2 ,

by [10, Lemma 2.1] and [5, Sect. 9.1], η̂r in (2.26) is well-defined.

Now for any r ∈ R, let Dµ⊗H(E,v)
sig (r) be the deformed twisted signature opera-

tor defined by replacing (E, v,∇E , hE ) by (H(E, v), 0,∇H(E,v), hH(E,v)). That is,
let ∇�(T ∗ B)⊗µ⊗H(E,v),e be the connection on �(T ∗B) ⊗ µ ⊗ H(E, v) induced by
∇�(T ∗ B), ∇µ and ∇H(E,v),e, then

Dµ⊗H(E,v)
sig (r)

=
p∑

i=1

c̃(ei )

(
∇�even(T ∗ B)⊗µ⊗H(E,v),e

ei
+

√−1r

2
ω
(

H(E, v), hH(E,v)
)
(ei )

)
.

(2.27)

Theorem 2.6 For any r ∈ R, the following identity holds,

η
(

Dµ⊗E
sig (r)

)
≡ η

(
Dµ⊗H(E,v)

sig (r)
)

mod Z. (2.28)

Proof By (2.25), (2.28) is equivalent to

lim
u→+∞ η

(
Dµ⊗E

sig,u (r)
)

≡ η
(

Dµ⊗H(E,v)
sig (r)

)
mod Z. (2.29)

Now by Remark 2.5 and by proceeding as in [10, Theorem 2.28], one knows that
when v + v∗ is invertible, i.e., when H(E, v) = {0}, one has

lim
u→+∞ η

(
Dµ⊗E

sig,u (r)
)

≡
∫

B

L
(

T B,∇T B
)

ch
(
µ,∇µ

)
η̂r , (2.30)

where L(T B,∇T B) is the Hirzebruch characteristic form defined by

L(T B,∇T B) = ϕ det1/2

(
RT B

tanh
(
RT B/2

)
)
,

while ch(µ,∇µ) is the Chern character form defined by

ch(µ,∇µ) = ϕTr
[
exp

(−Rµ
)]
.
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While in the general case where Ker(v + v∗) forms a vector bundle over B, one
can generalize the arguments in [10, Theorem 2.28] to show that when mod Z,

lim
u→+∞ η

(
Dµ⊗E

sig,u (r)
)

≡ η
(

Dµ⊗H(E,v)
sig (r)

)
+
∫

B

L
(

T B,∇T B
)

ch
(
µ,∇µ

)
η̂r .

(2.31)

Remark 2.7 Indeed, see [8, Theorem 2.39] for a very simple proof of (2.31).

Lemma 2.8 For any r ∈ R, η̂r is exact. Moreover,

η̂r=0 = 0. (2.32)

Proof From (2.6), one verifies directly that for any r ∈ R,

(
Cu + √−1r Du

)2 =
(

1 + r2
)

C2
u = −

(
1 + r2

)
D2

u . (2.33)

By (2.8), (2.9),

1

2
√

u

(
v + v∗) = −1

u
[N , Du] ,

1

2
√

u

(
v∗ − v

) = −1

u
[N ,Cu] , (2.34)

from which one gets that for any r ∈ R and u > 0,

1

4
√

u
Trs

[((
1 − √−1r

)
v +

(
1 + √−1r

)
v∗) e−(Cu+√−1r Du)

2
]

= −1

2u
Trs

[(
[N , Du] + √−1r [N ,Cu]

)
e−(Cu+√−1r Du

)2]

=
√−1r

2u
dTrs

[
Ne−(Cu+√−1r Du

)2]
. (2.35)

From (2.26) and (2.35), one sees that η̂r is an exact form. In particular, by setting
r = 0 in (2.35) and by (2.26), one gets (2.32). ��

Combining Lemma 2.8 with (2.31), one gets (2.29), which completes the proof of
Theorem 2.6. ��
Remark 2.9 The transgression formula (2.35) suggests that it is possible to transgress
the η-form η̂r (2.26) through torsion like forms of the same nature as those of Bismut–
Lott [12, Definition 3.22]. This will be dealt with in more details in Sect. 2.7.

2.4 Cheeger–Chern–Simons characters and η-invariants

We first recall the definition of the mod Q Cheeger–Chern–Simons character for flat
vector bundles.
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Let W be a complex vector bundle over B. Let ∇W
0 , ∇W

1 be two connections on W .
Let Wt , 0 ≤ t ≤ 1, be a smooth path of connections on W connecting ∇W

0 and ∇W
1 .

Let C S(∇W
0 ,∇W

1 ) be the differential form defined by

C S
(
∇W

0 ,∇W
1

)
= −

(
1

2π
√−1

) 1
2

ϕ

1∫

0

Tr

[
∂∇W

t

∂t
exp

(
−
(
∇W

t

)2
)]

dt. (2.36)

Then

dC S
(
∇W

0 ,∇W
1

)
= ch

(
W,∇W

1

)
− ch

(
W,∇W

0

)
. (2.37)

Moreover, up to exact forms, C S(∇W
0 ,∇W

1 ) does not depend on the path of connections
on W connecting ∇W

0 and ∇W
1 .

Let (Ei ,∇Ei
), i = 1, 2, 3, be complex vector bundles with connections such that

there is a short exact sequence

0 → E0 ∂−→ E1 ∂−→ E2 → 0.

Take a splitting map f : E2 → E1. Then ∂⊕ f : E0 ⊕ E2 → E1 is an isomorphism.
The Chern–Simons class C S(∇E0

,∇E1
,∇E2

) ∈ �odd(M)/Im(d) is defined by
(cf. [25, (10)])

C S
(
∇E0

,∇E1
,∇E2

)
:= C S

(
(∂ ⊕ f )∗ ∇E1

,∇E0 ⊕ ∇E2
)
. (2.38)

The class C S(∇E0
,∇E1

,∇E2
) does not depend on the choice of the splitting map f .

Remark 2.10 If 0 → E0 → E1 → E2 → 0 is a short exact sequence of flat vector
bundles as in (2.1). By Lemma 2.8 and the characterization of the form η̂ (cf. [8,
Theorem 2.10] and [17, Lemma 3.16]), we know that in �odd(M)/Im(d),

C S
(
∇E0,e,∇E1,e,∇E2,e

)
= η̂|r=0 = 0. (2.39)

Now let (F,∇F ) be a complex flat vector bundle over B. Then by [1], there is a
positive integer q such that q F , the direct sum of q copies of F , is topologically trivial.
Let ∇q F

0 be a trivial connection on q F which can be determined by choosing a global
basis of q F . Let q∇F be the natural flat connection on q F obtained from the direct
sum of q copies of ∇F .

By (2.37), one sees that C S(∇q F
0 , q∇F ) is a closed form on B. Moreover, by procee-

ding as in [25, Lemma 1], one shows that 1
q C S(∇q F

0 , q∇F ) determines a cohomology

class in Hodd(B,C/Q) not depending on the choice of q and ∇q F
0 .
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Definition 2.11 We define the mod Q Cheeger–Chern–Simons character of (F,∇F )

to be

CC S(F,∇F ) =
[

1

q
C S

(
∇q F

0 , q∇F
)]

∈ Hodd(B,C/Q). (2.40)

By [19, Proposition 2.9], up to rk(F), CC S(F,∇F ) is exactly ĉh(F,∇F ) ∈ Ĥodd

(B,C/Q) defined in [9, (2.19), Theorem 2.3].
Let hF be a Hermitian metric on F . Let ω(F, hF ) be given similarly as in (2.4),

and let ∇F,e be the associated Hermitian connection on F given similarly as in (2.7).
Let q∇F,e be the connection on q F obtained from the direct sum of q copies of ∇F,e.

One verifies directly that

CC S
(

F,∇F
)

=
[

1

q
C S

(
∇q F

0 , q∇F,e
)]

+
[

1

q
C S

(
q∇F,e, q∇F

)]

=
[

1

q
C S

(
∇q F

0 , q∇F,e
)]

+
[
C S

(
∇F,e,∇F

)]
. (2.41)

Following [12, (0.2)], for any integer j ≥ 0, let c2 j+1(F, hF ) be the Chern form
defined by

c2 j+1(F, hF ) =
(

2π
√−1

)− j
2−(2 j+1)Tr

[
ω2 j+1

(
F, hF

)]
. (2.42)

Let c2 j+1(F) be the associated cohomology class in H2 j+1(B,R), which does not
depend on the choice of hF .

The following identity has been proved in [12, Proposition 1.14],

1√−1
C S

(
∇F,e,∇F

)
= Im

(
CC S

(
F,∇F

))
= − 1

2π

+∞∑
j=0

22 j j !
(2 j + 1)!c2 j+1(F).

(2.43)

Consequently,

Re
(

CC S
(

F,∇F
))

= 1

q
C S

(
∇q F

0 , q∇F,e
)

in Hodd(B,R/Q). (2.44)

We now come to consider the η-invariants mentioned in the title of this subsection.
Recall that B is compact, oriented, carrying a Riemannian metric gT B and that

p = dim B is odd. Recall also that µ is a Hermitian vector bundle over B carrying a
Hermitian connection ∇µ.

We apply the constructions in Sects. 2.1–2.3 to the trivial flat cochain complex
(F, 0,∇F ). Thus, let Dµ⊗F

sig be the twisted signature operator defined as in (2.16).

Let hq F
0 be a Hermitian metric on q F such that ∇q F

0 is a Hermitian connection with

respect to hq F
0 .
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It is easy to see that one can construct a smooth pass of Hermitian metrics connecting
qhF and hq F

0 , as well as a smooth pass of Hermitian connections connecting q∇F,e

and ∇q F
0 .

By the standard variation formula for reduced η-invariants (cf. [2] and [11,
Theorem 2.10]), one finds

qη
(

Dµ⊗F
sig

)
− q rk(F)η

(
Dµ

sig

)

≡
∫

B

L
(

T B,∇T B
)

ch
(
µ,∇µ

)
C S

(
∇q F

0 , q∇F,e
)

mod Z. (2.45)

From (2.44) and (2.45), one gets

η
(

Dµ⊗F
sig

)
− rk(F)η

(
Dµ

sig

)
≡
∫

B

L(T B)ch(µ)Re
(

CC S
(

F,∇F
))

mod Q.

(2.46)

For any r ∈ R, let ∇F,e,(r) denote the Hermitian connection on F defined by

∇F,e,(r) = ∇F,e +
√−1r

2
ω
(

F, hF
)
. (2.47)

For any integer j ≥ 0 and r ∈ R, let a j (r) ∈ R be defined as

a j (r) =
1∫

0

(
1 + u2r2

) j
du. (2.48)

Lemma 2.12 The following identity in Hodd(B,R) holds,

C S
(
∇F,e,∇F,e,(r)

)
= − r

2π

+∞∑
j=0

a j (r)

j ! c2 j+1(F). (2.49)

Proof Formula (2.49) follows from (2.36), (2.42) and a direct computation in consi-
dering the smooth pass of connections (1 − u)∇F,e + u∇F,e,(r), 0 ≤ u ≤ 1. ��

Remark 2.13 By comparing (2.43) and (2.49), we see that up to rescaling, one can
recover the imaginary part of the Cheeger–Chern–Simons character CC S(F,∇F )

through (deformed) Hermitian connections.
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From (2.22), (2.25), (2.49) and the standard variation formula for reduced η-
invariants, one finds that for any r ∈ R,

η
(

Dµ⊗F
sig (r)

)
− η

(
Dµ⊗F

sig

)

≡
∫

B

L
(

T B,∇T B
)

ch
(
µ,∇µ

)
C S

(
∇F,e,∇F,e,(r)

)
mod Z

= − r

2π

∫

B

L(T B)ch(µ)
+∞∑
j=0

a j (r)

j ! c2 j+1(F). (2.50)

2.5 Flat cochain complex and the Cheeger–Chern–Simons character

We make the same assumptions and use the same notation as in Sects. 2.1–2.3. Thus,
(E, v,∇E ) is a Z-graded flat cochain complex over B, etc.

Let CC S(E,∇E ) denote the C/Q Cheeger–Chern–Simons character defined by

CC S
(

E,∇E
)

=
n∑

i=0

(−1)i CC S
(

Ei ,∇Ei
)

in Hodd(B,C/Q). (2.51)

The imaginary part of the following result has been proved by Bismut–Lott [12,
Theorem 2.19].

Theorem 2.14 The following identity holds in Hodd(B,C/Q),

CC S
(

E,∇E
)

= CC S
(

H(E, v),∇H(E,v)
)
. (2.52)

Proof By Theorem 2.6, we know that for any r ∈ R,

η
(

Dµ⊗E
sig (r)

)
− η

(
Dµ⊗E

sig

)
≡ η

(
Dµ⊗H(E,v)

sig (r)
)

− η
(

Dµ⊗H(E,v)
sig

)
mod Z.

(2.53)

From (2.50) and (2.53), one finds

r

2π

∫

B

L(T B)ch(µ)
+∞∑
j=0

a j (r)

j !
n∑

i=0

(−1)i c2 j+1

(
Ei
)

= r

2π

∫

B

L(T B)ch(µ)
+∞∑
j=0

a j (r)

j !
n∑

i=0

(−1)i c2 j+1

(
Hi (E, v)

)
mod Z. (2.54)
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By taking derivative with respect to r at r = 0, one gets that

∫

B

L(T B)ch(µ)
+∞∑
j=0

1

j !
n∑

i=0

(−1)i c2 j+1

(
Ei
)

=
∫

B

L(T B)ch(µ)
+∞∑
j=0

1

j !
n∑

i=0

(−1)i c2 j+1

(
Hi (E, v)

)
. (2.55)

Since (2.55) holds for any complex vector bundle µ over B, while L(T B)ch(·) :
K (B) ⊗ Q → H even(B,Q) is an isomorphism (cf. [1]), from (2.55) and a simple
degree counting, one deduces that for any integer j ≥ 0,

n∑
i=0

(−1)i c2 j+1

(
Ei
)

=
n∑

i=0

(−1)i c2 j+1

(
Hi (E, v)

)
in H2 j+1(B,R). (2.56)

From (2.43), (2.51) and (2.56), one gets

Im
(

CC S
(

E,∇E
))

= Im
(

CC S
(

H(E, v),∇H(E,v)
))
, (2.57)

which was first proved in [12, Theorem 2.19] by using a direct transgression method.
Now by applying (2.46) to each Ei as well as each Hi (E, v), 0 ≤ i ≤ n, and by

Theorem 2.6, one finds that

∫

B

L(T B)ch(µ)Re
(

CC S
(

E,∇E
))

≡
∫

B

L(T B)ch(µ)Re
(

CC S
(

H(E, v),∇H(E,v)
))

mod Q. (2.58)

By using the fact that L(T B)ch(·) : K (B)⊗Q → H even(B,Q) is an isomorphism
again, one deduces from (2.58) the following identity in Hodd(B,R/Q),

Re
(

CC S
(

E,∇E
))

= Re
(

CC S
(

H(E, v),∇H(E,v)
))
. (2.59)

From (2.57) and (2.59), one gets (2.52). ��

2.6 A refinement in K −1
R/Z(B)

In the discussions in the previous subsections, we have only assumed that B is oriented,
and this is why we have used the twisted signature operators. If B is spinc or even
spin, then we can well use the twisted Dirac operators instead. In particular, this will
enable us to apply the constructions in the R/Z-index theory developed by Lott [25]
to the current situation, where the η-form (at r = 0) vanishes tautologically.
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We form the abelian semigroup K̂ −1
R/Z(B) consisting of isomorphism classes of

tuples (E, hE ,∇E , ρ), where E = E+ ⊕ E− is a Z2-graded complex vector bundle,
hE is a Hermitian metric and ∇E = ∇E+ ⊕ ∇E− is a metric connection, both being
compatible with the grading, and ρ ∈ �odd(B)/Im(d) satisfies

dρ = ch
(

E,∇E
)

:= ch
(

E+,∇E+
)

− ch
(

E−,∇E−
)
.

The semigroup operation is induced by direct sums of generators.
On K̂ −1

R/Z(B) we consider the minimal equivalence relation ∼ which is compatible
with the semigroup structure and such that the following properties hold,

(1) change of connections : We have (E, hE ,∇, ρ) ∼ (E, hE ′
,∇′, ρ′) iff ρ′ =

ρ + C S(∇′,∇),
(2) trivial elements : If (E, hE ,∇E ) is a Z2-graded Hermitian vector bundle with

connection, then (E ⊕ Eop, hE⊕E ,∇E ⊕∇E , 0) ∼ 0, where Eop denotes E with
the opposite grading.

The group K −1
R/Z(B) is the quotient of K̂ −1

R/Z(B) by ∼. We still use (E, hE ,∇E , ρ)

to denote the class of (E, hE ,∇E , ρ) in K −1
R/Z(B).

It was shown by Lott [25, Sect. 2] that the group K −1
R/Z(B) given by this geometric

definition is naturally isomorphic to the topological definition.
Let (E,∇E ) be a flat vector bundle on B carrying a Hermitian metric hE as in (2.1),

one easily sees that

(
E, hE ,∇E,e, 0

)
=

n∑
i=0

(−1)i
(

Ei , hEi
,∇Ei ,e, 0

)

is an element in K −1
R/Z(B).

Theorem 2.15 The following identity holds in K −1
R/Z(B),

(
E, hE ,∇E,e, 0

)
=
(

H(E, v), hH(E,v),∇H(E,v),e, 0
)
. (2.60)

Proof Clearly, (2.60) is a refinement of the real part of (2.52). It is also a direct
consequence of [25, Definition 6] and Remark 2.10. In fact, let Fi = Im(vEi−1), Gi =
Ker(vEi ), then Fi ,Gi are flat vector bundles on B with Hermitian metrics induced
by hE . Now we have short exact sequences of flat vector bundles: 0 → Fi → Gi →
Hi (E, v) → 0, 0 → Gi → Ei → Fi+1 → 0. Then by [25, Definition 6] and
Remark 2.10, in K −1

R/Z(B),

(
Gi ,∇Gi ,e, 0

)
=
(

Fi ,∇Fi ,e, 0
)

+
(

Hi (E, v),∇Hi (E,v),e, 0
)
,

(
Ei ,∇Ei ,e, 0

)
=
(

Gi ,∇Gi ,e, 0
)

+
(

Fi+1,∇Gi+1,e, 0
)
.

Thus we get (2.60). ��
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2.7 Torsion forms and a transgression formula for η̂r

As in [12, (2.39)], we denote

d(E) =
n∑

i=0

(−1)i i rk
(

Ei
)
, d(H(E, v)) =

n∑
i=0

(−1)i i rk
(

Hi (E, v)
)
. (2.61)

By (2.33) and by [12, Theorem 2.13 and Proposition 2.18], one has that as u → +∞,

Trs

[
Ne−(Cu+√−1r Du

)2] = d(H(E, v))+ O

(
1√
u

)
, (2.62)

and that when u → 0+,

Trs

[
Ne−(Cu+√−1r Du

)2] = d(E)+ O(u). (2.63)

The following definition is closely related to [12, Definition 2.20].

Definition 2.16 For any r ∈ R, put

Ir = −rϕ

+∞∫

0

(
Trs

[
Ne−(Cu+√−1r Du)

2
]

− d(H(E, v))

−(d(E)− d(H(E, v)))e−u/4
) du

2u
. (2.64)

Theorem 2.17 For any r ∈ R, the following transgression formula holds,

η̂r = − 1

2π
d Ir . (2.65)

Proof Formula (2.65) follows from (2.26), (2.35), (2.62)–(2.64). ��
Let T f (A′, hE ) be the torsion form constructed in [12, Definition 2.20] associated

to the odd holomorphic function f (z) such that f ′(z) = ez2
, that is,

T f

(
A′, hE

)
= −ϕ

+∞∫

0

(
Trs

[
NeD2

u

]
− d(H(E, v))

−(d(E)− d(H(E, v)))e−u/4
) du

2u
. (2.66)

Theorem 2.18 The following identity holds,

∂ Ir

∂r

∣∣∣∣
r=0

= T f

(
A′, hE

)
. (2.67)
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In particular,

∂η̂r

∂r

∣∣∣∣
r=0

= − 1

2π
dT f

(
A′, hE

)
. (2.68)

Proof Formula (2.67) follows from (2.64) and [12, Definition 2.20]. Formula (2.68)
follows from (2.65) and (2.67). ��

Combining (2.64), (2.65) with the Bismut–Lott transgression formula [12, Theorem

2.22] for the function h(x) = ∑+∞
j=0

(1+r2) j

j !
x2 j+1

2 j+1 , one gets

Corollary 2.19 For any r ∈ R, the following identity holds,

η̂r = r

2π

+∞∑
j=0

(1 + r2) j

j !
n∑

i=0

(−1)i

2 j + 1
c2 j+1

(
Hi (E, v), hHi (E,v)

)

− r

2π

+∞∑
j=0

(1 + r2) j

j !
n∑

i=0

(−1)i

2 j + 1
c2 j+1

(
Ei , hEi

)
. (2.69)

In particular,

∂η̂r

∂r

∣∣∣∣
r=0

= 1

2π

+∞∑
j=0

1

j !
n∑

i=0

(−1)i

2 j + 1
c2 j+1

(
Hi (E, v), hHi (E,v)

)

− 1

2π

+∞∑
j=0

1

j !
n∑

i=0

(−1)i

2 j + 1
c2 j+1

(
Ei , hEi

)
. (2.70)

Remark 2.20 In view of Theorems 2.17 and 2.18, a direct computation of (2.69) or
(2.70) will lead to an alternate proof of the Bismut–Lott transgression formula [12,
Theorem 2.22].

2.8 More on η and torsion forms

On B × R × R∗+, let C̃ + √−1r D̃ be the operator defined by

(
C̃ + √−1r D̃

)
B×{r}×{u} = Cu + √−1r Du + dr

∂

∂r
+ du

∂

∂u
. (2.71)

Then Trs
[
exp

(−(C̃ + √−1r D̃)2
)]

is closed on B × R × R∗+, moreover

(
C̃ + √−1r D̃

)2 =
(

Cu + √−1r Du

)2 + du
∂

∂u

(
Cu + √−1r Du

)
+ √−1dr Du .

(2.72)
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By the Volterra expansion formula [5, Sect. 2.4], we get

Trs

[
exp

(
−
(

C̃ + √−1r D̃
)2
)]

= Trs

[
exp

(
−
(

Cu + √−1r Du

)2
)]

−duTrs

[
∂

∂u

(
Cu + √−1r Du

)
exp

(
−
(

Cu + √−1r Du

)2
)]

−drTrs

[√−1Du exp

(
−
(

Cu + √−1r Du

)2
)]

+
1∫

0

ds Trs

[
du

∂

∂u

(
Cu + √−1r Du

)
exp

(
−s
(

Cu + √−1r Du

)2
)

× √−1dr Du exp

(
−(1 − s)

(
Cu + √−1r Du

)2
)]
. (2.73)

Applying the total differentiation d B×R×R∗+ on B ×R ×R∗+ to (2.73), after compa-
ring the coefficients of dudr , and using the fact that Du commutes with
exp

(−s(Cu + √−1r Du)
2
)
, we get

∂

∂r
Trs

[
∂

∂u

(
Cu + √−1r Du

)
exp

(
−
(

Cu + √−1r Du

)2
)]

− ∂

∂u
Trs

[√−1Du exp

(
−
(

Cu + √−1r Du

)2
)]

= d Trs

[
∂

∂u

(
Cu + √−1r Du

)√−1Du exp

(
−
(

Cu + √−1r Du

)2
)]
.

(2.74)

Now by (2.34),

Trs

[
∂

∂u

(
Cu + √−1r Du

)√−1Du exp

(
−
(

Cu + √−1r Du

)2
)]

= −
√−1

2u
Trs

[(
[NZ , Du] +

[
NZ ,

√−1rCu

])
Du exp

(
−
(

Cu + √−1r Du

)2
)]

= −
√−1

2u
Trs

[
2NZ D2

u exp

(
−
(

Cu + √−1r Du

)2
)]

− 1

2u
dTrs

[
NZr Du exp

(
−
(

Cu + √−1r Du

)2
)]
. (2.75)
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From (2.35) and (2.74)–(2.75), one deduces that

∂

∂r
dTrs

[
r N

2u
e−(1+r2)C2

u

]
− ∂

∂u
Trs

[
Due−(1+r2)C2

u

]
= − 1

u
dTrs

[
N D2

ue−(1+r2)C2
u

]
.

(2.76)

By taking r = 0 in (2.76), one gets

∂

∂u
Trs

[
DueD2

u

]
= dTrs

[
N

2u

(
1 + 2D2

u

)
eD2

u

]
, (2.77)

which is exactly [12, (2.32)] (compare also with [12, (3.103)–(3.105)]).

Remark 2.21 Formula (2.77) plays an essential role in [12] in the construction of
analytic torsion form. While it can be proved directly as in [12], here we obtain it
through purely considerations of η-forms. This suggests that there should be a deep
relationship between η and torsion invariants as well as forms.

We now come back to (2.35). We take the derivative with respect to r in it, and then
take r = 0. What we get is

1

4
√

u
Trs

[(
v∗ − v

)
eD2

u

]
= 1

2u
dTrs

[
NeD2

u

]
. (2.78)

Together with (2.9), we get

Trs

[
∂Du

∂u
eD2

u

]
= 1

2u
dTrs

[
NeD2

u

]
. (2.79)

It is interesting to compare (2.77) and (2.79). In particular, we can rewrite (2.79)
as (compare to (3.133))

∂

∂u

1∫

0

Trs

[
Dues2 D2

u

]
ds = 1

2u
dTrs

[
NeD2

u

]
. (2.80)

By (2.62), (2.63), (2.68) and (2.80), one can give a direct proof of (2.70). As was
pointed out in Remark 2.20, this would also lead to a proof of [12, Theorem 2.22].
A comparison like this in the fibration case would be more interesting.

3 Sub-signature operators and a Riemann–Roch formula

In this section, we deal with the fibration case. We will give a new proof of the
imaginary part of Theorem 1.1, which is a Riemann–Roch–Grothendieck formula due
to Bismut–Lott [12], by computing the adiabatic limits of η invariants of deformed
sub-signature operators. We will also prove the real part of Theorem 1.1, in its full
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generality, by using the same method. Moreover, we will give a natural derivation
of the Bismut–Lott analytic torsion form [12] through the transgression of η forms
appearing in the adiabatic limit computations.

This Section is organized as follows. In Sect. 3.1, we recall the construction of
the Bismut–Lott superconnection introduced in [12]. In Sect. 3.2, we define the sub-
signature operator as in [30], as well as a deformation of this operator. In Sect. 3.3,
we state the Lichnerowicz type formula for the deformed sub-signature operator. In
Sect. 3.4, we state the main technical result of this section, Theorem 3.9, on the
adiabatic limit of the η invariants for the deformed sub-signature operators, which
will be proved in Sects. 3.5 and 3.6. In Sect. 3.7, we prove Bismut–Lott’s formula
(1.2) through η invariants. In Sect. 3.8, we prove (1.4) by using Theorem 3.9. In
Sect. 3.9, we discuss in detail the relation of our results with Lott’s R/Z index theory
[25]. In Sect. 3.10, we will construct the Bismut–Lott analytic torsion form through
the transgression of η forms, which is one of the main points of view of this paper.

3.1 The Bismut–Lott Superconnection

Let π : M → B be a smooth fiber bundle with compact fiber Z of dimension n. We
denote by m = dim M, p = dim B. Let T Z be the vertical tangent bundle of the fiber
bundle, and let T ∗Z be its dual bundle. Let F be a flat complex vector bundle on M
and let ∇F denote its flat connection.

Let T M = T H M⊕T Z be a splitting of T M . Let PT Z , PT H M denote the projection
from T M to T Z , T H M . If U ∈ T B, let U H be the lift of U in T H M , so that
π∗U H = U .

Let E = ⊕n
i=0 Ei be the smooth infinite-dimensional Z-graded vector bundle over

B whose fiber over b ∈ B is C∞(Zb, (�(T ∗Z)⊗ F)|Zb). That is

C∞ (
B, Ei

)
= C∞ (

M,�i (T ∗Z
)⊗ F

)
. (3.1)

Definition 3.1 For s ∈ C∞(B, E) and U a vector field on B, then the Lie differential
LU H acts on C∞(B, E). Let ∇E be the Z-grading preserving connection on E defined
by

∇E
U s = LU H s. (3.2)

If U1,U2 are vector fields on B, put

T (U1,U2) = −PT Z
[
U H

1 ,U
H
2

]
∈ C∞(M, T Z). (3.3)

We denote by iT ∈ �2(B,Hom(E•, E•−1)) the 2-form on B which, to vector fields
U1,U2 on B, assigns the operation of interior multiplication by T (U1,U2) on E .

Let d Z be the exterior differentiation along fibers. We consider d Z to be an element
of C∞(B,Hom(E•, E•+1)).
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The exterior differentiation operator d M , acting on�(M, F) = C∞(M,�(T ∗M)⊗
F), has degree 1 and satisfies (d M )2 = 0.

By [12, Proposition 3.4], we have

d M = d Z + ∇E + iT . (3.4)

So d M is a flat superconnection of total degree 1 on E .
We have

(
d Z
)2 = 0,

[
∇E , d Z

]
= 0. (3.5)

Let hF be a Hermitian metric on F . Let ∇F∗ be the adjoint of ∇F with respect to
hF . Let ω(F, hF ) and ∇F,e be the 1-form on M and the connection on F defined as
in (2.2), (2.7) respectively.

Let gT Z be a metric on T Z . Let o(T Z) be the orientation bundle of T Z , a flat real
line bundle on M . Let dvZ be the Riemannian volume form on fibers Z associated to
the metric gT Z (Here dvZ is viewed as a section of �dim Z (T ∗Z)⊗ o(T Z)).

Let 〈 , 〉�(T ∗ Z)⊗F be the metric on �(T ∗Z) ⊗ F induced by gT Z , hF . Then E
acquires a Hermitian metric hE such that for α, α′ ∈ C∞(B, E) and b ∈ B,

〈
α, α′〉

hE (b) =
∫

Zb

〈
α, α′〉

�(T ∗ Z)⊗F dvZb . (3.6)

Let ∇E∗, d Z∗, (d M )∗, (iT )
∗ be the formal adjoints of ∇E , d Z , d M , iT with respect

to the scalar product 〈 , 〉hE .
Set

DZ = d Z + d Z∗, ∇E,e = 1

2

(
∇E + ∇E∗) , (3.7)

ω
(

E, hE
)

= ∇E∗ − ∇E .

Let NZ be the number operator of E , i.e. NZ acts by multiplication by k on C∞(M,
�k(T ∗Z)⊗ F).

For u > 0, set

C ′
u = uNZ /2d M u−NZ /2, C ′′

u = u−NZ /2(d M )∗uNZ /2,

Cu = 1

2

(
C ′

u + C ′′
u

)
, Du = 1

2

(
C ′′

u − C ′
u

)
.

(3.8)

Then C ′′
u is the adjoint of C ′

u with respect to hE . Moreover, Cu is a superconnection
on E and Du is an odd element of �(B,End(E)), and

C2
u = −D2

u, [Cu, Du] = 0. (3.9)
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Let gT B be a Riemannian metric on T B. Then gT M =gT Z ⊕π∗gT B is a metric on
T M . Let ∇T M , ∇T B denote the corresponding Levi-Civita connections on T M, T B.
Put ∇T Z=PT Z∇T M , a connection on T Z . As shown in [7, Theorem 1.9], ∇T Z is inde-
pendent of the choice of gT B . Then 0∇ =∇T Z ⊕π∗∇T B is also a connection on T M .

Let S = ∇T M − 0∇. By [7, Theorem 1.9], 〈S(·)·, ·〉gT M is a tensor independent of
gT B . Moreover, for U1,U2 ∈ T B, X,Y ∈ T Z ,

〈
S
(

U H
1

)
X,U H

2

〉
gT M

= −
〈
S
(

U H
1

)
U H

2 , X
〉
gT M

=
〈
S(X)U H

1 ,U
H
2

〉
gT M

= 1

2

〈
T
(

U H
1 ,U

H
2

)
, X
〉
gT M

, (3.10)

〈
S(X)Y,U H

1

〉
gT M

= −
〈
S(X)U H

1 ,Y
〉
gT M

= −1

2

(
LU H

1
gT Z

)
(X,Y ),

and all other terms are zero.
Let { fα}p

α=1 be an orthonormal basis of T B, set { f α}p
α=1 the dual basis of T ∗B. In

the following, it’s convenient to identify fα with f H
α .

Let {ei }n
i=1 be an orthonormal basis of (T Z , gT Z ).

We define a horizontal 1-form k on M by

k( fα) = −
∑

i

〈S (ei ) ei , fα〉 . (3.11)

Set

c(T ) = 1

2

∑
α,β

f α ∧ f βc
(
T
(

fα, fβ
))
,

ĉ(T ) = 1

2

∑
α,β

f α ∧ f β ĉ
(
T
(

fα, fβ
))
.

(3.12)

Let ∇�(T ∗ Z) be the connection on �(T ∗Z) induced by ∇T Z . Let ∇T Z⊗F,e be the
connection on �(T ∗Z)⊗ F induced by ∇�(T ∗ Z), ∇F,e.

By [12, (3.36), (3.37), (3.42)],

DZ =
∑

j

c(e j )∇T Z⊗F,e
e j

− 1

2

∑
j

ĉ(e j )ω
(

F, hF
)
(e j ),

d Z∗ − d Z = −
∑

j

ĉ(e j )∇T Z⊗F,e
e j

+ 1

2

∑
j

c(e j )ω
(

F, hF
)
(e j ),

(3.13)

∇E,e =
∑
α

f α
(

∇T Z⊗F,e
fα

+ 1

2
k ( fα)

)
,

ω
(

E, hE
)

=
∑
α

f α

⎛
⎝∑

i, j

〈
S(ei )e j , fα

〉
c(ei )̂c(e j )+ ω

(
F, hF

)
( fα)

⎞
⎠ .
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By [12, Proposition 3.9], we get

Cu =
√

u

2
DZ + ∇E,e − 1

2
√

u
c(T ),

Du =
√

u

2

(
d Z∗ − d Z

)
+ 1

2
ω
(

E, hE
)

− 1

2
√

u
ĉ(T ).

(3.14)

Let H•(Z , F |Z ) = ⊕n
i=0 Hi (Z , F |Z ) be the Z-graded vector bundle over B whose

fiber over b ∈ B is the cohomology H(Zb, F |Zb ) of the sheaf of locally flat sections
of F on Zb.

By [12, Sect. 3(f)], the flat superconnection d M induces a canonical flat connection
∇H(Z ,F |Z ) on H•(Z , F |Z )which preserves the Z-grading and which does not depend
on the choice of T H M . In fact, let ψ : Ker(d Z ) → H•(Z , F |Z ) be the quotient map.
Let s be a smooth section of H•(Z , F |Z ), then locally, there is a smooth section s̃ of
Ker(d Z ) such that ψ(̃s) = s. By (3.5), ∇H(Z ,F |Z )s := ψ(∇E s̃).

By the Hodge theory, there is an isomorphism H•(Zb, F |Zb ) � Ker(DZb) for any
b ∈ B. Thus Ker(DZb ) has locally constant dimension on B. They together form a
vector bundle Ker(DZ ). Now the fiberwise isomorphism induces an isomorphism of
the smooth Z-graded vector bundles on B,

H•(Z , F |Z ) � Ker(DZ ). (3.15)

Clearly, as a subbubdle of E , Ker(DZ ) inherits a metric from the scalar product 〈 , 〉hE

in (3.6). Let hH(Z ,F |Z ) be the corresponding metric on H•(Z , F |Z ) induced by (3.15).
Let P be the orthogonal projection operator from E on Ker(DZ ) with respect to

the Hermitian product (3.6).
Let (∇H(Z ,F |Z ))∗ be the adjoint of ∇H(Z ,F |Z ) with respect to the Hermitian metric

hH(Z ,F |Z ).
The following result is established in [12, Proposition 3.14].

Proposition 3.2 The following identities hold:

∇H(Z ,F |Z ) = P∇E P,
(
∇H(Z ,F |Z )

)∗ = P∇E∗ P,

ω
(

H(Z , F |Z ), hH(Z ,F |Z )
)

= Pω
(

E, hE
)

P.
(3.16)

3.2 The sub-signature operator on a fibered manifold

We assume that T B is oriented.
Let (µ, hµ) be a Hermitian complex vector bundle over B carrying a Hermitian

connection ∇µ.
Let NB, NM be the number operators on �(T ∗ B),�(T ∗M) respectively, i.e. they

act as multiplication by k on�k(T ∗B),�k(T ∗M) respectively. Then NM = NB +NZ .
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Let ∇�(T ∗ M) be the connection on �(T ∗M) canonically induced from ∇T M .
Let ∇�(T ∗ M)⊗π∗µ⊗F (resp. ∇�(T ∗ M)⊗π∗µ⊗F,e) be the tensor product connection on
�(T ∗M)⊗ π∗µ⊗ F induced by ∇�(T ∗ M), π∗∇µ and ∇F (resp. ∇F,e).

Let {ea}m
a=1 be an orthonormal basis of T M , and its dual basis {ea}m

a=1.
Let { fα}p

α=1 be an oriented orthonormal basis of T B.
Set

τ̂ (T B) =
(√−1

) p(p+1)
2

ĉ
(

f H
1

)
· · · ĉ

(
f H

p

)
,

τ (T B) =
(√−1

) p(p+1)
2

c
(

f H
1

)
· · · c

(
f H

p

)
,

τ = (−1)NZ τ(T B).

(3.17)

Then the operators τ̂ (T B), τ (T B), τ act naturally on�(T ∗M). They are self-adjoint
and

τ̂ (T B)2 = (−1)p, τ (T B)2 = τ 2 = 1,

τ = (−1)p(−1)NM τ̂ (T B) = τ̂ (T B)(−1)NM .
(3.18)

Let d∇µ : �a(M, π∗µ ⊗ F) → �a+1(M, π∗µ ⊗ F) be the unique extension of
∇µ,∇F which satisfies the Leibniz rule. Let d∇µ∗ be the adjoint of d∇µ with respect
to the scalar product 〈 , 〉�(M,π∗µ⊗F) on �(M, π∗µ ⊗ F) induced by gT M , hµ, hF

as in (3.6).
As in [13, (4.26), (4.27)], we have

d∇µ =
∑

a

ea ∧ ∇�(T ∗ M)⊗π∗µ⊗F
ea

,

d∇µ∗ = −
∑

a

iea ∧
(
∇�(T ∗ M)⊗π∗µ⊗F

ea
+ ω

(
F, hF

)
(ea)

)
.

(3.19)

For r ∈ R, we introduce the following operators as in [30, (1.12)] and (2.19),

Dπ∗µ⊗F
sig = 1

2

[
τ
(

d∇µ + d∇µ∗)+ (−1)p+1
(

d∇µ + d∇µ∗) τ
]
,

D̂π∗µ⊗F
sig = 1

2

[
τ
(

d∇µ∗ − d∇µ)+ (−1)p+1
(

d∇µ∗ − d∇µ) τ
]
,

Dπ∗µ⊗F
sig (r) = Dπ∗µ⊗F

sig + √−1r D̂π∗µ⊗F
sig .

(3.20)

Let (Dπ∗µ⊗F
sig )∗, (D̂π∗µ⊗F

sig )∗ be the formal adjoints of Dπ∗µ⊗F
sig , D̂π∗µ⊗F

sig with
respect to 〈 , 〉�(M,π∗µ⊗F). Then

τDπ∗µ⊗F
sig = (−1)p+1 Dπ∗µ⊗F

sig τ, τ D̂π∗µ⊗F
sig = (−1)p+1 D̂π∗µ⊗F

sig τ,

(
Dπ∗µ⊗F

sig

)∗ = (−1)p+1 Dπ∗µ⊗F
sig ,

(
D̂π∗µ⊗F

sig

)∗ = (−1)p D̂π∗µ⊗F
sig .

(3.21)
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Remark 3.3 If µ = C, then DF
sig is different from the sub-signature operator in [30,

(1.12)] (cf. also [31]) by a factor (
√−1)p(p+1)/2(−1)NM .

Assume now M = B, µ = F = C, then if p = dim B is odd, DC
sig is exactly

the odd Signature operator in [3, (2.1)], [8, (1.38)], and D̂C
sig = 0; if p is even, then

DC
sig = τ(d + d∗) and D̂C

sig = 0.

Following [30], we will rewrite Dπ∗µ⊗F
sig , D̂π∗µ⊗F

sig by using the natural connections.

Let ∇̃�(T ∗ M) be the Hermitian connection on�(T ∗M) defined by (cf. [30, (1.21)])

∇̃�(T ∗ M)
X = ∇�(T ∗ M)

X − 1

2

p∑
α=1

ĉ
(

PT Z S(X) fα
)

ĉ ( fα) , X ∈ T M. (3.22)

Let ∇̃e be the tensor product connection on �(T ∗M) ⊗ π∗µ ⊗ F induced by
∇̃�(T ∗ M), π∗∇µ and ∇F,e.

For r ∈ R, set

Dπ∗µ⊗F =
m∑

a=1

c(ea)∇̃e
ea

− 1

2

n∑
i=1

ĉ(ei )ω
(

F, hF
)
(ei ),

D̂π∗µ⊗F = −
n∑

i=1

ĉ(ei )∇̃e
ei

+ 1

2

m∑
a=1

c(ea)ω
(

F, hF
)
(ea)

− 1

4

p∑
α,β=1

ĉ
(
T
(

fα, fβ
))

ĉ ( fα) ĉ
(

fβ
)
,

Dπ∗µ⊗F (r) = Dπ∗µ⊗F + √−1r D̂π∗µ⊗F .

(3.23)

The following result extends [30, Proposition 1.14].

Proposition 3.4

Dπ∗µ⊗F
sig = τDπ∗µ⊗F , D̂π∗µ⊗F

sig = τ D̂π∗µ⊗F . (3.24)

Proof By (3.19),

d∇µ + d∇µ∗ =
m∑

a=1

(
c(ea)∇�(T ∗ M)⊗π∗µ⊗F,e

ea
− 1

2
ĉ(ea)ω

(
F, hF

)
(ea)

)
,

d∇µ∗ − d∇µ =
m∑

a=1

(
−ĉ(ea)∇�(T ∗ M)⊗π∗µ⊗F,e

ea
+ 1

2
c(ea)ω

(
F, hF

)
(ea)

)
.

(3.25)

123



596 X. Ma, W. Zhang

Recall also that the following equation was gotten in [30, (1.24)] by direct compu-
tations,

∇�(T ∗ M)
X τ̂ (T B) =

p∑
β=1

(√−1
) p(p+1)

2
ĉ
(

f H
1

)
· · · ĉ

(
∇T M

X fβ
)

· · · ĉ
(

f H
p

)

= −τ̂ (T B)
p∑

β=1

ĉ
(

PT Z S(X) fβ
)

ĉ
(

fβ
)
. (3.26)

By (3.10) and (3.17),

1

2
(−1)p+1

∑
a

ĉ(ea)τ ĉ
(

PT Z S(ea) fβ
)

= τ

2

(∑
i

ĉ(ei )̂c
(

PT Z S(ei ) fβ
)

−
∑
α

ĉ ( fα) ĉ
(

PT Z S( fα) fβ
))

= τ

2

(∑
i

ĉ(ei )̂c
(

PT Z S(ei ) fβ
)

− 1

2

∑
α

ĉ
(
T
(

fα, fβ
))

ĉ ( fα)

)
. (3.27)

Now (3.24) is a direct consequence of (3.25)–(3.27). ��
From (3.23), the operators Dπ∗µ⊗F , Dπ∗µ⊗F (r) are formally self-adjoint first order

elliptic differential operators, and D̂π∗µ⊗F is a skew-adjoint first order differential
operator.

The operator Dπ∗µ⊗F is locally of Dirac type.
By (3.18), (3.21) and (3.24),

τDπ∗µ⊗F = (−1)p+1 Dπ∗µ⊗Fτ, τ D̂π∗µ⊗F = (−1)p+1 D̂π∗µ⊗Fτ. (3.28)

3.3 A Lichnerowicz type formula for Dπ∗µ⊗F
sig (r)

If B ∈ End(T M) is antisymmetric, then the action of B on �(T ∗M) as a derivation
(cf. [5, (1.26)]) is given by

∑
a,b

〈eb, Bea〉 eb ∧ iea = 1

4

∑
a,b

〈eb, Bea〉 (c(ea)c(eb)− ĉ(ea )̂c(eb)) . (3.29)

Let ∇T H M = PT H M∇T M be the connection on T H M induced by ∇T M . Let
RT M , RT H M , RT Z be the curvatures of ∇T M ,∇T H M ,∇T Z respectively. Let K be the
scalar curvature of (M, gT M ). Let ∇̃T M = ∇T H M ⊕ ∇T Z be the connection on T M
with curvature R̃T M . Then

∇T M = ∇̃T M + S(·)− PT H M S(·)PT H M . (3.30)
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Set

R̂e = −1

4

p∑
α,β=1

〈
RT H M fα, fβ

〉
ĉ ( fα) ĉ

(
fβ
)

−1

4

n∑
i, j=1

〈
RT Z ei , e j

〉
ĉ(ei )̂c(e j )− 1

4

(
ω
(

F, hF
))2

. (3.31)

We explain now how to get ∇̃�(T ∗ M) as a Clifford connection.
Assume temporary that T M is spin.
Let S(T M) be the spinor bundle of T M .
By (2.13), c(·) is the Clifford action on �(T ∗M) and we have the following iso-

morphism of Clifford modules,

�(T ∗M)⊗R C � S(T M)⊗ S(T M)∗. (3.32)

Again by (2.13), ĉ(·) ∈ End(S(T M)∗).
Let ∇S(T M) (resp. ∇̃S(T M)∗ ) be the Clifford connection on S(T M) induced by ∇T M

(resp. S(T M)∗ induced by ∇̃T M ) on T M with curvatures RS(T M) (resp. R̃S(T M)∗ ).
By (3.22), (3.30) and (3.32), ∇̃�(T ∗ M) is the connection on�(T ∗M)⊗R C induced

by ∇S(T M) and ∇̃S(T M)∗ , and

RS(T M) = 1

4

m∑
a,b=1

〈
RT M ea, eb

〉
c(ea)c(eb),

R̃S(T M)∗ = −1

4

m∑
a,b=1

〈
R̃T M ea, eb

〉
ĉ(ea )̂c(eb).

(3.33)

But locally, T M is spin, thus by (3.22), (3.31) and (3.33), the curvature of ∇̃e is given
by

(∇̃e)2 = 1

4

m∑
a,b=1

〈
RT M ea, eb

〉
c(ea)c(eb)+ R̂e + π∗ Rµ. (3.34)

Let ∇T M⊗F,eω(F, hF ) be the covariant derivative of ω(F, hF ). Explicitly

(
∇T M⊗F,e

ea
ω
(

F, hF
))
(eb)

=
(
∇�(T ∗ M)⊗F

ea ω
(

F, hF
))
(eb)+ 1

2

(
ω
(

F, hF
))2

(ea, eb). (3.35)
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Let �̃e be the Bochner Laplacian

�̃e =
m∑

a=1

((∇̃e
ea

)2 − ∇̃e
∇T M

ea ea

)
. (3.36)

The following result was proved in [30, Theorem 1.1] based on a direct computation
(i.e. applying the Lichnerowicz formula).

Proposition 3.5

Dπ∗µ⊗F,2 = −�̃e + K

4
+ 1

2

m∑
a,b=1

c(ea)c(eb)
(
R̂e + π∗ Rµ

)
(ea, eb)

+1

4

n∑
i=1

(
ω
(

F, hF
)
(ei )

)2+ 1

8

n∑
i, j=1

ĉ(ei )̂c(e j )
(
ω
(

F, hF
))2

(ei , e j )

−1

2

m∑
a=1

c(ea)

n∑
i=1

ĉ(ei )
[(

∇T M⊗F,e
ea

ω
(

F, hF
))
(ei )

+ ω
(

F, hF
)
(S(ea)ei )

]
. (3.37)

Similarly, for D̂π∗µ⊗F,2, [Dπ∗µ⊗F , D̂π∗µ⊗F ], we have

Proposition 3.6

D̂π∗µ⊗F,2 =
n∑

i=1

((∇̃e
ei

)2 − ∇̃e
∇T Z

ei
ei

)
+ 1

2

n∑
i, j=1

ĉ(ei )̂c(e j )
(∇̃e)2 (ei , e j )

+1

4

n∑
i=1

ĉ(ei )

⎡
⎣∇̃e

ei
,

p∑
α,β=1

ĉ
(
T
(

fα, fβ
))

ĉ ( fα) ĉ
(

fβ
)
⎤
⎦

+1

2

p∑
α,β=1

ĉ ( fα) ĉ
(

fβ
) ∇̃e

T ( fα, fβ)

−1

2

n∑
i=1

m∑
a=1

ĉ(ei )c(ea)
(
∇T M⊗F,e

ei
ω
(

F, hF
))
(ea)

−1

4

m∑
a=1

(
ω
(

F, hF
)
(ea)

)2

+1

8

m∑
a,b=1

c(ea)c(eb)
(
ω
(

F, hF
))2

(ea, eb)

+ 1

16

⎛
⎝

p∑
α,β=1

ĉ
(
T
(

fα, fβ
))

ĉ ( fα) ĉ
(

fβ
)
⎞
⎠

2

, (3.38)
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[
Dπ∗µ⊗F , D̂π∗µ⊗F

]
=−

m∑
a=1

n∑
i=1

c(ea )̂c(ei )

(
R̂e + π∗ Rµ+ 1

4
ω
(

F, hF
)2
)
(ea, ei )

−
m∑

a=1

n∑
i=1

c(ea )̂c(ei )

(
−1

2

〈
RT M (eb, ei )eb, ea

〉
+∇̃e

S(ea)ei

)

−
p∑

α=1

(
ω
(
F, hF

)
( fα) ∇̃e

fα + 1

2

(
∇T M⊗F,e

fα
ω
(

F, hF
))
( fα)

)

+1

2

n∑
i=1

ω
(

F, hF
)
(S(ei )ei )

+1

4

p∑
α,β=1

ω
(

F, hF
) (

T
(

fα, fβ
))

ĉ ( fα) ĉ
(

fβ
)

−1

4

m∑
a=1

c(ea)

⎡
⎣∇̃e

ea
,

p∑
α,β=1

ĉ
(
T
(

fα, fβ
))

ĉ ( fα) ĉ
(

fβ
)
⎤
⎦ .

Proof To simplify the notation, when a subscript index appears two times in a formula,
we sum up with this index.

By the discussion at the beginning of Sect. 3.3 and (3.30), we know that for
X ∈ T M ,

[∇̃e
X , c(ea)

] = c
(
∇T M

X ea

)
,
[∇̃e

X , ĉ(ea)
] = ĉ

(
∇̃T M

X ea

)
. (3.39)

From (3.39),

ĉ(ei )∇̃e
ei

ĉ(e j )∇̃e
e j

= 1

2
ĉ(ei )̂c(e j )

(∇̃e)2 (ei , e j )+ (∇̃e
ei

)2 − ∇̃e
∇T Z

ei
ei
. (3.40)

From (3.23) and (3.40), we get the first equation of (3.38).
We compute now [Dπ∗µ⊗F , D̂π∗µ⊗F ].
Note that

S(ea)ei = ∇T M
ea

ei − ∇T Z
ea

ei , c
(
∇T M

ei
ea

)
∇̃e

ea
= −c(ea)∇̃e

∇T M
ei

ea
.

Combining the above equation with (3.39), we get

[
c(ea)∇̃e

ea
, ĉ(ei )∇̃e

ei

] = c(ea )̂c(ei )
[∇̃e

ea
∇̃e

ei
− ∇̃e

ei
∇̃e

ea

]

+c(ea )̂c
(
∇T Z

ea
ei

)
∇̃e

ei
+ ĉ(ei )c

(
∇T M

ei
ea

)
∇̃e

ea

= c(ea )̂c(ei )
(∇̃e)2 (ea, ei )+ c(ea )̂c(ei )∇̃e

S(ea)ei
. (3.41)
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Recall that for X,Y, Z ,W ∈ T M , we have

〈
RT M (X,Y )Z ,W

〉
=
〈
RT M (Z ,W )X,Y

〉
,

RT M (X,Y )Z + RT M (Y, Z)X + RT M (Z , X)Y = 0.
(3.42)

From (3.42), we get

〈
RT M (ea, ei )eb, ec

〉
c(ea)c(eb)c(ec) = −2

〈
RT M (ea, ei )ea, ec

〉
c(ec). (3.43)

Thus by (3.34), (3.41) and (3.43), we get

[
c(ea)∇̃e

ea
, ĉ(ei )∇̃e

ei

] = 1

2

〈
RT M (ea, ei )ea, ec

〉
ĉ(ei )c(ec)

+c(ea )̂c(ei )

(
R̂e + π∗ Rµ + 1

4
ω
(

F, hF
)2
)
(ea, ei )

+c(ea )̂c(ei )∇̃e
S(ea)ei

. (3.44)

Note that by (3.35)

∇T M⊗F,e
ea

ω
(

F, hF
)
(eb)− ∇T M⊗F,e

eb
ω
(

F, hF
)
(ea)

=
(
∇�(T ∗ M)⊗F,eω

(
F, hF

))
(ea, eb) = 0. (3.45)

Thus

[
c(ea)∇̃e

ea
, c(eb)ω

(
F, hF

)
(eb)

]

= −2ω
(

F, hF
)
(ea)∇̃e

ea
−
(
∇T M⊗F,e

ea
ω
(

F, hF
))
(ea). (3.46)

By

∇F,e
ea

(
ω
(

F, hF
)
(e j )

)
=
(
∇T M⊗F,e

ea
ω
(

F, hF
))
(e j )+ ω

(
F, hF

) (
∇T M

ea
e j

)
,

(2.13), (3.10), (3.39) and (3.45),

[
ĉ(ei )∇̃e

ei
, ĉ(e j )ω

(
F, hF

)
(e j )

]

= 2ω
(

F, hF
)
(ei )∇̃e

ei

+ĉ(ei )̂c(e j )∇F,e
ei

(
ω
(

F, hF
)
(e j )

)
+ ĉ(ei )̂c

(
∇T Z

ei
e j

)
ω
(

F, hF
)
(e j )
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= 2ω
(

F, hF
)
(ei )∇̃e

ei
+ ĉ(ei )̂c(e j )

(
∇T M⊗F,e

ei
ω
(

F, hF
))
(e j )

+ĉ(ei )̂c(e j )ω
(

F, hF
)
(S(ei )e j )

= 2ω
(

F, hF
)
(ei )∇̃e

ei
+
(
∇T M⊗F,e

ei
ω
(

F, hF
))
(ei )+ ω

(
F, hF

)
(S(ei )ei ).

(3.47)

We have also

[̂
c(ei ), ĉ

(
T
(

fα, fβ
))

ĉ ( fα) ĉ
(

fβ
)] = 2

〈
T
(

fα, fβ
)
, ei
〉
ĉ ( fα) ĉ

(
fβ
)
. (3.48)

From (3.23), (3.34), (3.44)–(3.48), we get the second equation of (3.38). ��
To conclude this subsection, we state the following formula, which is a consequence

of (3.22) and will be used in a later occasion.

[∇̃e
ea
, ĉ
(
T
(

fα, fβ
))

ĉ ( fα) ĉ
(

fβ
)] =

[
∇̃�(T ∗ M)

ea
, ĉ
(
T
(

fα, fβ
))

ĉ ( fα) ĉ
(

fβ
)]
.

(3.49)

3.4 The η invariant for Dπ∗µ⊗F
sig (r)

In this section, we assume that B is a closed oriented compact manifold and p = dim B
is odd.

By (3.20), Dπ∗µ⊗F
sig (r) preserves the Z2-grading on �(M, π∗µ ⊗ F) induced

by (−1)NM . We denote by Dπ∗µ⊗F
sig,e (r) the restriction of Dπ∗µ⊗F

sig (r) on �even(M,
π∗µ⊗ F).

Let η(Dπ∗µ⊗F
sig,e (r)) denote the associated reduced η-invariant as in (2.24). We will

omit the notion of F when F = C is the trivial complex line bundle carrying the trivial
metric and connection.

Definition 3.7 Let φ̃(M/B, µ, F, r) ∈ R/Z be defined by

φ̃(M/B, µ, F, r) = η
(

Dπ∗µ⊗F
sig,e (r)

)
− rk(F)η

(
Dπ∗µ

sig,e(r)
)

mod Z. (3.50)

When (F,∇F , hF ) is unitary and M = B, 2φ̃(M/B,C, F, 0) ∈ R/Z is the mod Z
part of the ρ-invariant ρ(M, F) associated to DC

sig,e and F in the sense of [3,4], where

ρ(M, F) = η
(

DF
sig,e

)
− rk(F)η

(
DC

sig,e

)
. (3.51)

Theorem 3.8 (i) If n is odd, then η(Dπ∗µ⊗F
sig,e (r)) ∈ R/Z does not depend on

(gT B, gT Z , hµ,∇µ) and hF .
(ii) The number φ̃(M/B, µ, F, r) does not depend on (gT B, gT Z , hµ,∇µ) and hF .
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For any ε > 0, let Dπ∗µ⊗F
sig,e,ε (r) be the operator obtained above by replacing gT B to

1
ε

gT B .
The following result is the main technical result of this paper, which generalizes

[30, Theorem 0.2].

Theorem 3.9 We have the following identity in R/Z,

lim
ε→0

η
(

Dπ∗µ⊗F
sig,e,ε (r)

)
= η

(
Dµ⊗H(Z ,F |Z )

sig,e (r)
)

:=
n∑

i=0

(−1)iη
(

Dµ⊗Hi (Z ,F |Z )
sig,e (r)

)
.

(3.52)

By applying the previous constructions to the special case with M = B, one
constructs a series of smooth invariants φ̃(B, µ, Hi (Z; F |Z ), r), 0 ≤ i ≤ n. They are
the (generalized) ρ-invariants associated to twisted Signature operators on B.

Corollary 3.10 (i) If n = dim Z is odd, then

η
(

Dπ∗µ⊗F
sig,e (r)

)
= η

(
Dµ⊗H(Z ,F |Z )

sig,e (r)
)

in R/Z. (3.53)

(ii) In general, the following identity holds in R/Z,

φ̃(M/B, µ, F, r) =
n∑

i=0

(−1)i φ̃
(

B, µ, Hi (Z , F |Z ), r
)

−rk(F)
n∑

i=0

(−1)i φ̃
(

B, µ, Hi (Z ,C|Z ), r
)
. (3.54)

3.5 A proof of Theorem 3.8

We will consider a smooth path of data with parameter s ∈ [0, 1] and apply the proof of
the Atiyah–Patodi–Singer index theorem [2] on M ×[0, 1]. Here we need to compute
the local index density on M × [0, 1], and we conclude our result by analyzing our
local formula.

Let gT B
s , gT Z

s , T H
s M, hF

s , hµs ,∇µ
s (s ∈ [0, 1]) be a smooth family of the objects as

in Sect. 3.1. In order to apply the Atiyah–Patodi–Singer index theorem strictly, without
loss of generality we assume that gT B

s , gT Z
s , T H

s M, hF
s , hµs ,∇µ

s do not depend on s
near the end points 0 and 1.

Consider the fibration π̃ : M̃ = M × R → B̃ = B × R.
Let π1 : M̃ → M , πB : B̃ → B be the natural projections.
We define T H M̃ |M×{s} = T H

s M ⊕R, gT B̃ |B×{s} = gT B
s ⊕ds2, hπ

∗
Bµ|B×{s} = hµs ,

hπ
∗
1 F |B×{s} = hF

s .
Clearly,

∇π∗
Bµ = ∇µ

s + ds ∧
(
∂

∂s
+ 1

2

(
hµs
)−1 ∂hµs

∂s

)
(3.55)
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is a Hermitian connection on (π∗
Bµ, hπ

∗
Bµ) with curvature Rπ

∗
Bµ.

We orient T B̃ as follow: if { fα}p
α=1 is an oriented orthonormal basis of T B, then

the orientation of T B̃ is defined by f 1 ∧ · · · ∧ f p ∧ ds.
We denote by f p+1 = ∂

∂s and

τ̃ = (−1)NZ τ
(
T B̃

)
. (3.56)

Now all the constructions in Sects. 3.2, 3.3 work well for the fibration π̃ .
Let�±(M̃, (π ◦π1)

∗µ⊗π∗
1 F) be the ±1 eigenspaces of τ̃ in�(M̃, (π ◦π1)

∗µ⊗
π∗

1 F). Then by (3.21), (3.28), D
(π◦π1)

∗µ⊗π∗
1 F

sig (r) changes the Z2-grading induced
by τ̃ .

For any u > 0, let Pu(x, y) be the smooth kernel of exp(−u(D(π◦π1)
∗µ⊗π∗

1 F (r))2)
with respect to the Riemannian volume form dvM̃ (y).

For x0 ∈ M̃ , let dvTx0 M̃ be the Riemannian volume form on (Tx0 M̃, gTx0 M̃ ).

For U ∈ Tx0 M̃ , let ∇U be the ordinary derivative in direction U .
For y = (y1, . . . , ym+1) ∈ Rm+1, we identify y as

∑m+1
a=1 yaea as a vector in Tx0 M̃ .

Set

Lx0(r) = −
(

1 + r2
) n∑

i=1

(
∇ei + 1

4

〈
RT M̃

x0
y, ei

〉)2

−
p+1∑
α=1

(
∇ fα + 1

4

〈
RT M̃

x0
y, fα

〉)2

− 1

4

p+1∑
α,β=1

〈
RT H M̃

x0
fα, fβ

〉
ĉ ( fα) ĉ

(
fβ
)

(3.57)

−1

4

n∑
i, j=1

(〈
RT Z

x0
ei , e j

〉
+ r2

〈
RT M̃

x0
ei , e j

〉)
ĉ(ei )̂c(e j ),

L3,x0 = −
n∑

i=1

m+1∑
a=1

eaĉ(ei )

(
∇Sx0 (ea)ei + 1

4

〈
RT M̃

x0
y, Sx0(ea)ei

〉)
.

Let exp(−t Lx0(r))(y, y′), exp(−t (Lx0(r)+ √−1r L3,x0))(y, y′), (y, y′ ∈ Rm+1)
be the smooth kernels of exp(−t Lx0(r)), exp(−t (Lx0(r) + √−1r L3,x0)) associated
to dvTx0 M̃ (y

′) respectively.

Proposition 3.11 For x0 ∈ M̃, one has

lim
u→0

Tr [̃τ Pu(x0, x0)] = (−1)
m(m+1)

2 +p+m2m+1rk(F)
∫ ∧

τ̂
(
T B̃
)

exp
(
−
(

Lx0(r)+
√−1r L3,x0

))
(0, 0)Tr|µ

[
exp

(
−Rπ

∗
Bµ
)]
, (3.58)
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where
∫ ∧ means the coefficient of e1 ∧ · · · ∧ em+1 ĉ(e1) · · · ĉ(em+1) in

τ̂
(
T B̃

)
exp

(
−
(

Lx0(r)+ √−1r L3,x0

))
(0, 0)Tr|µ

[
exp

(
−Rπ

∗
Bµ
)]
.

Proof At first, by [13, Proposition 4.9], among the monomials in terms of c(ea)’s
and ĉ(ea)’s, only c(e1)̂c(e1) · · · c(em+1)̂c(em+1) has a nonzero supertrace with the
Z2-grading on �(T ∗M̃) defined by (−1)NM̃ . Moreover,

Tr
[
(−1)NM̃ c(e1)̂c(e1) · · · c(em+1)̂c(em+1)

]
= (−2)m+1. (3.59)

In view of (3.59), to compute the local index, it is convenient to use the rescalings
∇ea → 1√

u
∇ea , c(ea) → 1√

u
ea ∧ −√

uiea , ĉ(ea) → ĉ(ea) and ya → √
uya .

We denote by L1,u, L2,u, L3,u the operators obtained from u Dπ∗µ⊗F,2, u D̂π∗µ⊗F,2,
u[Dπ∗µ⊗F , D̂π∗µ⊗F ] after the above rescalings.

By Propositions 3.5, 3.6, (3.49) and (3.57), as u → 0+,

L1,u → −
m+1∑
a=1

(
∇ea + 1

4

〈
RT M̃

x0
y, ea

〉)2

+ R̂e
x0

+
(
π̃∗ Rπ

∗
Bµ
)

x0
.

L2,u →
n∑

i=1

(
∇ei + 1

4

〈
RT M̃

x0
y, ei

〉)2

+ 1

4

n∑
i, j=1

〈
RT M̃

x0
ei , e j

〉
ĉ(ei )̂c(e j )+ 1

4
ω
(
π∗

1 F, hπ
∗
1 F
)2

x0
,

L3,u →L3,x0 .

(3.60)

Thus after rescaling, the operator u(Dπ∗µ⊗F (r))2 has the limit

Lx0(r)+ √−1r L3,x0 +
(
π̃∗ Rπ

∗
Bµ
)

x0
− 1 + r2

4
ω
(
π∗

1 F, hπ
∗
1 F
)2

x0
. (3.61)

By (3.18), (3.59), (3.61) and by proceeding the standard local index technique (cf.
[5]), we get

lim
ε→0

Tr [̃τ Pu(x0, x0)] = (−1)
m(m+1)

2 (−2)m+1(−1)p+1

∫ ∧
τ̂
(
T B̃

)
exp

(
−
(

Lx0(r)+ √−1r L3,x0

))
(0, 0)Tr|µ

[
exp

(
−Rπ

∗
Bµ
)]

· Tr|F

[
exp

(
1 + r2

4
ω
(
π∗

1 F, hπ
∗
1 F
)2
)]
. (3.62)
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Now note that (cf. [12], (3.77)])

Tr|F

[
exp

(
1 + r2

4
ω
(
π∗

1 F, hπ
∗
1 F
)2
)]

= rk(F). (3.63)

The proof of Proposition 3.11 is completed. ��

Proof of Theorem 3.8 From (3.24), Proposition 3.11 and the Atiyah–Patodi–Singer
index theorem [2, Theorem 3.10], one gets as in [30, (1.54)] the following mod Z
variation formula of η invariants,

η
(

Dπ∗µ⊗F
sig,e,0 (r)

)
− η

(
Dπ∗µ⊗F

sig,e,1 (r)
)

= (−1)
m(m+1)

2 +p+m2mrk(F)
∫

M×[0,1]

∫ ∧
τ̂
(
T B̃
)

exp
(
−
(

Lx0(r)+ √−1r L3,x0

))
(0, 0)Tr|µ

[
exp

(
−Rπ

∗
Bµ
)]
.

(3.64)

Set �k = {(t1, . . . , tk)|0 ≤ t1 ≤ · · · ≤ tk ≤ 1} ⊂ Rk , and

Ik(t)=
∫

t�k

e−(t−tk )Lx0 (r)
√−1r L3,x0 e−(tk−tk−1)Lx0 (r)· · · √−1r L3,x0 e−t1 Lx0 (r)dt1· · · dtk .

(3.65)

By (3.57), Ik(t) = 0 for k > m + 1.
By the Volterra expansion formula (cf. [5, Sect. 2.4]), we have

exp(−t (Lx0(r)+ √−1r L3,x0)) = exp(−t Lx0(r))+
m+1∑
k=1

(−1)k Ik(t). (3.66)

Now by the uniqueness of the heat kernel, we get

exp(−t Lx0(r))(x, y) = exp(−t Lx0(r))(−x,−y).

By (3.65) and observe that Lx0(r) has even degree on the Clifford variables ĉ(ei )

(resp. ĉ( fα)), we know that the odd degree part on the Clifford variables ĉ(ei ) and
ĉ( fα) in exp(−t (Lx0(r) + √−1r L3,x0)) is −∑m

k=1 I2k+1(t) and I2k+1(t)(x, y) =
−I2k+1(t)(−x,−y). Thus we know

∫ ∧
τ̂
(
T B̃
)

exp
(
−
(

Lx0(r)+ √−1r L3,x0

))
(0, 0)Tr|µ

[
exp

(
−Rπ

∗
Bµ
)]

is zero if n is odd. Thus we get the first part of Theorem 3.8.
On the other hand, when dim Z is even, from (3.64) and its application to the trivial

complex line bundle case, we get the second part of Theorem 3.8 by subtraction.
Thus the proof of Theorem 3.8 is completed. ��
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3.6 A proof of Theorem 3.9

We will apply the adiabatic limit techniques developed by Bismut–Cheeger [10] and
Dai [20], i.e., study the limit of the corresponding objects associated to 1

ε
gT B as ε → 0.

The general strategy has already been explained in detail in their works, here, we only
need to compute the adiabatic limit of the trace of certain heat kernels when ε → 0.

We will distinguish the objects in Sect. 3.2 associated to 1
ε

gT B , instead of gT B , by
adding a subscript ε.

By (2.12) and (3.17), for u1, u2 ∈ R, c = c or ĉ,

εNB/2cε
(
u1

√
ε fα + u2ei

)
ε−NB/2 = u1c ( fα)+ u2c (ei ) ,

εNB/2τεε
−NB/2 = τ.

(3.67)

Denote by Dπ∗µ⊗F
s,ε = εNB/2 Dπ∗µ⊗F

ε ε−NB/2, similarly, we define D̂π∗µ⊗F
s,ε and

Dπ∗µ⊗F
s,ε (r).
Let ϕ : �(T ∗B) → �(T ∗ B) be defined by ϕω = (2π

√−1)− degω/2ω.
Since we have twisted a vector bundle µ on B, the superconnection in Sect. 3.1

should be modified accordingly.
Let ∇E⊗µ,e be the connection on E ⊗ µ induced by ∇E,e and ∇µ. Denote by

Cµ
u the superconnection on µ ⊗ E defined by replacing ∇E,e in (3.14) by ∇E⊗µ,e.

All other operators in (3.14) extend naturally on E ⊗ µ. Let ∇̃ be the connection on
�(T ∗M)⊗ π∗µ⊗ F induced from 0∇ = π∗∇T B ⊕ ∇T Z , ∇µ, ∇F,e.

Theorem 3.12 For any u > 0, one has

1√
π

lim
ε→0

Tr
[

Dπ∗µ⊗F
sig,e,ε (r) exp

(
−u Dπ∗µ⊗F

sig,e,ε (r)
2
)]

=
∫

B

L
(

T B,∇T B
)

ch
(
µ, hµ

)

·
(

1

2π
√−1

)1/2

ϕTrs

[
2
√

u
∂

∂u

(
C4u + √−1r D4u

)
exp

(
−
(

1 + r2
)

C2
4u

)]
,

(3.68)

where the Trs on E is defined by the Z2-grading induced from (−1)NZ .

Proof Following [11] and [10], let z be an odd Grassmannian variable which anti-
commutes with c(ea)’s and ĉ(ea)’s.

As in [10, (4.54)], if A, B are of trace class in End(�∗(M, π∗µ⊗ F)), set

Trz[A + zB] = Tr[B]. (3.69)

One finds as in [11] and [10, (4.55)] that by (3.17), (3.24), (3.28) and (3.67),

√
uTr

[
Dπ∗µ⊗F

sig,e,ε (r) exp(−u Dπ∗µ⊗F
sig,e,ε (r)

2)
]

= 1

2

√
uTr

[
τεDπ∗µ⊗F

ε (r) exp(−u Dπ∗µ⊗F
ε (r)2)

]
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= −1

2
Trz

[
τε exp(−u Dπ∗µ⊗F

ε (r)2 + z
√

u Dπ∗µ⊗F
ε (r))

]

= −1

2
Trz

[
τ exp(−u Dπ∗µ⊗F

s,ε (r)2 + z
√

u Dπ∗µ⊗F
s,ε (r))

]
. (3.70)

In [30, Proposition 2.2], Zhang formulated a Lichnerowicz type formula for
u(Dπ∗µ⊗F

s,ε )2 − z
√

u Dπ∗µ⊗F
s,ε which is obtained from (3.10) and (3.13).

The corresponding degenerate term as ε → 0 is

−uε
∑
α

⎛
⎝∇̃ fα +

√
ε

2

∑
i,β

〈
S ( fα) ei , fβ

〉
c(ei )c( fβ)+ zc( fα)

2
√

uε

⎞
⎠

2

. (3.71)

Note that by (3.10), Sε(·)ei = εS(·)ei .
On the other hand, from (3.10), (3.23), (3.67) and Proposition 3.6, it is easy to

see that for the operators (D̂π∗µ⊗F
s,ε )2, [Dπ∗µ⊗F

s,ε , D̂π∗µ⊗F
s,ε ], there is no second order

derivative on ∇ fα and all the other terms converge as ε → 0. Thus, the only possible
singular term in the local index computation appears in (3.71).

To cancel this singular term in (3.71), one can proceed as in [10,30]. Here we will
give another argument as in [6, Sect. 7], [26, Sect. 7].

We fix b0 ∈ B. For δ > 0 small enough, we can identify the ball B0(δ) ⊂ Tb0 B
with center 0 and radius δ to the ball in B by using the exponential map.

Let ′∇ε be the connection on �(C(z))⊗̂�(T ∗ B) on B defined by

′∇�(C(z))⊗̂�(T ∗ B)
ε = ∇�(T ∗ B)· + zc(·)

2
√

uε
. (3.72)

Then by (3.29) and (3.72),

(′∇ε

)2 = 1

4

∑
α,β

〈
RT B fα, fβ

〉 (
c( fα)c( fβ)− ĉ( fα)̂c( fβ)

)
. (3.73)

Let ∇ε be the connection on

�(C(z))⊗̂�(T ∗M)⊗ π∗µ⊗ F � �(C(z))⊗̂�(T ∗ B)⊗̂�(T ∗Z)⊗ π∗µ⊗ F

induced by ′∇ε, ∇T Z , ∇µ and ∇F,e.
For y ∈ Tb0 B sufficiently close to b0, we lift horizontally the path t ∈ R∗+ → t y

into path t ∈ R∗+ → xt ∈ M , with xt ∈ Zty , dx
dt ∈ T H M .

For x0 ∈ Z0, we identify (�(C(z))⊗̂�(T ∗M)⊗ π∗µ⊗ F)xt to

(�(C(z))⊗̂�(T ∗B))b0⊗̂(�(T ∗Z)⊗ π∗µ⊗ F)x0

by parallel transport along the curve t → xt ∈ Zty with respect to the connection ∇ε.
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For y ∈ Tb0 Y , set

H = −
∑
α

(
∇ fα + 1

4

〈
RT B

b0
y, fα

〉)2

− 1

4

∑
α,β

〈
RT B

b0
fα, fβ

〉
ĉ( fα)̂c( fβ). (3.74)

Now we do the following Getzler rescaling: yα → √
uεyα , ∇ fα → 1√

uε
∇ fα and

c( fα) → 1√
uε

f α ∧ −√
uεi fα .

Recall that Sε(·)ei = εS(·)ei . By (3.9), (3.10), (3.23), (3.29), (3.71), (3.73), [30,
Proposition 2.2], and by proceeding similarly as in [10, (4.69), (4.70)], the rescaled
operator Lu,b0(r, ε) obtained from u Dπ∗µ⊗F,2

s,ε (r) − z
√

u Dπ∗µ⊗F
s,ε (r) converges as

ε → 0, to

Lu,b0(r) = H + (1 + r2)(Cµ
4u)

2

− z

(√
u DZ + c(T )

4
√

u
+ √−1r

(√
u(d Z∗ − d Z )+ ĉ(T )

4
√

u

))
. (3.75)

In fact, when r = 0, this follows from [30, (2.41)]; now by (3.10), (3.23) and Propo-
sition 3.6, we find that (3.75) holds in general.

Also from (3.14),

(
Cµ

u

)2 = C2
u + Rµ. (3.76)

We denote by
∫ ∧B α∧β = α∧βMax with α ∈ �(T ∗M), β is a linear combination

of ĉ( fi1) · · · ĉ( fil ), (i1 < · · · < il) and βMax is the coefficient of ĉ( f1) · · · ĉ( f p) in β.
By (3.18), (3.59) for �(T ∗B), (3.70) and (3.75), we get

lim
ε→0

Tr
[

Dπ∗µ⊗F
sig,e,ε (r) exp

(
−u Dπ∗µ⊗F

sig,e,ε (r)
2
)]

= − 1

2
√

u
(−1)p(−2)p(−1)

p(p−1)
2

⎧⎨
⎩
∫

B

∫ ∧B

Trs
[
exp

(−Lu,b0(r)
)]
⎫⎬
⎭

z

, (3.77)

where (−1)p is from (3.18), (−2)p(−1)
p(p−1)

2 is from (3.59), { }z is the coefficient
of z.

From (3.76) and (3.77), as in [30, (2.43)], we get

lim
ε→0

Tr
[

Dπ∗µ⊗F
sig,e,ε (r) exp

(
−u Dπ∗µ⊗F

sig,e,ε (r)
2
)]

= −1

2
(−1)

p(p+1)
2 +p

(
1

π

)p/2 ∫

B

det1/2
(

RT B/2

sinh(RT B/2)

)
Tr
[
e−Rµ

]
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× Trs

[
2
√

u
∂

∂u

(
C4u + √−1r D4u

)
exp

(
−
(

1 + r2
)

C2
4u

)]

×
∫ ∧B

τ̂ (T B) exp

⎛
⎝1

4

∑
α,β

〈
RT B fα, fβ

〉
ĉ( fα)̂c( fβ)

⎞
⎠ . (3.78)

From (3.17), the last term of (3.78) is (
√−1)

p(p+1)
2 det1/2(cosh(RT B/2)) as in [30,

(2.44)]. Thus we get (3.68) as p is odd. ��
The following Lemma tells us that the right hand side of (3.68) is zero.

Lemma 3.13

Trs

[(
∂

∂u

(
Cu + √−1r Du

))
exp

(
−
(

Cu + √−1r Du

)2
)]

=
√−1r

2u
d Trs

[
NZ exp

(
−
(

Cu + √−1r Du

)2
)]
. (3.79)

Proof By (3.9),

(
Cu + √−1r Du

)2 =
(

1 + r2
)

C2
u . (3.80)

By (3.14), we have (cf. also [26, p. 19])

2u
∂Cu

∂u
= −[NZ , Du], 2u

∂Du

∂u
= −[NZ ,Cu]. (3.81)

Thus by (3.80) and (3.81)

Trs

[
∂

∂u

(
Cu + √−1r Du

)
exp

(
−
(

Cu + √−1r Du

)2
)]

= −1

2u
Trs

[(
[NZ , Du] + √−1r [NZ ,Cu]

)
exp

(
−
(

Cu + √−1r Du

)2
)]

=
√−1r

2u
Trs

[[
Cu, NZ exp

(
−
(

Cu + √−1r Du

)2
)]]

=
√−1r

2u
d Trs

[
NZ exp

(
−
(

Cu + √−1r Du

)2
)]
, (3.82)

as

Trs

[
[NZ , Du] exp

(
−
(

Cu +√−1r Du

)2
)]

=Trs

[
NZ , Du exp

((
1+r2

)
D2

u

)]
=0.

��
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Proof of Theorem 3.9 From Lemma 3.13, we know that the right side of (3.68) is
zero. By mimicking the argument in [20], we get Theorem 3.9 (compare also with
[25, p. 298] for the precise counting of the mod Z term). ��

3.7 η invariant and Bismut–Lott theorem

We prove the Bismut–Lott formula (1.2) in this subsection.
Let ̂�(T ∗Z) be another copy of �(T ∗Z).
For ω ∈ �(T ∗Z), we denote by ω̂ ∈ ̂�(T ∗Z) the copy of ω.
The Berezin integral

∫ B : �(T ∗M)⊗̂ ̂�(T ∗Z) → �(T ∗M) ⊗ o(T Z) is defined

by
∫ B

γ ∧ ω̂ → γ iê1 · · · iên ω̂ for γ ∈ �(T ∗M).
We define also the fiber-wise integral

∫
Z by: for γ ∈ C∞(B,�(T ∗ B)), δ ∈

C∞(M,�(T ∗Z)⊗ o(T Z)),

∫

Z

(
π∗γ

) ∧ δ = γ

∫

Z

δ. (3.83)

Set

ṘT Z = 1

2

n∑
i, j=1

〈
ei , RT Z e j

〉
êi ∧ ê j ∈ �2(T ∗M)⊗̂ ̂�2(T ∗Z),

e(T Z ,∇T Z ) = (−1)
n(n+1)

2 π− n
2

∫ B

exp

(
−1

2
ṘT Z

)
.

(3.84)

The form e(T Z ,∇T Z ) is the Chern-Weil representative of the Euler class e(T Z) of
T Z . Certainly, e(T Z ,∇T Z ) = 0 if n = dim Z is odd.

By the standard variation formula for the reduced eta invariants (cf. [11, Proposi-
tion 2.8]), we find that for any r ∈ R,

∂

∂r
η
(

Dπ∗µ⊗F
sig,e (r)

)

= lim
u→0

√
u

π
Tr

[
−
(
∂

∂r
Dπ∗µ⊗F

sig,e (r)

)
exp

(
−u

(
Dπ∗µ⊗F

sig,e (r)
)2
)]

= lim
u→0

Tr

[
−√−1

√
u

π
D̂π∗µ⊗F

sig,e exp

(
−u

(
Dπ∗µ⊗F

sig,e (r)
)2
)]

= − lim
u→0

√−1

2
√
π

Tr

[
τ
√

u D̂π∗µ⊗F exp

(
−u

(
Dπ∗µ⊗F (r)

)2
)]
. (3.85)

123



Eta-invariants, torsion forms and flat vector bundles 611

Now we do the rescaling as in Sect. 3.5, then by (3.23), we know the rescaled
operator of

√
u D̂π∗µ⊗F is

−
n∑

i=1

ĉ(ei )

(
∇ei + 1

4

〈
RT M̃

x0
y, ei

〉)
+ 1

2
ω
(

F, hF
)

x0
. (3.86)

By (3.57), (3.60), the rescaled operator of u(Dπ∗µ⊗F (0))2 is Lx0(0), and

−
n∑

i=1

ĉ(ei )

(
∇ei + 1

4

〈
RT M̃

x0
y, ei

〉)
exp

(−Lx0(0)
)
(0, 0) (3.87)

is zero. Thus as in Sect. 3.5, by (3.59), we get

lim
u→0

Tr

[
τ
√

u D̂π∗µ⊗F exp

(
−u

(
Dπ∗µ⊗F (0)

)2
)]

= (−1)
m(m−1)

2 +p+m2m
∫

M

dvM

∫ ∧
τ̂ (T B) exp

(−Lx0(0)
)
(0, 0)

×Tr|µ
[
exp

(
−Rπ

∗µ
)]

Tr|F

[
1

2
ω
(

F, hF
)

exp

(
1

4
ω
(

F, hF
)2
)]
. (3.88)

By applying [5, Proposition 3.13], the Berezin integral of
∫ ∧ in (3.88) is the coef-

ficient of e1 ∧ · · · ∧ em of (cf. [30, (1.49)–(1.51)]) the Berezin integral
∫ B of

−
(

1

4π

)m
2
(
√−1)

p(p+1)
2 Tr|µ

[
exp

(
−Rπ

∗µ
)]

Tr|F
[

1

2
ω
(

F, hF
)

exp

(
1

4
ω
(

F, hF
)2
)]

· det1/2
(

RT M/2

sinh RT M/2

)
det1/2

(
cosh

(
RT H M

2

))
det1/2

(
sinh(RT Z /2)

RT Z /2

)

· exp

⎛
⎝1

4

∑
i, j

〈
RT Z ei , e j

〉
êi ∧ ê j

⎞
⎠ .

Now as p is odd, if n is even, then

−
(√−1

) p(p+1)
2 +1

(−1)
(p+n)(p+n+1)

2 +p =
(√−1

)− p−1
2
(−1)

n(n−1)
2 .

Thus by (3.84), (3.85), (3.88) at r = 0, we get

∂η
(

Dπ∗µ⊗F
sig,e (r)

)

∂r

∣∣∣∣∣∣
r=0

= − 1

2π

∫

B

L(T B)ch(µ)
∫

Z

e(T Z)
∞∑
j=0

1

j !c2 j+1(F). (3.89)
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When we take derivative on r for (3.54), by (2.50), (3.50) and (3.89), we find,

∫

B

L(T B)ch(µ)
∫

Z

e(T Z)
∞∑
j=0

1

j !
∫

Z

e(T Z)c2 j+1(F)

=
∫

B

L(T B)ch(µ)
∞∑
j=0

1

j !
[
c2 j+1(H(Z , F |Z ))− rk(F)c2 j+1(H(Z ,C|Z ))

]
.

(3.90)

We claim that for any j ∈ N,

c2 j+1(H(Z ,C|Z )) = 0, (3.91)

a proof of which will be given shortly.
As L(T B)ch(·) : K (B) ⊗ R → H even(B,R) is an isomorphism, we get from

(3.90) and (3.91) that,

∞∑
j=0

1

j !
∫

Z

e(T Z)c2 j+1(F) =
∞∑
j=0

1

j !c2 j+1(H(Z , F |Z )) in Hodd(B,R), (3.92)

which is equivalent to the Bismut–Lott formula (1.2) through a simple degree counting,
in the case where B is orientable and of odd dimension.

Proof of (3.91) If n = dim Z is odd, then as in (3.89), from (2.50), (3.53) and (3.89),
for F = C, we get

∫

B

L(T B)ch(µ)
∞∑
j=0

1

j !c2 j+1 (H (Z ,C|Z )) = 0. (3.93)

As L(T B)ch(·) : K (B)⊗ R → H even(B,R) is an isomorphism, we get (3.91).
If n = dim Z is even, then by (3.90), for F = o(T Z) and the isomorphism

L(T B)ch(·) : K (B)⊗ R → H even(B,R), as c2 j+1(o(T Z)) = 0, we get

c2 j+1(H(Z , o(T Z)|Z )) = c2 j+1(H(Z ,R|Z )). (3.94)

By Poincaré duality, we have for any i ∈ N,

Hi (Z , o(T Z)|Z ) =
(

Hn−i (Z ,R|Z )
)∗
. (3.95)

Thus from [12, Theorem 1.8], (3.94) and (3.95), we get

−c2 j+1(H(Z ,R|Z )) = c2 j+1(H(Z ,R|Z )). (3.96)

Thus we have proved (3.91). ��
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3.8 A proof of Theorem 1.1

First of all, if B is not orientable, then there is a double covering σ : B ′ → B
such that B ′ is orientable. We pull-back the fibration π : M → B to get a fibration
π ′ : M ′ → B ′. Thus we only need to prove Theorem 1.1 when B is orientable.

From now on, we assume B is orientable.
Next, if B is of even dimension, then we can apply the analysis before to the product

fibration Z → M × S1 → B × S1 to get the result.
From now on, we also assume that dim B is odd.
Combining with what was done in the last subsection, we get a new proof of

Bismut–Lott formula (1.2).
It remains to prove (1.4).
By the same argument as in (2.46), we have, when mod Q,

φ̃(M/B, µ, F, 0) =
∫

B

L(T B)ch(µ)
∫

Z

e(T Z)Re
(

CC S
(

F,∇F
))
. (3.97)

Thus from Theorem 3.9, (2.46), (3.97), and the argument as in the proof of (3.92), we
get in Hodd(B,R/Q),

∫

Z

e(T Z)Re
(

CC S
(

F,∇F
))

=
n∑

i=0

(−1)i Re
(

CC S
(

Hi (Z , F |Z ),∇Hi (Z ,F |Z )
))

−rk(F)
n∑

i=0

(−1)i Re
(

CC S
(

Hi (Z ,C|Z ),∇Hi (Z ,C|Z )
))
. (3.98)

Let F∗ be the antidual bundle to F . Let 〈 〉 : F∗ × F → C denote the pairing
induced from the duality between F∗ and F ; it is linear in the first factor and antilinear
in the second factor. Let ∇F∗

be the connection on F∗ induced by ∇F .
By Poincaré duality, one has for any nonnegative integer i ,

Hi (Z , (F ⊗ o(T Z))|Z ) =
(

Hn−i (Z , F∗|Z )
)∗
. (3.99)

Thus, if (F,∇F ) � (F∗,∇F∗
), then Hi (Z , F∗|Z ) � Hi (Z , F |Z ) and one has

n∑
i=0

(−1)i Re
(

CC S
(

Hi (Z , (F ⊗ o(T Z))|Z ),∇Hi (Z ,(F⊗o(T Z))|Z )
))

=
n∑

i=0

(−1)n−i Re
(

CC S
((

Hi (Z , F∗|Z )
)∗
,∇(Hi (Z ,F∗|Z ))

∗))
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=
n∑

i=0

(−1)n−i Re
(

CC S
((

Hi (Z , F |Z )
)∗
,∇(Hi (Z ,F |Z ))

∗))

= (−1)n
n∑

i=0

(−1)i Re
(

CC S
(

Hi (Z , F |Z ),∇Hi (Z ,F |Z )
))
. (3.100)

If n = dim Z is odd, then by setting F = C ⊗ o(T Z) in (3.98) and by (3.100), one
gets

2
n∑

i=0

(−1)i Re
(

CC S
(

Hi (Z ,C|Z ),∇Hi (Z ,C|Z )
))

= 0 in Hodd(B,R/Q),

(3.101)

from which (1.6) follows.
On the other hand, if n is even, then (1.6) follows from the second part of [9,

Theorem 3.12].
Thus (1.6) holds in its full generality.
From (1.6) and (3.98), one gets (1.4).
The proof of Theorem 1.1 is completed.

3.9 A refinement in K −1
R/Z(B): Proof of Theorem 1.2

Recall that π : M → B is a fibration of compact smooth manifolds with compact
fiber Z , and gT Z is a metric on T Z . Let (F,∇F ) be a complex flat vector bundle and
hF is a Hermitian metric on F . Recall also that ∇F,e is the Hermitian connection on
F induced by ∇F and hF as in (2.7).

Suppose that Z is even dimensional and spinc. Let S(T Z) = S+(T Z)⊕ S−(T Z)
be the spinor bundle of T Z .

In [25, Sect. 4], Lott defined a topological index Indtop and an analytic index Indan,
mapping from K −1

R/Z(M) to K −1
R/Z(B) (cf. Sect. 2.6).

Especially, for any E ∈ K −1
R/Z(M) [25, (37)],

chR/Q
(
Indtop(E)

) =
∫

Z

Â(T Z)ec1(L Z )/2chR/Q(E) ∈ H∗(B,R/Q), (3.102)

where Â(T Z ,∇T Z ) = ϕdet1/2
(

RT Z /2
sinh(RT Z /2)

)
and the cohomology class of Â

(T Z ,∇T Z ) is the A-hat class Â(T Z) of T Z , while c1(L Z ) is the first Chern class
of the complex line bundle L Z which defines the spinc structure of T Z .

The main result of Lott [25, Corollaries 1 and 3] is that for any E ∈ K −1
R/Z(M),

Indtop(E) = Indan(E). (3.103)
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We denote by C the trivial complex line bundle carrying the trivial metric and
connection. Then F = [(F, hF ,∇F,e, 0)− rk(F)C] ∈ K −1

R/Z(M), thus (S+(T Z)∗ −
S−(T Z)∗)⊗ F ∈ K −1

R/Z(M).
Recall that I (F) was defined in (1.7).
Let η̂(∇F , hF ) ∈ �odd(B)/Im(d) be the eta form of Bismut–Cheeger [10, Defini-

tion 4.33] defined by

η̂
(
∇F , hF

)
=
(

2π
√−1

)− 1
2

∞∫

0

ϕTrs

[
∂Cu

∂u
exp(−C2

u )

]
du. (3.104)

We may view it as an element in K −1
R/Z(B) represented by (0, 0, 0, η̂(∇F , hF )).

Theorem 3.14

Indtop
((

S+(T Z)∗ − S−(T Z)∗
)⊗ F

)

= I (F)− η̂
(
∇F , hF

)
− rk(F)

(
I (C)− η̂

(
∇C, hC

))
. (3.105)

Proof In [25], Lott used spinc Dirac operator to define Indan, especially, the spinc

Dirac operator (twisted by (S+(T Z)∗ − S−(T Z)∗)⊗ F) DZ ,c is

DZ ,c =
∑

j

c(e j )∇T Z⊗F,e
e j

= DZ + 1

2

∑
j

ĉ(e j )ω
(

F, hF
)
(e j ). (3.106)

The operator DZ ,c does not have fiberwise constant dimensional kernels, thus we
need to choose smooth finite dimensional sub-bundles F± of E± (E+ = Eeven, E− =
Eodd) and complementary subbundles G± such that DZ ,c are diagonal with respect to
the decompositions E± = F± ⊕ G± and DZ ,c restricted to G± is invertible (cf. [25,
Definition 14]).

It seems that it is hard to compare directly the right hand side of (3.105) to
Indan((S+(T Z)∗ − S−(T Z)∗) ⊗ F) in [25, Definition 14]. But by the arguments in
[25, Proposition 6 and Corollary 1], we will get (3.105) if we can prove the following
identity for any odd dimensional compact spinc manifold B,

ηM
((

S+(T Z)∗ − S−(T Z)∗
)⊗ F

) = ηB

(
I (F)− η̂

(
∇F , hF

))
in R/Z,

(3.107)

where η is the reduced eta invariant of the spinc Dirac operator twisted by the corres-
ponding bundles as in [25, Definition 11], i.e., for the tuples (G, hG,∇G, ρ) on B as
in Sect. 2.6, let DG±

be the spinc Dirac operator on B twisted by the bundle G± and
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its reduced eta invariant η(DG±
) as in (2.24), then

ηB(G, hG,∇G, ρ) = η(DG+
)− η(DG−

)−
∫

B

Â(T B,∇T B)ec1(L B )/2ρ in R/Z,

(3.108)

with c1(∇L B ) is the first Chern form of the complex line bundle L B which defines the
spinc structure of T B, and �T B is the Levi-Civita connection on (T B, gT B).

Let ∇S(T B) be the connection on the spinor bundle S(T B) induced by ∇T B and the
connection on the line bundle defining the spinc structure. Let ∇e be the connection
on �(T ∗Z)⊗ π∗(S(T B))⊗ F induced by ∇�(T ∗ Z), ∇π∗(S(T B)), ∇F,e.

Set

DH =
∑
α

c( fα)

(
∇e

fα + 1

2
k( fα)

)
. (3.109)

By proceeding as in [10, (4.26)], we get the spinc Dirac operator DM,c (twisted by
(S+(T Z)∗ − S−(T Z)∗)⊗ F), on M is

DM,c = DH + DZ ,c − c(T )

4
. (3.110)

and ηM ((S
+(T Z)∗ − S−(T Z)∗) ⊗ F) is the reduced eta invariant of the operator

DM,c.
Let

D
′ M = DH + DZ − c(T )

4
. (3.111)

Then D
′ M = DM,c − 1

2

∑
j ĉ(e j )ω(F, hF )(e j ) and 1

2

∑
j ĉ(e j )ω(F, hF )(e j ) anti-

commutes with c(X), X ∈ T M .
Using the variation formula for eta invariants (cf. [3] and [11, Proposition 2.8]) and

the local index techniques as in [10, Theorem 2.7], we know (cf. [9, Proposition 3.5]
and [30, (3.5)])

ηM ((S
+(T Z)∗ − S−(T Z)∗)⊗ F) = η(DM,c) = η(D

′ M ) mod Z. (3.112)

From (3.112), we can use the adiabatic limit argument as in [25, Proposition 6] to
get (3.107). ��

By [9, Theorem 3.7] and [30, Proposition 2.3] (cf. also Lemma 3.13),

η̂
(
∇F , hF

)
= 0. (3.113)

Thus from (3.104) and (3.105), we get (1.8). Thus the proof of Theorem 1.2 is complete.
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When we apply (3.102) to (1.8), we get again (3.98). Thus (1.8) represents a refi-
nement of (3.98) in K −1

R/Z(B).
We leave the interested reader to extend this to the case where no spinc assumption

on T Z is required.

3.10 The η and torsion forms

In the rest of this section, the supertrace Trs on E is defined by the Z2-grading induced
from (−1)NZ .

Recall n = dim Z . Let

d(H(Z , F)) =
n∑

i=0

(−1)i i dim Hi (Z , F). (3.114)

From (3.84), we denote

a−1 = (−1)
n(n+1)

2 π− n
2 rk(F)

∫

Z

∫ B 1

2

n∑
i=1

ei ∧ êi exp

(
−1

2
ṘT Z

)
. (3.115)

Then a−1 is a function on B and is 0 if n is even.
For any u > 0, let ψu : �(T ∗ B) → �(T ∗ B) be defined by that for γ ∈ �(T ∗B),

ψuγ = u− deg γ /2γ .
By (3.14), one finds

Trs

[
NZ exp

((
1 + r2

)
D2

u

)]
= ψuTrs

[
NZ exp

((
1 + r2

)
u D2

1

)]
. (3.116)

By standard results on heat kernels (cf. [5, Theorem 2.30]), we know that Trs[NZ

exp((1+r2)u D2
1)] has an asymptotic expansion in u as u → 0+, which only contains

integral powers of u if n = dim Z is even, and only contains half-integral powers of u
if n is odd. Since Trs[NZ exp((1 + r2)D2

u)] is an even form on B, by (3.116) we see
that the same happens to it.

On the other hand, as in [13, (11.1)], we have

NZ = 1

2

n∑
i=1

c(ei )̂c(ei )+ n

2
. (3.117)

By the proof of [12, Theorem 3.15], (3.14) and (3.117), as in [12, Theorem 3.21]
and [13, Theorem 7.10], we have for r ∈ R, as u → 0+,

Trs

[
NZ exp

((
1 + r2

)
D2

u

)]
=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n

2
χ(Z)rk(F)+ O(u) if n is even,

2a−1√(
1 + r2

)
u

+ O
(√

u
)

if n is odd.
(3.118)
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While as u → +∞,

Trs

[
NZ exp

((
1 + r2

)
D2

u

)]
= d(H(Z , F))+ O

(
1√
u

)
. (3.119)

From (3.79) and (3.118), we know that as u → 0+,

Trs

[(
∂

∂u

(
Cu + √−1r Du

))
exp

(
−
(

Cu + √−1r Du

)2
)]

=
√−1rda−1√

1 + r2u3/2
+ O

(
1√
u

)
. (3.120)

The following definition is closely related to [12, Definition 3.22].

Definition 3.15 For any r ∈ R, put

Ir = −rϕ

+∞∫

0

(
Trs

[
NZ e−(Cu+√−1r Du)

2
]

− d(H(Z , F |Z ))− 2a−1√
(1 + r2)u

−
(n

2
χ(Z)rk(F)− d(H(Z , F |Z ))

)
e−(1+r2)u/4

) du

2u
. (3.121)

Let η̂r be the η-form of Bismut–Cheeger [10, Definition 4.33] defined by

η̂r =
(

2π
√−1

)− 1
2

∞∫

0

ϕ

{
Trs

[(
∂

∂u

(
Cu + √−1r Du

))

× exp

(
−
(

Cu + √−1r Du

)2
)]

−
√−1rda−1√

1 + r2u3/2

}
du. (3.122)

Remark 3.16 The extra term involving da−1 in the right hand side of (3.122) shows
that this η̂r form is slightly different from what in [10].

Theorem 3.17 For any r ∈ R, the η form η̂r is exact and is 0 at r = 0. Moreover, the
following transgression formula holds,

η̂r = − 1

2π
d Ir . (3.123)

Proof Theorem 3.17 is a direct consequence of Lemma 3.13, (3.118) and (3.119). ��
Let T f (T H M, gT Z , hF ) be the torsion form constructed in the spirit of [12, Defi-

nition 3.21] associated to the odd holomorphic function f (z) such that f ′(z) = ez2
,
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that is

T f

(
T H M, gT Z , hF

)
= −ϕ

+∞∫

0

(
Trs

[
NZ eD2

u

]
− d(H(Z , F |Z ))

−2a−1√
u

−
(n

2
χ(Z)rk(F)− d(H(Z , F |Z ))

)
e−u/4

)
du

2u
.

(3.124)

Theorem 3.18 The following identity holds,

∂ Ir

∂r

∣∣∣∣
r=0

= T f

(
T H M, gT Z , hF

)
. (3.125)

In particular,

∂η̂r

∂r

∣∣∣∣
r=0

= − 1

2π
dT f

(
T H M, gT Z , hF

)
. (3.126)

Proof Formula (3.125) follows from (3.121), (3.124). Formula (3.126) follows from
(3.123) and (3.125). ��
Theorem 3.19 For any r ∈ R, the following identity holds,

η̂r = r

2π

+∞∑
j=0

(
1 + r2

) j

j !(2 j + 1)

n∑
i=0

(−1)i c2 j+1

(
Hi (Z , F |Z ), hHi (Z ,F |Z )

)

− r

2π

+∞∑
j=0

(
1 + r2

) j

j !(2 j + 1)

∫

Z

e
(

T Z ,∇T Z
)

c2 j+1

(
F, hF

)
. (3.127)

In particular,

∂η̂r

∂r

∣∣∣∣
r=0

= 1

2π

+∞∑
j=0

1

j !(2 j + 1)

n∑
i=0

(−1)i c2 j+1

(
Hi (Z , F |Z ), hHi (Z ,F |Z )

)

− 1

2π

+∞∑
j=0

1

j !(2 j + 1)

∫

Z

e
(

T Z ,∇T Z
)

c2 j+1

(
F, hF

)
. (3.128)

Proof In fact, by Lemma 3.13 for r = 0 and (3.122), we have

η̂r =√−1r
(

2π
√−1

)− 1
2

∞∫

0

ϕ

{
Trs

[
∂Du

∂u
exp

((
1 + r2

)
D2

u

)]
− da−1√

1 + r2u3/2

}
du.

(3.129)
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From (3.14) and (3.129), one deduces that

η̂r = r√
1 + r2

ψ(1+r2)−1
∂η̂r

∂r

∣∣∣∣
r=0

. (3.130)

By (3.130), we need only to prove (3.128).

Lemma 3.20 The following identity holds,

Trs

[
∂Du

∂u
exp

(
D2

u

)]
− da−1

u3/2 = ∂

∂u

1∫

0

Trs

[
Du exp

(
s2 D2

u

)]
ds. (3.131)

Proof By (3.14), (3.79) and (3.118), one has

lim
s→0+ Trs

[
∂Du

∂u
s exp

(
s2 D2

u

)]
= lim

s→0+
s

2u
dψs−2 Trs

[
NZ exp

(
D2

s2u

)]
= da−1

u3/2 .

(3.132)

Thus

∂

∂u

1∫

0

Trs[Du exp
(

s2 D2
u

)
] ds

=
1∫

0

Trs

[
∂Du

∂u
exp

(
s2 D2

u

)]
ds +

1∫

0

Trs

[
Du

[
s2 Du,

∂Du

∂u

]
exp

(
s2 D2

u

)]
ds

=
1∫

0

Trs

[
∂Du

∂u

(
1 + 2s2 D2

u

)
exp

(
s2 D2

u

)]
ds

= Trs

⎡
⎣∂Du

∂u

1∫

0

∂

∂s

(
s exp

(
s2 D2

u

))
ds

⎤
⎦ = Trs

[
∂Du

∂u
exp

(
D2

u

)]
− da−1

u3/2 ,

(3.133)

which is exactly (3.131). ��

Now by (3.14) again, one has

Trs

[
Du exp

(
s2 D2

u

)]
= 1

s
ψs−2 Trs

[
Ds2u exp

(
D2

s2u

)]
. (3.134)
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From [12, Theorem 3.16] and (3.83), we know that

(2π
√−1)

1
2 ϕTrs

[
Du exp

(
D2

u

)]

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫

Z

e(T Z ,∇T Z )

∞∑
j=0

1

j !c2 j+1

(
F, hF

)
+ O

(√
u
)

as u → 0,

∞∑
j=0

1

j !
n∑

i=0

(−1)i c2 j+1

(
Hi (Z , F |Z ), hHi (Z ,F |Z )

)
+ O

(
1√
u

)
as u → +∞.

(3.135)

Since Trs
[
Du exp(s2 D2

u)
]

is an odd form on B, by (3.135), one sees that
| 1

sψs−2 Trs[Ds2u exp(D2
s2u
)]| has a fixed uniform upper bound for s ∈ (0, 1], u ∈

(0,+∞].
Thus, from (3.129), (3.131), (3.134), (3.135) and the dominated convergence pro-

perty, we get

2π
∂η̂r

∂r

∣∣∣∣
r=0

= (2π
√−1)1/2ϕ

⎡
⎣ lim

u→+∞

1∫

0

1

s
ψs−2 Trs

[
Ds2u exp

(
D2

s2u

)]
ds

− lim
u→0+

1∫

0

1

s
ψs−2 Trs

[
Ds2u exp

(
D2

s2u

)]
ds

⎤
⎦

=
∞∑
j=0

1

j !
1∫

0

s2 j ds
n∑

i=0

(−1)i c2 j+1

(
Hi (Z , F |Z ), hHi (Z ,F |Z )

)

−
∫

Z

e(T Z ,∇T Z )

∞∑
j=0

1

j !c2 j+1

(
F, hF

) 1∫

0

s2 j ds, (3.136)

which is equivalent to (3.128). ��
Combining (3.126) and (3.128), one gets the following transgression formula of

Bismut–Lott type.

Corollary 3.21 The following identity holds,

dT f

(
T H M, gT Z , hF

)

=
+∞∑
j=0

1

j !(2 j + 1)

∫

Z

e
(

T Z ,∇T Z
)

c2 j+1

(
F, hF

)

−
+∞∑
j=0

1

j !(2 j + 1)

n∑
i=0

(−1)i c2 j+1

(
Hi (Z , F |Z ), hHi (Z ,F |Z )

)
. (3.137)
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Remark 3.22 Formula (3.137) is equivalent to (1.3) via the following more precise
relation between T f (T H M, gT Z , hF ) and the Bismut–Lott torsion form T (T H M,
gT Z , hF ) defined in [12, Definition 3.22].

Theorem 3.23 The following identity holds in �∗(B),

T
(

T H M, gT Z , hF
)

= (1 + NB) T f

(
T H M, gT Z , hF

)
. (3.138)

Proof Recall that the Bismut–Lott torsion form T (T H M, gT Z , hF ) is defined by

T
(

T H M, gT Z , hF
)

= −ϕ
+∞∫

0

(
Trs

[
NZ

(
1 + 2D2

u

)
eD2

u

]
− d(H(Z , F |Z ))

−
(n

2
χ(Z)rk(F)− d(H(Z , F |Z ))

) (
1 − u

2

)
e−u/4

) du

2u
. (3.139)

A direct computation shows that the 0-form component of T f (T H M, gT Z , hF ) is
exactly the half of the Ray–Singer analytic torsion defined in [28] and [13]. Thus, the
0-form component of (3.138) is a consequence of [12, Theorem 3.29].

On the other hand, for i > 0, we denote by a superscript [i] the i-form component
of the corresponding forms. Then by (3.14), one has

{
Trs

[
NZ D2

u exp
(

D2
u

)]}[i] = u−i/2
{

Trs

[
NZ u D2

1 exp
(

u D2
1

)]}[i]
. (3.140)

Thus, one deduces that

∞∫

0

{
Trs

[
NZ D2

u exp
(

D2
u

)]}[i] du

u

=
∞∫

0

u− i
2

{
Trs

[
NZ D2

1 exp
(

u D2
1

)]}[i]
du

=
∞∫

0

u− i
2
∂

∂u

{
Trs

[
NZ exp

(
u D2

1

)]}[i]
du

=
∞∫

0

i u− i
2

{
Trs

[
NZ exp

(
u D2

1

)]}[i] du

2u
, (3.141)

where in the last equality we have used the facts that

lim
u→0+ u− i

2

{
Trs

[
NZ exp

(
u D2

1

)]}[i] = lim
u→0+

{
Trs

[
NZ exp

(
D2

u

)]}[i] = 0,

(3.142)

123



Eta-invariants, torsion forms and flat vector bundles 623

and

lim
u→+∞ u− i

2

{
Trs

[
NZ exp

(
u D2

1

)]}[i] = lim
u→+∞

{
Trs

[
NZ exp

(
D2

u

)]}[i] = 0,

(3.143)

which are consequences of (3.118) and (3.119).
From (3.141), we get (3.138). ��

Remark 3.24 From (3.79), as in (2.74), (2.75), we get

∂

∂r

[
r

2u
dTrs

[
NZ exp

(
−
(

Cu + √−1r Du

)2
)]]

− ∂

∂u
Trs

[
Du exp

(
−
(

Cu + √−1r Du

)2
)]

= −1

2u
dTrs

[
2NZ D2

u exp

(
−
(

Cu + √−1r Du

)2
)]
. (3.144)

Especially, when we restrict ourselves to r = 0, from (3.144), we get

∂

∂u
Trs

[
Du exp

(
−C2

u

)]
= 1

2u
dTrs

[
NZ

(
1 + 2D2

u

)
exp

(
−C2

u

)]
. (3.145)

This is exactly [12, Theorem 3.20]. It seems interesting that here we obtain it purely
through the consideration of η forms.
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