A Remark on a Residue Formula of Bott

Zhang Weiping (张伟平)*

Institute of Mathematics, Academia Sinica

Received March 26, 1988

Abstract. We present in this note a simple proof of the Bott residue theorem in a slightly more a general form.

§ 0. Introduction

Let M be an n-dimensional compact complex manifold, V a holomorphic vector field on M. Inspired by a paper of Witten [8], Liu Kefeng [6] introduced the operator

$$\overline{\partial}_s = \overline{\partial} + si(V), \quad s > 0$$

and considered explicitly the complex

$$0 \to A^{-n} \to A^{-n+1} \to \cdots \to A^0 \to \cdots \to A^n \to 0, \tag{0.1}$$

where

$$A^k = \bigoplus_{q=n=k} A^{p,q} \tag{0.2}$$

and the well-known fact for holomorphic vector field

$$\overline{\partial} i(V) + i(V) \overline{\partial} = 0 \tag{0.3}$$

was used.

If M is a Riemannian manifold, the analogous operator is d+i(V), where V is a Killing vector field. The associated complex especially the cohomology is called equivariant cohomology. Furthermore, fairly complete localization formulas have been obtained by Duistermaat-Heckman [5] and Berline-Vergne [1].

Our main purpose here is to prove a complex analogue of these localization formulas for the $\overline{\partial}_s$ cohomology. An idea of Bismut [2] is used.

When V has only (nondegenerate) isolated zeros, this result was contained implicitly in Liu [6] and reproved in [7]. In this note we deal with the more general case where the zero set of V is allowed to be complex submanifolds also with some nondegenerate conditions. In this version our result is a generalization of the Bott residue formula [3], cf. §3.

The author would like to thank Mr. Liu Kefeng and Professor Yu Yanlin for some helpful conversations.

Current address: Nankai Institute of Mathematics. Tianjin. 300071.

§ 1. The Residue Formula

Let V be a holomorphic vector field on the n-dimensional compact complex manifold M. Then V induces a bracket action on the holomorphic tangent bundle TM:

$$\theta: W \longmapsto [V, W], W \in \Gamma(TM).$$
 (1.1)

Let $X = \{p \in M : V(p) = 0\}$ be the zero set of V. On any component N of X, it is easy to see that $\theta|_N$ induces an endomorphism

$$\theta|_{N} \colon TM|_{N} \longmapsto TM|_{N}, \tag{1.2}$$

where the linearity comes from the fact that $V|_{N}=0$.

In this paper, we assume further that N satisfies the following two conditions:

(1.3) N is a complex submanifold;

(1.4) The homomorphism

$$\theta^*|_N : TM/TN \mapsto TM/TN$$

on the normal bundle of N in M induced by $\theta|_N$ is an isomorphism. Under these conditions we call N a nondegenerate component of X.

Now we consider the operator

$$\overline{\partial}_{V} = \overline{\partial} + i(V). \tag{1.5}$$

It is well known that

$$\overline{\partial}_{V}^{2}=0, \qquad (1.6)$$

so it induces the complex (0.1) and the associated cohomology is defined by

$$H_{V}^{(n)}(M; C) := \frac{\ker \overline{\partial}_{V}|_{A^{n}}}{\operatorname{Im} \overline{\partial}_{V}(A^{n-1})}. \tag{1.7}$$

It is clear that for integral formulas, the interesting part is $H_{\nu}^{(0)}(M; C)$.

Notation. Denote $A = \bigoplus A^{p, q}(M)$. For any $\eta \in M$, we have a decomposition $\eta = \sum \eta^{p, q}$, where $\eta^{p, q} \in A^{p, q}$.

Our main result in this note is

Theorem 1.8. Let V be a holomorphic vector field on the n-dimensional compact complex manifold M. And the components N, of $X = \{p \in M : V(p) = 0\}$ are nondegenerate. Then for any $\eta \in H_V^{(0)}(M;C)$, we have

$$\int_{M} \eta = \sum_{i} (2\pi i)^{r_{i}} \int_{N_{i}} \frac{\eta}{\det(\theta^{v} - k_{i})},$$

where k_i is the curvature matrix associated with certain complex connection on the normal bundle TM/TN_i over N_i , and r_i is the codimension of N_i in M.

The integral on the right hand side is well defined for if k' is another curva-

ture matrix, then by Chern-Weil theory,
$$\left[\frac{1}{\det\left(\theta^{\nu}+\frac{k}{2\pi i}\right)}\right]$$
 and $\left[\frac{1}{\det\left(\theta^{\nu}+\frac{1}{2\pi i}k'\right)}\right]$ represent the same cohomology class in $H^*(N;C)$.

so

§2. Proof of Theorem 1.8

First we recall an idea of Bismut⁽²⁾.

Proposition 2.1. Let $\eta \in A$ be a $\overline{\partial}_V$ closed form, i.e. $(\overline{\partial} + i(V))\eta = 0$. Then for any $\omega \in A$ and t > 0

$$\int_{M} \eta = \int_{M} \exp \left\{ -\frac{\overrightarrow{\partial} \omega}{t} - \frac{i(V)\omega}{t} \right\} \cdot \eta .$$

Proof. By $(\overline{\partial} + i(V))^2 = 0$ and $(\overline{\partial} + i(V))\eta = 0$, we have

$$\frac{\partial}{\partial s} \int_{M} \exp\{-s(\overline{\partial} + i(V))\omega\} \cdot \eta$$

$$= -\int_{M} (\overline{\partial} + i(V))\omega \cdot \exp\{-s(\overline{\partial} + i(V))\omega\} \cdot \eta$$

$$= -\int_{M} (\overline{\partial} + i(V))(\omega \cdot \exp\{-s(\overline{\partial} + i(V))\omega\} \cdot \eta),$$

so (2.1) reduces to the following

Lemma 2.2. For any $\omega \in A(M)$,

$$\int_{\mathcal{U}} \overline{\partial} \omega = 0.$$

Proof. It is sufficient to consider the following two cases:

- (i) $\omega \in A^{n-1,n}$, then $\overline{\partial}\omega = 0$,
- (ii) $\omega \in A^{n \cdot n-1}$, then $\partial \omega = 0$,

$$\int_{\mathcal{U}} \overline{\partial} \omega = \int_{\mathcal{U}} (\overline{\partial} + \partial) \ \omega = \int_{\mathcal{U}} d\omega = 0.$$

Corollary 2:3 ([6]). If V has no zeros on M, then for any η satisfying $(\overline{\partial} + i(V))\eta = 0$,

$$\int_{M} \eta = 0$$

Proof. Choose any Hermitian metric on TM and let ω be the 1-form dual to V via this metric. Clearly $i(V)\omega = |V|^2$, and since V has no zeros, there exists a $\delta > 0$ such that $|V|^2 > \delta$ on M, so by (2.1),

$$\left| \int_{M} \eta \right| = \left| \int_{M} \exp \left\{ -\frac{\overline{\partial} \omega}{t} - \frac{|V|^{2}}{t} \right\} \cdot \eta \right| \leq C \cdot e^{-\delta/t} \left(t^{-n} + t^{-n+1} + \dots + 1 \right)$$

for some constant C>0. Taking $t\to 0$, we get the result.

Now we suppose that $X = \{ p \in M : V(p) = 0 \}$ has components N_1, \dots, N_m . each of which is nondegenerate.

On TM we choose a Hermitian metric such that on each component N_i , we have an orthogonal decomposition

$$TM = TN \oplus \operatorname{Im} \theta \mid_{N_i}$$
.

Now we take a sufficiently small $\varepsilon > 0$ so that $N_i(2\varepsilon) \cap N_i(2\varepsilon) = \emptyset$ when $i \neq j$ where $N_i(\varepsilon) = \{x \in M : d(x, N_i) < \varepsilon \}$ is the ε -neighborhood of N_i under the chosen metric.

Now let A be the endomorphism of TM defined by

$$As = \theta(V)_S - \nabla_{VS}, \quad s \in \Gamma(TM), \quad (2.4)$$

where ∇ is the unique connection of bidegree (1, 0) associated with the given Hermitian metric (· , ·).

Let ω_1 be a (1,0) form on M such that

$$\omega_1 = \begin{cases} -(\nabla V, AV), & \text{on } \bigcup_i N_i(2\varepsilon); \\ 0, & \text{on } M \setminus \bigcup_i N_i(3\varepsilon), \end{cases}$$
 (2.5)

and $\omega_1(V) \ge 0$ on M. Let ω_2 be a one form on M such that

$$i(V) \omega_2 = \begin{cases} \geq 0, & \text{on } M; \\ 1, & \text{on } M \setminus \bigcup N_i(2 \varepsilon); \\ 0, & \text{on } \bigcup N_i(\varepsilon). \end{cases}$$
 (2.6)

The existence of such forms is clear. Now set $\omega = \omega_1 + \omega_2$.

Corollary 2.7. For the case considered,

$$\int_{M} \eta = \lim_{t \to 0} \int_{N_{t}(\varepsilon)} \exp\left(-\frac{\overline{\partial}\omega_{1}}{t} - \frac{i(V)\omega_{1}}{t}\right) \cdot \eta \qquad (2.7)$$

Proof.

We have on
$$\bigcup_i N_i(2\varepsilon)$$
,
$$i(V) \omega_1 = -(\nabla_V V, AV) = |AV|^2. \tag{2.8}$$

Since N_i 's are nondegenerate and ε is small enough we can find a $\delta > 0$ such that $|AV|^2 \ge \delta$ on $\bigcup N_i(2\varepsilon) \setminus \bigcup N_i(\varepsilon)$. So combining it with (2.6) we see that on $M \setminus \bigcup N_i(\varepsilon)$, $i(V)\omega \ge \min(\delta, 1) > 0$. Now, just as in the proof of (2.3), we get

$$\lim_{t\to 0} \int_{M\setminus\bigcup N_{I}(\varepsilon)} \exp\left\{-\frac{\overline{\partial}\omega}{t} - \frac{i(V)\omega}{t}\right\} \cdot \eta = 0.$$

So

$$\int_{M} \eta = \int_{M} \exp \left\{ -\frac{\overline{\partial}\omega}{t} - \frac{i(V)\omega}{t} \right\} \cdot \eta$$

$$= \int_{M \setminus \bigcup_{N_{i}(\varepsilon)}} \exp \left\{ -\frac{\overline{\partial}\omega}{t} - \frac{i(V)\omega}{t} \right\} \cdot \eta$$

$$+ \int_{\bigcup_{i}N_{i}(\varepsilon)} \exp \left\{ -\frac{\overline{\partial}\omega}{t} - \frac{i(V)\omega}{t} \right\} \cdot \eta$$

$$= \lim_{i \to 0} \sum_{i} \int_{N_{i}(\varepsilon)} \exp \left\{ -\frac{\overline{\partial}\omega_{1}}{t} - \frac{i(V)\omega_{1}}{t} \right\} \cdot \eta$$

since $\omega_2|_{\bigcup N_i(s)} = 0$.

To complete the proof of Theorem 1.8, we need to calculate each

$$\lim_{t\to 0} \int_{N_i(\epsilon)} \exp\left\{-\frac{\overline{\partial}\omega_1}{t} - \frac{i(V)\omega_1}{t}\right\} \cdot \eta.$$

For simplicity, we deal with one of the components and denote it just by N.

Since N is a holomorphic variety, we can find a coordinate patch U centered at $p \in N$, with holomorphic coordinates $\{z_1, \dots, z_n\}$, $n = \dim_C M$, such that

$$N \cap U = \{ q \in U : z_1(q) = \cdots = z_r(q) = 0 \},$$

where r is the codimension of N in M (See Bott [3]). Because V is nondegenerate near N, one can further choose these coordinates such that on U, the Taylor expansion of V takes the form

$$V = -\sum z_a v_{ab} \frac{\partial}{\partial z_b} + O(|z|^2)$$
 (2.9)

with a, b ranging over the integers from 1 to r and $(v_{ab})_{r\times r}$ is a nonsingular matrix. By (2.4) and (2.9), we clearly have

$$A|_{N}: \frac{\partial}{\partial z_{a}} \longmapsto \sum_{b} v_{ab} \frac{\partial}{\partial z_{b}}$$
, (2.10)

whence finally $\frac{\partial}{\partial z_a}$ $(a=1,\dots,r)$ are in the image of $\theta|_N$ while the remaining $\frac{\partial}{\partial z_j}$ are restricted to the elements in the kernel of $\theta|_N$.

Now

$$\int_{U \cap N(\epsilon)} \exp \left\{ -\frac{\overline{\partial}\omega_{1}}{t} - \frac{i(V)\omega_{1}}{t} \right\} \cdot \eta$$

$$= \int_{U \cap N(\epsilon)} \exp \left\{ \frac{\overline{\partial}\left(\nabla V, AV\right)}{t} - \frac{|AV|^{2}}{t} \right\} \cdot \eta$$

$$= \int_{U \cap N(\epsilon)} \exp \left\{ \frac{(kV, AV)}{t} - \frac{(\nabla V, \nabla AV)}{t} - \frac{|AV|^{2}}{t} \right\} \cdot \eta$$

$$= \int_{U \cap N(\epsilon)} \exp \left[-\frac{(\nabla V, \nabla AV)}{t} - \frac{((A-k)V, AV)}{t} \right\} \cdot \eta$$

$$= \int_{U \cap N(\epsilon)} \exp \left\{ -\frac{(\nabla V, \nabla AV)}{t} - \frac{((A-k)V, AV)}{t} \right\} \cdot \eta, \quad (2.11)$$

where k is the curvature (1,1) form matrix for ∇ and $W_p(\varepsilon)$ denotes the ε -neighborhood of p in the normal space $\text{Im}\theta|T_pM(=T_pM/T_pN)$. Changing the variables $z_a \to \sqrt{t}z_a$, we have by (2.11) and (2.9),

$$\int_{N(\epsilon) \cap U} \exp \left\{ -\frac{\overline{\partial} \omega_{\perp}}{t} - \frac{i(V)\omega_{\perp}}{t} \right\} \cdot \eta$$

$$= \int_{U \cap N} \int_{W_{p}(\epsilon/\sqrt{t})} \exp \left\{ -(\nabla V, \nabla AV) - ((A-k)V, AV) \right\} \cdot \eta$$

$$= \int_{U \cap N} \int_{W_{p}(\epsilon/\sqrt{t})} \exp \left\{ -(A_{p}dz, A_{p}^{2}dz) - ((A_{p}-k^{\nu})V, A_{p}V) \right\} \cdot \eta \mid_{N}$$

$$+ \int_{U \cap N} \int_{W_{p}(\epsilon/\sqrt{t})} \exp \left\{ -(A_{p}V, A_{p}V) \right\} \cdot \alpha(t, z) \cdot \left(\frac{i}{2\pi} \right)' dz_{\perp} d\overline{z}_{\perp} \cdots dz_{r} d\overline{z}_{r},$$

where k^* is the curvature matrix of the normal bundle TM/TN over N induced by ∇ and $\lim \alpha(t,z)=0$. So when we let $t\to 0$, we get

$$\lim_{t \to 0} \int_{N(e)} \exp \left\{ -\frac{\overline{\partial} \omega_1}{t} - \frac{i(V)\omega_1}{t} \right\} \cdot \eta$$

$$= \lim_{t \to 0} \int_{N} \int_{W_p(e/\sqrt{t})} \exp \left\{ -(A_p dz, A_p^2 dz) - ((A_p - k^*)V, A_p V) \right\} \cdot \eta|_{N}$$

$$= \int_{N}^{\infty} \int_{W_{p}}^{\infty} \exp \left\{-\left(A_{p} dz, A_{p}^{2} dz\right) - \left(\left(A_{p} - k^{\nu}\right) V, A_{p} V\right)\right\} \cdot \eta|_{N}$$

$$= \int_{N}^{\infty} \int_{W_{p}}^{\infty} \exp \left\{-\left(dz, A_{p} dz\right)\right\} \cdot \exp \left\{\left(-\left(A_{p} - k^{\nu}\right) z, A_{p} z\right)\right\} \cdot \eta|_{N}$$

$$= \int_{N}^{\infty} \int_{W_{p}}^{\infty} \exp \left\{\left(-\left(A_{p} - k^{\nu}\right) z, A_{p} z\right)\right\} \cdot \overline{\det A_{p}} \cdot \left(-1\right)^{r} dz_{1} d\overline{z}_{1} \cdots dz_{r} d\overline{z}_{r} \cdot \eta|_{N}$$

$$= \int_{N}^{\infty} \int_{W_{p}}^{\infty} \left(2i\right)^{r} \exp \left\{-\left(A_{p} - k^{\nu}\right) A_{p}^{-1} z, z\right\} \cdot \frac{1}{\det A_{p}} \left(\frac{i}{2}\right)^{r} dz_{1} d\overline{z}_{1} \cdots dz_{r} d\overline{z}_{r} \cdot \eta|_{N}$$

$$= \int_{N}^{\infty} \left(2\pi i\right)^{r} \frac{1}{\det \left(\left(A_{p} - k^{\nu}\right) A_{p}^{-1}\right)} \cdot \frac{1}{\det A_{p}} \cdot \eta|_{N}$$

$$= \left(2\pi i\right)^{r} \int_{N}^{\infty} \frac{\eta}{\det \left(A_{p} - k^{\nu}\right)} \cdot \frac{\eta}{\det \left(A_{p} - k^{\nu}\right)} dz_{1} dz_{2} dz_{2} dz_{3} dz_{4} dz_{4} dz_{4} dz_{5} dz$$

Note that here $A_p|_{TM/TN}$ is just θ^v , so our proof of Theorem 1.8 is complete. \square

§3. Some Applications

In this section, we consider some applications of Theorem 1.8.

First suppose V has only nondegenerate isolated zeros. In this case let $p \in X$ = $\{q \in M : V(q) = 0\}$; then near p, we have

$$V = v_j \frac{\partial}{\partial z_j} = z_j v_{ij} \frac{\partial}{\partial z_j}$$

and det $(v_{ij})_p \neq 0$. The theorem becomes

Corollary 3.1 ([6], [7]). When V has only nondegenerate zeros $\{p_i\}$ and $\eta \in H_V^{(0)}(M, C)$, then

$$\left(\frac{i}{2\pi}\right)^n \int_{M} \eta = \sum_{i} \frac{\eta^{0.0}(p_i)}{\det(v_{ij})_{p_i}}.$$

Proof. Just note that $\theta_p^{\nu} = -(\nu_{ij})_p$.

The corresponding formula for meromorphic vector fields must also be true, cf. Chern[4].

Corollary 3. 2 (Bott residue formula [3]). Let $\Lambda: \Gamma(E) \to \Gamma(E)$ be a holomorphic action of the holomorphic vector field V on the holomorphic bundle E over the n-dimensional compact holomorphic manifold M. Also, let $\varphi(z_1, \dots, z_q)$, $q = \dim_C E$ be a homogeneous symmetric polynomial of degree = n, and let N_i range over the components of the zero set of V. If each N_i is nondegenerate, then

1

$$\int_{M} \varphi(x_{1}, \dots, x_{q}) = \sum_{i} \int_{N_{i}} \frac{\varphi(\lambda_{1} + x_{1}, \dots, \lambda_{q} + x_{q})}{\det(\mu_{1} + y_{1}, \dots, \mu_{r} + y_{r})} ,$$

where x_1, \dots, x_q are the Chern roots for E over M; y_1, \dots, y_r are the Chern roots for TM/TN over N; λ_i and μ_j are the eigenvalues of $\Lambda|_N$ and $\theta^*|_{TM/TN}$ respectively. Proof. Choosing a Hermitian metric as in §2 and taking a Hermitian metric $\langle \cdot, \cdot \rangle_E$ for E, let R denote the curvature for E. Then the Bott theorem is, via Chern-Weil theory, equivalent to

$$\int_{M} \varphi\left(\frac{i}{2\pi} R\right) = \sum_{i} \int_{N_{i}} \frac{\varphi\left(\Lambda + \frac{i}{2\pi} R\right)}{\det\left(\theta^{\nu} + \frac{i}{2\pi} k\right)}$$
(3.3)

Let ∇ be the (1,0)-connection associated with $\langle \cdot, \cdot \rangle_E$, and R be the associated curvature. Then

$$L \cdot s = \Lambda \cdot s - \nabla_{V} \cdot s$$
, $s \in \Gamma(E)$ (3.4)

is an endomorphism of E and $\Lambda|_{N}=L|_{N}$. Furthermore, it is easy to check that

$$(\overline{\partial}+i(V))(\varphi(L-R))=0$$
.

So by (1.8),

$$\int_{M} \varphi \left(-L+R\right) = \sum_{i} \int_{N_{i}} (2\pi i)'^{i} \frac{\varphi \left(-\Lambda+R\right)}{\det \left(\theta^{v}-k\right)}.$$

This is just (3.3), for we have

$$\int_{M} \varphi\left(\frac{i}{2\pi} R\right) = \left(\frac{i}{2\pi}\right)^{n} \int_{M} \varphi\left(-L + R\right)$$

$$=\sum_{i}\int_{N_{i}}(2\pi i)^{r_{i}}\cdot\left(\frac{i}{2\pi}\right)^{n}\frac{\varphi\left(-\Lambda+R\right)}{\det\left(\theta^{\nu}-k\right)}$$

$$=\sum_{i}\int_{N_{i}}\left(\frac{i}{2\pi}\right)^{n-r_{i}}\frac{\varphi\left(-\Lambda+R\right)}{\det\left(-\theta^{\nu}+k\right)}$$

$$= \sum_{i} \int_{N_{i}} \frac{\varphi\left(-\Lambda + \frac{i}{2\pi}R\right)}{\det\left(-\theta^{\nu} + \frac{i}{2\pi}k\right)}$$

$$=\sum_{i}\int_{N_{i}}(-1)^{n-r_{i}}\frac{\varphi\left(\Lambda-\frac{i}{2\pi}R\right)}{\det\left(\theta^{\nu}-\frac{i}{2\pi}k\right)}=\sum_{i}\int_{N_{i}}\frac{\varphi\left(\Lambda+\frac{i}{2\pi}R\right)}{\det\left(\theta^{\nu}+\frac{i}{2\pi}k\right)}.$$

Next we prove the complex analogue of a formula of Duistermaat-Heckman^[5]. For the case where V has only nondegenerate isolated zeros, this has been proved in [6].

Corollary 3.5. Let V have nondegenerate zero components $\{N_i\}$. If ω is a $\overline{\partial}_V$ closed (1,1) form and there is an $f \in C^{\infty}(M)$ such that $i(V) \omega = \overline{\partial} f$, then for any s > 0,

$$\int_{M} e^{-sf} \frac{\omega^{n}}{n!} = \sum_{i} (2\pi i)^{r_{i}} \int_{N_{i}} \frac{e^{\omega - sf}}{\det(s \theta^{v} - k_{i})},$$

where k_i is a (1,1) curvature form of TM/TN_i .

Proof. Just note that under the given conditions,

$$(\overline{\partial} + si(V))e^{\omega-sf} = 0$$
,

so by (1.8),

$$\int_{M} e^{-sf} \frac{\omega^{n}}{n!} = \int_{R} e^{\omega - sf} = \sum_{i} (2\pi i)^{r_{i}} \int_{N_{i}} \frac{e^{\omega - sf}}{\det(s \theta^{\nu} - k_{i})} \cdot \qquad []$$

Remark 1. The original method of Bott seems to work here also. But our proof is technically simpler.

Remark 2. If we take $\deg \varphi < n$ in (3.2), we may get some interesting vanishing formulas.

References

- Berline, N. and Vergne, M., Zeros d'un champ de vecteurs et classes characteristiques equivariants. Duck
 Math. J., 50 (1983), 539-549.
- [2] Bismut, J. -M., Localization formulas, superconnections and the index theorem for families, Commun.

 Math. Phys., 103 (1986) 127-166.
- [3] Bott, R., A residue formula for holomorphic vector fields. J. Differential Geometry. 1 (1967), 311-330.
- [4] Chern, S. S., Meromorphic vector fields and characteristic numbers, Scripta Math., 29 (1973), 243-251; See also Selected Papers, 435-443, Springer-Verlag, 1978.
- [5] Duistermaat, J. J. and Heckman, G., On the variation of the cohomology of the reduced phase space, Invent. Math., 69 (1982), 259-268; Addendum., 72 (1983), 153-158.
- [6] Liu Kefeng, Holomorphic vector field on complex manifold, Preprint, 1987.
- [7] Liu Kefeng and Zhang Weiping, Holomorphic vector fields with isolated zeros, Preprint, 1987.
- [8] Witten, E., Supersymmetry and Morse theory, J. Differential Geom., 17 (1982), 661-692.