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We use the η-invariant of Atiyah–Patodi–Singer to compute
the Eells–Kuiper invariant for the Eells–Kuiper quaternionic
projective plane. By combining with a known result of
Bérard-Bergery, it shows that every Eells–Kuiper quaternionic
projective plane carries a Riemannian metric such that all
geodesics passing through a certain point are simply closed
and of the same length.
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1. Introduction

The η-invariant introduced by Atiyah, Patodi and Singer [2], as well as its various
ramifications, has played important roles in many problems in geometry and topology.
In this short paper, we use the η-invariant to compute the Eells–Kuiper invariant for
the Eells–Kuiper quaternionic projective plane. By combining with a known result of

✩ The project is partially supported by MOEC and NNSFC.
E-mail addresses: zztang@bnu.edu.cn (Z. Tang), weiping@nankai.edu.cn (W. Zhang).
0001-8708/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.aim.2013.12.019

http://dx.doi.org/10.1016/j.aim.2013.12.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
mailto:zztang@bnu.edu.cn
mailto:weiping@nankai.edu.cn
http://dx.doi.org/10.1016/j.aim.2013.12.019


42 Z. Tang, W. Zhang / Advances in Mathematics 254 (2014) 41–48
Bérard-Bergery, it shows that every Eells–Kuiper quaternionic projective plane carries
a Riemannian metric such that all geodesics passing through a certain point are simply
closed and of the same length.

To be more precise, let p be a point in a closed manifold M . Let g be a Riemannian
metric on M . The Riemannian structure (M, g) is called an SCp Riemannian structure
if all geodesics issued from p are simply closed (periodic) geodesics with the same length.
We refer to the classic book [4] for a systematic account of the SCp structures.

It is clear that there are SCp Riemannian structures on the compact symmetric spaces
of rank one (briefed in [4] as CROSS), namely the unit spheres, the real projective spaces,
the complex projective spaces, the quaternionic projective spaces and the Cayley projec-
tive plane, endowed with the corresponding canonical metrics. Moreover, a fundamental
result of Bott [5] states that any smooth manifold carrying an SCp structure should
have the same integral cohomology ring as that of a CROSS. On the other hand, there
are manifolds verifying the above cohomological condition but not diffeomorphic to any
CROSS. For typical examples, we mention the (exotic) homotopy spheres and the Eells–
Kuiper (exotic) quaternionic projective planes.

In 1975, Bérard-Bergery [3] discovered an SCp structure on an exotic sphere of di-
mension 10. He then raised the natural question: is there any (exotic) Eells–Kuiper
quaternionic projective plane carrying an SCp structure? The same question was also
posed explicitly by Besse in the classic book [4, 0.15 on p. 4]. Moreover, it is pointed
out in [4, p. 143] that a positive answer to the above question would also give a positive
nontrivial example to the following open question: whether a Blaschke manifold at a
point1 would carry an SCp Riemannian structure?

The purpose of this article is to provide a positive answer to the above two questions
concerning the Eells–Kuiper quaternionic projective planes.

Before going on, we describe the Eells–Kuiper quaternionic projective planes as fol-
lows, starting with the standard construction of Milnor [15].

For any pair of integers (h, j), let ξh,j be the S3-bundle over S4 determined by the
characteristic map fh,j : S3 → SO(4) with fh,j(u)v = uhvuj for u ∈ S3, v ∈ R4, where
we identify R4 with the space of quaternions. It is shown in [15] that when h+j = 1, the
total space of the above sphere bundle is homeomorphic to the unit sphere S7. From now
on, we denote by Mh this total space corresponding to (h, j) = (h, 1−h), and denote by
Nh the associated disk bundle.

Remark 1.1. When h = 0 or 1, Mh is just the unit 7-sphere and the sphere bundle is just
the Hopf fibration (corresponding to the left or right multiplications of the quaternions,
respectively). On the other hand, M2 is the exotic sphere generating the group Θ(7)
(the set of the orientation preserving diffeomorphism classes of 7-dimensional oriented
homotopy spheres), which is isomorphic to the cyclic group Z28.

1 Cf. [4, 5.37 on p. 135] for a definition.
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It is shown by Eells and Kuiper [9] that the homotopy sphere Mh is diffeomorphic to
S7 if and only if the following congruence holds for h,

h(h− 1)
56 ≡ 0 mod Z. (1.1)

From now on, we assume that h satisfies (1.1). Then there is a diffeomorphism
σ : Mh → S7. Let Xh,σ denote the 8-dimensional closed smooth manifold constructed
from Nh by attaching the unit disk D8 by the diffeomorphism σ : ∂(Nh) = Mh →
∂(D8) = S7. This is what we call an Eells–Kuiper quaternionic projective plane, first
constructed in [8].2 We remark that when h = 0 or 1, and σ = id, Xh,σ is just the stan-
dard quaternionic projective plane HP 2. We also mention a deep result due to Kramer
and Stolz [11] which asserts that the diffeomorphism type of the resulting manifold Xh,σ

does not depend on the choice of the diffeomorphism σ : Mh → S7.
Let τh be the canonical involution on Mh obtained by the fiberwise antipodal invo-

lution on S3. By [3, Theorem 1] and the above result of Kramer–Stolz, to prove that
Xh,σ carries an SCp Riemannian structure, one only needs to show that there is a dif-
feomorphism σ′ : Mh → S7 such that τσ′ = σ′τh, where τ is the standard antipodal
involution of S7. Equivalently, one needs only to show that the quotient manifold Mh/τh
is diffeomorphic to RP 7. This is the content of the following main result of this paper.

Theorem 1.1. The involution τh on Mh
∼= S7 is equivalent to the standard antipodal

involution on S7. In other words, Mh/τh is diffeomorphic to RP 7.

Corollary 1.1. Every Eells–Kuiper quaternionic projective plane admits an SCp Rieman-
nian structure.

Remark 1.2. Since there are infinitely many Eells–Kuiper quaternionic projective planes
not diffeomorphic to each other, the above corollary actually shows that there is an
infinite family of pairwise non-diffeomorphic manifolds M with the cohomology ring of
HP 2 such that each M admits an SCp Riemannian structure.

The rest of this article is organized as follows. In Section 2, we reduce the proof of
Theorem 1.1 to a problem of computing the Eells–Kuiper μ invariant introduced in [9].
In Section 3, we recall the results of Donnelly [6] and Kreck and Stolz [12] (cf. [10]) which
use η-invariants to express the μ-invariant, and then carry out the required computation
of the involved η invariant.

2 Indeed, Eells and Kuiper showed in [8] that the Xh,σ’s are the only 8-dimensional closed smooth mani-
folds admitting a Morse function with 3 critical points.
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2. Theorem 1.1 and the Eells–Kuiper μ invariant

As was indicated in [3, p. 240], by results of Mayer [14], there could only be two
possibilities for Mh/τh. That is, it is diffeomorphic either to RP 7 or to the connected
sum RP 7#14M2, where 14M2 is the connected sum M2# · · ·#M2 of 14 copies of M2.

On the other hand, Milnor [16] showed that the Eells–Kuiper μ invariant of RP 7 and
RP 7#14M2 takes different values. Thus, in order to prove Theorem 1.1, one needs only
to show that the μ invariant of Mh/τh is different from that of RP 7#14M2.

For completeness, we recall the definition of the Eells–Kuiper μ invariant in our sit-
uation. Let M be a 7-dimensional closed oriented spin manifold such that the 4-th
cohomology group H4(M ;R) vanishes.3 If M bounds a compact oriented spin mani-
fold N , then the first Pontrjagin class p1(N) ∈ H4(N,M ;Q) is well-defined.

Following [9, (11)], we define μ(M) ∈ R/Z by

μ(M) ≡ p2
1(N)

27 × 7 − Sign(N)
25 × 7 mod Z, (2.1)

where p2
1(N) denotes the corresponding Pontrjagin number and Sign(N) is the Signature

of N .
Now set M = Mh, N = Nh. Let x ∈ H4(S4;Z) be the generator. By [15], one has

e(ξh,1−h) = x, p1(ξh,1−h) = ±2(2h− 1)x, (2.2)

where e(ξh,1−h) and p1(ξh,1−h) are the Euler class and the first Pontrjagin class of the
sphere bundle ξh,1−h respectively. Also by [15], one has

Sign(Nh) = 1. (2.3)

From (2.2) and (2.3), one deduces as in [15] and [9] that

p2
1(Nh)
27 × 7 − Sign(Nh)

25 × 7 = h(h− 1)
56 , (2.4)

which is an integer in view of the assumption (1.1).
Recall that by [16], one has μ(RP 7) = ± 1

32 while μ(RP 7#14M2) = ± 1
32 + 1

2 . Thus,
in order to prove Theorem 1.1, one needs only to prove the following result.

Theorem 2.1. The following identity holds for any integer h verifying (1.1),

μ(Mh/τh) ≡ ± 1
32 mod Z. (2.5)

Theorem 2.1 will be proved in Section 3.

3 By the above diffeomorphism type result, it is clear that Mh/τh verifies this condition.
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3. A proof of Theorem 2.1

In this section, we compute μ(Mh/τh). The obvious difficulty is that one does not find
easily an 8-dimensional spin manifold with boundary Mh/τh. Instead, we will make use
of an intrinsic formula for the μ invariant, which is given by Donnelly [6] and Kreck and
Stolz [12] (cf. the survey paper of Goette [10]).

Indeed, for any 7-dimensional closed oriented spin manifold M with H4(M ;R) = 0, let
gTM be a Riemannian metric on TM . Let ∇TM be the associated Levi-Civita connection.
Let p1(TM,∇TM ) be the corresponding first Pontrjagin form (cf. [17, Section 1.6.2]).
Then there is a 3-form p̂1(TM,∇TM ) on M such that

d p̂1
(
TM,∇TM

)
= p1

(
TM,∇TM

)
. (3.1)

Let DM (resp. BM ) be the Dirac (resp. Signature) operator associated to gTM . Let
η(DM ), η(BM ) be the Atiyah–Patodi–Singer η invariant of DM , BM (cf. [2]). Let

η(DM ) = 1
2
(
dim(kerDM ) + η(DM )

)
be the corresponding reduced η-invariant.

By [6] and [12] (cf. [10, p. 424]), the μ invariant defined in (2.1) can be represented
by

μ(M) ≡ η(DM ) + η(BM )
25 × 7 − 1

27 × 7

∫
M

p1
(
TM,∇TM

)
∧ p̂1

(
TM,∇TM

)
mod Z. (3.2)

Now consider the double covering Mh → Mh/τh. We fix a spin structure on Mh/τh
and lift everything from Mh/τh to Mh. We get that

μ(Mh/τh) ≡ η(PhDMh
) + η(PhBMh

)
25 × 7

− 1
28 × 7

∫
Mh

p1
(
TMh,∇TMh

)
∧ p̂1

(
TMh,∇TMh

)
mod Z, (3.3)

where Ph = 1
2 (1 + τh) is the canonical projection. Here τh denotes the lifted actions on

the corresponding vector bundles.
Indeed, recall that Mh is a fiber bundle over S4 with fiber S3. It is the boundary of

the unit disk bundle Nh over S4, while τh is the canonical involution which maps on
each fiber by mapping a point to its antipodal. This involution extends canonically to
an involution on Nh which we still denote by τh. Clearly, the fixed point set of τh on Nh

is S4, the image of the zero section of the disk bundle.
Let gTNh be a τh invariant Riemannian metric on TNh such that it restricts to gTMh

on ∂Nh = Mh and is of product structure near Mh (the existence of such a metric is
clear). Let ∇TNh be the associated Levi-Civita connection.
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By dimensional reason we see that we are in the situation of even type in the sense of
[1, Proposition 8.46]. Thus there exists a τh-equivariant spin structure on Nh, such that it
induces a τh-equivariant spin structure on Mh, which equals the one lifted from the spin
structure given on Mh/τh. In particular, τh lifts to an action on the associated spinor
bundle S(TNh) = S+(TNh) ⊕ S−(TNh) associated to (TNh, g

TNh), preserving the cor-
responding Z2-grading. It induces an action on S(TMh) = S+(TNh)|Mh

. Moreover, the
lifted τh action commutes with the Dirac operator DNh

: Γ (S(TNh)) → Γ (S(TNh)), and
thus also commutes with the induced Dirac operator DMh

: Γ (S(TMh)) → Γ (S(TMh)),
which in turn determines a Dirac operator on Mh/τh on which one can apply (3.2)
and (3.3).

Let DNh,+ : Γ (S+(TNh)) → Γ (S−(TNh)) be the natural restriction of DNh
. By the

Atiyah–Patodi–Singer index theorem [2] and its equivariant extension by Donnelly [7],
one finds

η(PhDMh
) ≡ 1

2

∫
Nh

Â
(
TNh,∇TNh

)
+ 1

2

∫
S4

A1 mod Z, (3.4)

where the mod Z term comes from the Atiyah–Patodi–Singer type index
indAPS(PhDNh,+), Â(TNh,∇TNh) is the Hirzebruch Â-form associated to ∇TNh (cf.
[17, Section 1.6.3]) and A1 is the canonical contribution on the fixed point set (which
by the local index theory is the same as the usual fixed point set contribution appearing
in the equivariant Atiyah–Singer index theorem for compact group actions on closed
manifolds).

Similarly,

η(PhBMh
) = 1

2

∫
Nh

L
(
TNh,∇TNh

)
+ 1

2

∫
S4

A2 −
1
2Sign(Nh) − 1

2Sign(Nh, τh), (3.5)

where L(TNh,∇TNh) is the Hirzebruch L-form associated to ∇TNh (cf. [17, Sec-
tion 1.6.3]), A2 is the canonical contribution on the fixed point set and Sign(Nh, τh)
is the notation for the equivariant Signature with respect to τh.

By a direct computation, one has

1
2

∫
Nh

Â
(
TNh,∇TNh

)
+ 1

26 × 7

( ∫
Nh

L
(
TNh,∇TNh

)
− Sign(Nh)

)

− 1
28 × 7

∫
Mh

p1
(
TMh,∇TMh

)
∧ p̂1

(
TMh,∇TMh

)
= p2

1(Nh)
28 × 7 − Sign(Nh)

26 × 7 . (3.6)

From (2.4) and (3.3)–(3.6), we find that

μ(Mh/τh) ≡ h(h− 1)
112 + 1

2

∫
A1 + 1

26 × 7

∫
A2 −

Sign(Nh, τh)
26 × 7 mod Z. (3.7)
S4 S4
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Now let Wh denote the normal bundle in Nh to the submanifold S4, the fixed point
set of τh. It is clear that τh acts on Wh by multiplication by −1.

By (2.2) and [13, p. 267], one finds
∫
S4

A1 = ± 1
32

∫
S4

p1(Wh) = ± (2h− 1)
16 . (3.8)

Similarly, by [13, p. 265] and (2.2), one has∫
S4

A2 =
∫
S4

e(Wh) = 1. (3.9)

On the other hand, since S4 is the fixed point set of τh, τh preserves x ∈ H4(S4;Z).
Thus one has

Sign(Nh, τh) = 1. (3.10)

From (3.7)–(3.10), one gets

μ(Mh/τh) ≡ h(h− 1)
112 ± 2h− 1

32 mod Z. (3.11)

We now claim that under the condition (1.1), (2.5) follows from (3.11).
Indeed, under the assumption (1.1), one has h ≡ 0, 1, 8, 49 mod 56Z. Thus we only need

to do the case by case checking as follows, where by “≡” we mean that the congruence
is mod Z.

(i) For h = 56k, then h(h−1)
112 ≡ k

2 , while 2h−1
32 ≡ − 1

32 + k
2 ;

(ii) For h = 56k + 1, then h(h−1)
112 ≡ k

2 , while 2h−1
32 ≡ 1

32 + k
2 ;

(iii) For h = 56k + 8, one has h(h−1)
112 ≡ 1

2 + k
2 , while 2h−1

32 ≡ − 1
32 + 1

2 + k
2 ;

(iv) For h = 56k + 49, one has h(h−1)
112 ≡ k

2 , while 2h−1
32 ≡ 1

32 + k
2 .

Combining (i)–(iv) with (3.11), we always have (2.5).
The proof of Theorem 2.1, as well as of Theorem 1.1 and Corollary 1.1 is complete.
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