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^-invariants and the Poincare-Hopf index formula 

Weiping Zhang* 

Abstract 

We present an analytic proof of the Poincare-Hopf index theorem. Our proof makes 
use of an old idea of Atiyah and works for the case where the isolated zeros of the vector 
field can be degenerate. 

Key words: Euler characteristic, elliptic boundary problem, spectral flow, ^-invariant. 
Math. Subject Classification: 58G10. 

0 Introduction 
Let M be an even dimensional oriented smooth closed manifold. Let V G T(TM) be a 
smooth tangent vector field on M. We assume that the singularity set 

B(V) := {x G M : V(x) = 0} 

consists of isolated points. Then for any x G B(V) one can define an integer degy(:r), which 
we call the degree of V at x, as follows: let Ux be a sufficiently small open neighborhood of 
x such that V is nowhere zero on Ux\ {x} and that the closure of Ux is diffeomorphic to 
the standard closed ball in the dim M dimensional Euclidean space, then V induces a map v 
from 8UX, which is diffeomorphic to the standard sphere 5 d i m M - 1 ( l ) , to SdimM-l(l) in the 
following manner: for any y G 8UX, V(y) may be viewed as a unit vector in the Euclidean 
space containing Ux, which determines the point v(y) on 5 d l m M _ 1 ( l ) . We define degy(x) to 
be the Brouwer degree of this induced map. 

Let x(-W) denote the Euler characteristic of M. 
The Poincare-Hopf index formula (cf. [6] Theorem 11.25) can be stated as follows. 

Theorem 1 The following identity holds: x ( ^ 0 = Y,xeB(v) deg^(x). 

In this paper, we present an analytic proof of this classical result by developing an old 
idea of Atiyah [1] on manifolds with boundary. In doing so, we reduce the problem to a 
calculation of variations of ^-invariants on the spheres around the zeros of V. The main 
point here is that we do not deform the vector field V to make its zeros nondegenerate. 
Thus in particular, our proof works for the case where V has degenerate zeros. This is 
different from the analytic proof proposed by Witten [10]. We hope that the ideas involved 
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in this proof may be useful in other situations; in particular we hope this will yield a deeper 
analytic understanding of some of the results in the paper of Atiyah-Dupont [2], where 
further generalizations of the Poincare-Hopf index formula have been studied extensively. 

Here is a brief outline of the paper. In Sections 1 and 2, we reduce our proof to compu-
tations of spectral flows of Dirac type operators on spheres around zeros of V. In Section 3, 
we compute these spectral flows via variations of ^-invariants. 

1 Splitting of the index 

1.1 An analytic interpretation of x(M) 
Let j b e a Riemannian metric on M. Let A"(T*M) denote the exterior algebra bundle of 
the cotangent bundle T*M. Let d* be the formal adjoint of the exterior differential operator 
d with respect to the standard L2 inner product on the space of smooth differential forms: 

n*(M) :=r(A*(T*M)). 

Let D denote the de Rham-Hodge operator defined by 

D = d + d' :fi*(M)-»fi'(M). 

Let De/o be the restriction of D to fieven/odd(M) respectively. Then De : «everl(M) -+ 
Qodd(M) is a first order elliptic differential operator whose formal adjoint is D0 : f2odd(M) —> 
J2even(M). Furthermore, by the Hodge decomposition theorem (cf. [9] Corollary III.5.6), one 
has 

X(M) = indDe. (1) 

1.2 de Rham-Hodge operator on manifolds with boundary 
We adopt the following notational conventions. We use the Riemannian metric g to identify 
the tangent bundle TM with the cotangent bundle T*M; if e e TM is a tangent vector, let 
e* £ T*M be the corresponding dual cotangent vector. Let ext and int denote exterior and 
interior multiplications respectively. Let c(e) and c(e) be the Clifford operators acting on 
A"(T*M) given by 

c(e) := ext(e') — int(e*) and c(e) := ext(e*) + int(e'). 

Choose S > 0 be small enough so that the balls 

Bs(x) :={yeM: d(x, y) < 6} for x G B(V) 

are disjoint. We choose the Riemannian metric to be flat on these balls; these balls are then 
isometric to the ball of radius 5 in Euclidean space. To simplify subsequent notation, we let 

B{x) := Bs/2(x). 

Let M be the closure of the complement of UX€B(V)B(X) in M: 

M := Closure{M \ \Jx&B{v)B{x)}. 
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We now study the elliptic boundary problems of the type of Atiyah-Patodi-Singer [3] for 
the de Rham-Hodge operator on M- The point here is that since we have assumed that the 
Riemannian metric g is flat on Ux€B(v)B(x), one has to deal with the situation where the 
metric near the boundary dM is not of product nature. For this, we will make use of the 
more refined analysis developed in the paper of Gilkey [8]. 

Let DM (resp. DMfi/0) be the restriction of D (resp. De/0) to M. 
Let e i , . . . ,edimM be an oriented orthonormal basis for TM and let VA*'T*M' be the 

canonical Euclidean connection on A*(T*M) lifted from the Levi-Civita connection V™ of 
g. Then one has that (cf. [8] (5.2)) 

d imM 

DM = Y, e(ei)V£*(r*M) : n*(M)|„ -> Q'[M)\M- (2) 
»=i 

Let 5 be the inward unit normal vector field on dM and let / i , . . •, /dimM-i be an oriented 
orthonormal basis of TdM. Let Ljk = (V™e*,n), 1 < j , k < dimM — 1, be the second 
fundamental form of the isometric embedding dM <-*• M. 

Following [8] Lemma 2.2, we define the tangential operators acting on Cleven/°d<i(M)\dM 
by 

dimM—1 -i dimM—1 

J W „ = -c(fi) E <Vi)v%(rM) + $ E L» (3) 

respectively. To be more precise, for any 1 < j < dim M — 1, set 

cUi) = -c(n)c(/J) : n°™t°M(M)\dM -> Sl™/°M(M)\aM (4) 

and 
_̂_ -1 dimM—1 

V ^ = V A - ( T - M ) £ L . t 5 ( A ) : n e v e n / o d d ( M ) | 8 A / ) ^ n e v e n / o d d ( M ) | a A < ( g ) 

Then one verifies the following analogue of [8] Lemma 2.2(d): 

dimM—1 
A>AW»= E ~c{h)Vij:U^laA\M)\aM^Q,^l°Ai{M)\aM. (6) 

i=i 

Let PaM,>o,e (resp. PS.M,>O,O! resp. PB.M,>O,O) be the orthogonal projection from the L2-
completion space of ( ^ ( A f ) ^ (resp. aoii{M)\aM, resp. QoM(M)\aM) to its sub-Hilbert 
space obtained from the orthogonal direct sum of nonnegative (resp. nonnegative, resp. 
positive) eigenspaces of DaMfi (resp. DaM,o, resp. I>a.M,o)-

Let (DaM,eio,PdM,>o,<!lo) (resp. (DaMfi,PaMt>0fi)) be the realizations of the operators 
AM,e/o (resp. DaMfi) with respect to the the Atiyah-Patodi-Singer type boundary conditions 
given by Pe.M,>o,e/o (resp. PaM,>o,o) respectively (cf. [3] and in particular [8]). These bound-
ary value problems are all elliptic. Moreover, (DaM,0, Pajw,>o,o) is adjoint to (DaMfi, PsAi,>o,e) 
([8] Theorem 2.3(a)). 

The above strategy can also be developed for each B(x), x € B(V), with similar notation. 
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1.3 A splitting formula for x(^0 
We state the main result of this section as follows. 

Proposition 2 We have that x(M) = ind(D/K]01Pavf,>o,e)-

Proof. By (3), one sees that on each 8B(x), x e B(V), one has 

DdM,e = -DdB(x),e-

We can then apply [8] Theorem 6.4(g), which generalizes the Atiyah-Patodi-Singer index 
theorem [3] to the case where the metric near the boundary is not of product nature, to M, 
M and B(x), x G B(V), to get 

mdDe = md{DMte,PgMiy0ie}+ Y, i n d (DB(x),e, PaB(x),>o,e) + JZ dim(kerL>aB(l)ie). (7) 
i€B(V) xeB(V) 

Now since each ball B(x), x € B(V), is a standard ball in an Euclidean space, one sees 
that the operators DB(x^e/0 are the standard Dirac operators twisted by a trivial vector 
bundle on B(x). In view of (6) and [8] Lemma 4.1, one then sees that the induced operators 
DdB(x),e/o on the boundary are the standard Dirac operators twisted by trivial vector bundles 
with trivial twisted connections.1 If dim M > 4, then the scalar curvature on each dB(x) 
is positive and one uses the Lichnerowicz formula to see that there are no harmonic spinors 
on dB(x). If dim M = 2, one computes directly that the 'bounding' spin structure is the 
Mobius spin structure and hence there are no harmonic spinors on the boundary. Thus the 
kernels of the boundary operators are trivial, i.e., for any x £ B(V), 

dim(ker DdB{x)fi/o) = 0. (8) 

On the other hand, by using Green's formula (cf. [8] (2.28)) as well as the fact that the 
metric on B(x) is flat, one deduces easily that for any s S fieven^odd(M)|B(a!), x £ B(V), one 
has 

e j . 1 /• dimM—1 
/ (De/0s, De/os)dvB^ = - (s, DdB(x)fij0s)dv9B{x) - - (s, JZ Lr 
JB(x) JdB(x) 6 JdB(x) , _ 1 

dimM r + E L (^:{T'M)s,^:{T'M)s)dvB(x), o) 
i=1 JB(x) 

where e\,..., edimM is an orthonormal basis of TB(x), and dvB(x) (resp. dvgB(x)) is the volume 
form on B(x) (resp. 8B{x)) induced by the Riemannian metric g. 

Now since the mean curvature — £d™ M _ 1 Ljj of the isometric embedding 8B(x) c-> B(x) 
is positive, one verifies directly from (9) that 

ind ( % ) , „ PdB(x),>o,e) = 0, for any x £ B(V). (10) 

The proposition now follows from equations (1), (7), (8) and (10).   
^ee Section 3.2 for a more detailed explanation. 



340 

Remark 3 It is important to note that the reason that i?ae(x),e/o are not equivalent to the 
de Rham-Hodge operators on dB(x) is due to the fact that here we are dealing with the 
Atiyah-Patodi-Singer type boundary problems in situations where one does not assume that 
the metric near the boundary is of product structure. 

Remark 4 One can also prove the splitting formula (7) alternatively without using the index 
theorem ([8] Theorem 6.4(g)) for manifolds with boundary. To this order, one deforms the 
Riemannian metric g near the hypersurface dM in M so that the metric near dM is of 
product nature. One also deforms the de Rham-Hodge operator on M to a Dirac type operator 
such that near dM, it is of product nature with the induced tangential operators on dM given 
by DgM,e/0- One then applies the splitting formula for this deformed Dirac type operator, 
which can be proved by using the Bojarski theorem (cf [5] Theorem 24-1), to get (7). We 
leave the detaib to the interested reader. 

2 Euler character is t ic and the spec t ra l flow 

2.1 Review of the definition of the spectral flow 
The concept of the spectral flow was introduced by Atiyah-Patodi-Singer in [4] for a curve 
of self-adjoint elliptic differential operators. 

Let D(u), 0 < u < 1, be a smooth curve of self-adjoint first order elliptic differential 
operators on a compact smooth manifold, then the spectral flow of the family {D(u)}o<u<i, 
denoted by sf{-D(«),0 < u < 1}, counts the net number of eigenvalues of D(u) which change 
sign when u varies from 0 to 1. 

We now assume that all D(u), 0 < u < 1, have the same principal symbol. 
Let Po,>o (resp. Pi,>o) be the orthogonal projection from the L2-completion space of the 

domain of D(0) (resp. D(l)) to its sub-Hilbert space obtained from the orthogonal direct 
sum of nonnegative eigenspaces of D(0) (resp. D(l)). Then the operator 

T(P0,>o, Pi,>o) = Po,>oPi,>o : Im(Pi,>0) -> Im(P0,>0) (11) 

is a Fredholm operator. Furthermore, by a result of Dai and Zhang [7] Theorem 1.4, one has 

sf{D{u), 0 < u < 1} = indT(P0i>0, Pi,>„). (12) 

2.2 Euler characteristic and the spectral flow 
We normalize V to assume that 

\V\g = l on M. 

Set _ 
DdM,e = c(V)DdMt0c(V) : ne™(M)\dM -> ne™(M)\dM 

From equations (3)-(6) and (13), one deduces that 
^^ dimM-l 
DdM,e = DaMte + C(V) £ c(/,-)c(V£MV). 

(13) 

(14) 
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We use this equation to see that the boundary problem (DM,e, c(V)PaM,>o,0c(V)) is elliptic. 
Moreover, as was already observed in [1] (2.2), the following operator is a 0th order operator: 

A(V) = DM,0 + c(V)DM,ec(V) : a°M(M) -► aoM(M). 

One uses equation (8) and [8] Theorem 2.3(a) to see that: 

ind {DMfi, c(V)PgM,>0iOc(V)) = ind (c(V)DMfic(V), PaM,>o,o) 
= ind {-DMja + A(V), P9M,>o,o) = ind (DMi0 - A(V), PaM,>o,o) 

= ind (DM,o, PaM,>o,o) = -ind (DMt<!, PaM,>o,e)- (15) 

Clearly, PdM,>o,e '■= c(V)PgM,>o,oC(V) is the orthogonal projection mapping from the 
L2-completion space of the domain of DgM,e to its sub-Hilbert space obtained from the 
orthogonal direct sum of nonnegative eigenspaces of DgM,e- Thus, from (15) and (11) one 
has 

ind {DMfi, PaM,>0,e) = r ( i n d (DM,e, PdM,>0,e) ~ ind (DM,e, PdM,>0,e)) 

= ^indT(P8^1?>0)e, PaM,>o,e), (16) 

where the last equality follows from the variation formula for Dirac type operators with 
global elliptic boundary condition (cf. [5] Proposition 2.14).2 

Now for any u 6 [0,1], set 

DdM,e(u) = (1 ~ u)DaMie + uDdMfi. (17) 

Then {DdMte(u)}0<u<i is a smooth curve of first order self-adjoint elliptic differential oper-
ators all having the same principal symbol. 

From Proposition 2, equations (12) and (16), one finds 

X(M) = -si{DaMie(u) : 0 < u < 1}. 

For 0 < u < 1, let -Dae(x),e(w) be the restrictions of -DaM>e(u) to each boundary sphere 
around x 6 B(V). As dM = — UieB dB(x), where one also takes account the orientations, 
one gets the following formula, which is the main result of this section, 

X{M) = - \ £ s f { D 9 B ( x ) » : 0 < u < 1}. (18) 
Z X€B(V) 

Remark 5 The deduction (15) has been inspired by an idea of Atiyah [1] which was used to 
show that the Euler characteristic of a closed manifold admitting a nowhere zero vector field 
is zero. 

2The book [5] only deals with the situation of product nature near the boundary. However, one can use 
deformations as was indicated in Remark 4 to reduce our problem to the case of product nature near the 
boundary. 



342 

3 A computation of the spectral flow 
In this section, we compute the spectral flows appearing in the right hand side of (18) through 
variations of ^-invariants. 

3.1 ^-invariants and spectral flow 
For any u € [0,1], following [3], let rj(DgB(x)Au)i s) be the ^-function of DgB{x)Au) defined 
for s e C with Re (s) > dim M + 1, 

v{DdB(x)Au)>s)= E -fTTT-
A€Spec(DaBW,«(u))\{0} lAl 

It can be extended to a meromorphic function on C which is holomorphic at s = 0 (cf. 
[4]). The value of rj{DgB(x),e{u)->s) at s = 0, denoted by 77(£>8B(x),e(u))> is the ^-invariant of 
DdB{x),e{v) in the sense of Atiyah, Patodi and Singer [3]. Let rj{DsB{x)Au)) be the reduced 
77-invariant of DgB(x)te(u), which was also defined in [3]: 

-ir> 1 \\ dim(keTD9B(x)Au))+v{DgB(x)Au)) 
V{L>aB(x)Au)) — 2 ' 

By (14) and (17), one sees that for any u £ [0,1], ^DgB^x)fi{u) is a bounded operator. 
By standard results for heat kernel asymptotics, one has the following asymptotic expansion 
as t -> 0+, 

n^DaB{x)Au) exP(-t(DaBW,e(«))2)] = ^ + ■ ■ • + °-0- + Off"), 

where k = dim M — 1 and C-k/2, • • • > C-1/2 are smooth functions of u € [0,1]. 
The following well-known result (cf. [11] Proposition 3.6) illustrates the relations between 

spectral flow and variations of reduced ^-invariants. 

Proposition 6 For any s e [0,1], one has 

sf{A>s(*),e("), 0 <u<s} = j -j^du + rj(DdB(x)As)) ~ ??(A)S(x),e(0)). 

Now, from (3), (13) and (17), one verifies that 

DSBWM) = c(V)D9Mt0c(V) = -c(n)c(V)D8A1,e(0)c(y)c(ri). 

Thus, one finds that 
rj{D9B{x)Al)) =5?(A)B(x),e(0)). (19) 

From Proposition 6 and equation (19), one gets 

sf{DBB{x)te(u), 0 < u < 1} = f1 ^jg-du. (20) 
J0 V7T 
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3.2 Evaluation of the spectral flow 
We compute in this subsection the right hand side of (20). 

As we have noted in the proof of Proposition 2, the operator DgB(x),e is the standard 
Dirac operator twisted by a trivial vector bundle. We first make this more precise. Let 

S(TB(x)) := S+(TB[x)) © S_(TB(x)) 

be the Z2-graded bundle of spinors over B(x) associated to g\B(x) (which is the standard 
Euclidean metric). We have 

Aeven(T*B(a;)) = S+(TB(x)) ® S+{TB(x)) © S„(TB{x)) ® S_(TB(x)), 
S°M{T'B{x)) = S+(TB{x)) ® S.(TB{x)) © S_(TB(z)) ® S+{TB{x)). 

In order to avoid confusion, we will use the symbol ' to indicate the twisted spinor bundles 
(That is, the second factors in the tensor products in the right hand sides of the above 
equations). Then one sees directly that S'±(TB(x)) are trivial vector bundles on which V™ 
lifts to the trivial flat connections. 

Let r denote the Z2-grading operator of the splitting 

S'(TB{x}) = S'+{TB{x)) © S'_(TB(x)), 

that is, T\S'±(TB(X)) = ±Id. Then one has 
dim M 

i A 2 

c(ei)---c(edimM). (21) 
-1 

From equation (6) and [8] Lemma 2.2, one gets the identification of differential operators 

-c(n)D8e(x)!ec(n) = rDgB^0 as maps from 
T(S+(TB(x)) ® S'_(TB(x)))\eB{x) to T(S+{TB{x)) ® S'_(TB(x)))\aB{x). (22) 

Now denote the canonical Dirac operator on dB(x) with twisted coefficient the trivial 
vector bundle S'(TB(x))\gB^ by 

DaB{x) : T(S+{TB(x)) ® S'(TB(x)))\aB{x) -> T(S+(TB(x)) ® S'(TB(x)))\aB{x). 

Set for any 0 < u < 1 that 

Aw<«)(«) = (1 - u)DaB[x) + uc(V)DaB{x)c(V). (23) 

From equations (6), (13), (17), (22), (23^and by proceeding as in [8] Sect. 3, one sees that 
the two families {DsB(i),e(«)}o<u<i and {T-DaB(x)(«)}o<t<<i are unitary equivalent. Thus, one 
has 

sl{DaB{xhe(u) : 0 < u < 1} = sf{rD8S(l)(u) : 0 < u < 1}. (24) 
Furthermore, one can apply [7] (4.41) to our special case, with g = c(V) acting on the trivial 
vector bundle S'(TB(x)), to get that (with n = dim M) 

(25) 
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where Trs is the notation of the supertrace of operators on S'(TB(x)) with respect to the 
Z2-grading operator r. 

Now by (21), one verifies that 

' M E c(V)c(VT
f>

MV)f;rk+l} = 0 if k* \ - 1, (26) 

J = l 

while 

Trs[(E e(v)5(v^y)/;)-1] = ^ r j ^ 1 * A ' ' " A ^ 
| B F* A (VlMV)' A • • • A ( V ^ V)", (27) 

where JB V A (V£MV)* A • • • A (VjJ^ V)* is the function on 3B(x) such that 

V*A(Vjl
MyrA---A(Vjn

M
in* = / 'A- - -A / :_ 1 A( -n r / B y*A(V™y)*A- - -A(V™V)* . 

(28) 
Let v : 9B(a;) —> 5" 1(1) denote the canonical map induced by Vlas^), let u be the 

volume form on Sn - 1( l) . Then by (28) one verifies directly that 

/* A • • • A fn-i f v A (vT
h
Mvy A • • • A (vi^vy = »*w. (29) 

From (20), (24)-(27) and (29), one deduces that 

rf{D«K,),(«), 0 < u < 1} = - - L ^ (2 _ i) ! t , .w. (30) 

On the other hand, since the volume of S"-1^) equals to 27r"/'2/(| —1)!, from the standard 
differential geometric interpretation of the Brouwer degree, one has 

( S - 1 V t 
2W 2 JaB(x) & v w 

which, together with (30), gives that 

sf{D88(*),e(u),0 < u < 1} = -2deSv(x). (31) 

The Poincare-Hopf index formula then follows from (18) and (31).   

A c k n o w l e d g e m e n t s The author is grateful to the referee for his critical reading and 
very helpful suggestions. 
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