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Abstract

We establish a generic counting formula for the Kervaire semi-characteristic of 4q#1 dimensional
manifolds. ( 2000 Elsevier Science Ltd. All rights reserved.
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0. Introduction

Let M be a 4q#1 dimensional smooth oriented closed manifold. The Kervaire semi-character-
istic k(M) of M is a mod 2 invariant de"ned by

k(M)"
2q
+
i/0

dimH2i(M;R) mod2. (0.1)

It admits an analytic interpretation in terms of the mod 2 index of Atiyah and Singer [3] (see also [1]).
In this paper, we will prove a topological counting formula for k(M). Our main result may be

viewed as a mod 2 analogue of the classical PoincareH }Hopf index formula which counts the Euler
characteristic of a manifold through singularities of vector "elds on that manifold.

To be more precise, let E be a codimension one orientable sub-bundle of the tangent vector
bundle ¹M, the existence of which is a consequence of the Hopf Theorem (cf. [8]) saying that there
always exist nowhere zero vector "elds on closed orientable manifolds with vanishing Euler
characteristic. Let X be a transversal section of E. Then the zero set of X, denoted by F, consists of
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2 In fact, formulas counting the Kervaire semi-characteristic through isolated singularities of vector "elds have been
studied extensively by Atiyah and Dupont [2].

a "nite number of circles F
1
,2,F

p
on M. Over each of these circles, one can associate canonically

a line bundle through the behavior of X around the circle (See the main text for more details). Let
F
o
denote the subset of F consisting of those circles over each of which the associated line bundle is

orientable.
The counting formula mentioned above can be stated as follows:

k(M),A Mi DF
i
LF

o
N mod2. (0.2)

Identity (0.2) formally looks very much like the PoincareH }Hopf formula. However, one notable
di!erence is that while the PoincareH }Hopf formula counts the number of isolated points, here one
counts the number of circles.2

While the formulation of (0.2) is purely topological, our proof of it is analytic. We "rst construct
as in [11] a real skew-adjoint "rst-order elliptic di!erential operator whose mod 2 index provides
an alternative analytic interpretation of k(M). We then use the transversal section X to deform this
skew-adjoint operator in a way similar to what Witten [10] used in his analytic approach to the
PoincareH }Hopf formula. By applying the localization techniques developed in the paper of Bismut
and Lebeau [4] to these deformed operators, one gets (0.2).

In fact, the above strategy applies to any orientable closed manifold with vanishing Euler
characteristic (see Section 3 for more details). The remarkable fact is that, as was proved in [11],
these mod 2 invariants actually equal to the Kervaire semi-characteristic in dimensions of form
4q#1. This gives rise to the intrinsic formula (0.2).

This paper is organized as follows. In Section 1, we present an analytic interpretation of the
Kervaire semi-characteristic in dimension 4q#1 and state the main result of this paper. In Section
2, we introduce the deformation mentioned above and prove the main result stated in Section 1.
The "nal Section 3 contains a brief discussion of extensions of the main result in arbitrary
dimensions. There is also an appendix in which we present, for the sake of self-completeness of this
paper, somewhat more details of the analysis described in Section 2 when one needs to apply the
techniques of Bismut and Lebeau [4] to prove the main result stated in Section 1.

1. The Kervaire semi-characteristic in dimension 4q#1: a counting formula

This section is organized as follows. In Section 1.1 we recall from Zhang [11] an analytic
interpretation of the Kervaire semi-characteristic in dimension 4q#1. In Section 1.2 we state the
main result of this paper, which gives a counting formula for the Kervaire semi-characteristic in
dimension 4q#1.

1.1. An analytic interpretation of the Kervaire semi-characteristic in dimension 4q#1

Let M be a 4q#1 dimensional smooth oriented closed manifold. Let gTM be a Riemannian
metric on M whose associated Levi}Civita connection will be denoted by +TM. For any e3¹M, let
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eH3¹HM corresponds to e via gTM. Let c(e), c( (e) be the Cli!ord operators acting on the exterior
algebra bundle 'H(¹HM) given by

c(e)"eH'!i
e
, c( (e)"eH'#i

e
, (1.1)

where eH' and i
e
are the standard notation for exterior and inner multiplications. If e, e@3¹M, one

has

c(e)c(e@)#c(e@)c(e)"!2Se, e@T,

c( (e)c( (e@)#c( (e@)c( (e)"2Se, e@T,

c(e)c( (e@)#c( (e@)c(e)"0. (1.2)

Also, gTM de"nes canonically an Euclidean inner product on C('H(¹HM)). Let d"dH be the
formal adjoint of the exterior di!erential operator d with respect to this inner product.

Now let < be a smooth nowhere zero vector "eld on M. The existence of < follows from
a theorem of Hopf (cf. [8]) saying that there always exist nowhere zero vector "elds on closed
orientable manifolds with vanishing Euler characteristic. Without loss of generality, we can and we
will assume that

D<D2
g
TM"1. (1.3)

De5nition 1.1 (Zhang [11, De"nition 2.1]). The operator D
V

is the operator acting on
C('%7%/(¹HM)) de"ned by

D
V
"1

2
(c( (<)(d#d)!(d#d)c( (<)). (1.4)

By (1.2), one veri"es that D
V

is a real skew-adjoint elliptic "rst-order di!erential operator.
Furthermore, if e

0
,e
1
,2,e

4q
is an oriented orthonormal base of ¹M, then one has the following

formula proved in [11, (2.4)]:

D
V
"c( (<)(d#d)!

1
2

4q
+
i/0

c(e
i
)c( (+TM

ei
<). (1.5)

Let

ind
2
D

V
"dim (kerD

V
) mod 2 (1.6)

be the mod 2 index of D
V

in the sense of Atiyah and Singer [3]. The following result, which was
proved in [11], gives an analytic interpretation of the Kervaire semi-characteristic k(M) of M.

Theorem 1.2 (Zhang [11, Theorem 2.5]). The following identity holds:

ind
2
D

V
"k(M). (1.7)

Proof. We outline the proof of (1.7) for the completeness of this paper. Let D
R

be the elliptic
di!erential operator de"ned by

D
R
"c( (e

0
)2c( (e

4q
)(d#d): C('%7%/(¹HM))PC('%7%/(¹HM)). (1.8)
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3 In fact, let f denote a unit tangent vector "eld of F. Then since dim E is of codimension one, one veri"es easily from the
transversality assumption that S<D

F
, f T is nowhere zero on F. One can then deform< easily through nowhere zero vector

"elds to a nowhere zero vector "eld <@, which is still transversal to E, such that <@D
F
"sign(S<D

F
, f T) f. One can then start

with <@ and, by the homotopy invariance of the mod 2 index [3], this does not a!ect the "nal result.

Then one veri"es easily (cf. [3]) that D
R

is real skew-adjoint with

dim (ker D
R
),k(M) mod2. (1.9)

On the other hand, one veri"es directly that the elliptic operator

D@
R
"D

R
!

1
2
c( (<)c( (e

0
)2c( (e

4q
)
4q
+
i/0

c(e
i
)c( (+TM

ei
<) (1.10)

is also skew-adjoint.
Formula (1.7) then follows from (1.5), (1.6) and (1.8)}(1.10), as well as the homotopy invariance

property of the mod 2 index [3]. h

Theorem 1.2 will play an essential role in our proof of the main result of this paper to be stated in
the next subsection.

1.2. A counting formula for the Kervaire semi-characteristic in dimension 4q#1

Let M be as in Section 1.1 and c
V

denote the oriented line bundle generated and oriented by <.
Let E be an orientable codimension one sub-bundle of ¹M. Without loss of generality, we may
take E to be the orthogonal complement to c

V
in ¹M. Then E carries an induced orientation from

those of ¹M and c
V
. Let gE be the metric on E induced from gTM.

Let X be a transversal section of E. Let F be the zero set of X. Then F consists of a union of
disjoint circles F

1
,2, F

p
. Let i : F6M denote the obvious embedding. Without loss of generality,

one may well assume that <D
F

is tangent to F and that iHE is the normal bundle to F in M.3
For any x3F, let e

0
"<, e

1
,2, e

4q
be an oriented orthonormal base near x, and let y

0
,2, y

4q
be

the normal coordinate system near x associated to e
0
(x),2, e

4q
(x). Then near x, X can be written as

X"

4q
+
i/1

f
i
(y)e

i
. (1.11)

By the transversality of X, one sees that the following endomorphism of E
x

is invertible:

C(x)"Mc
ij
(x)N

1xi,jx4q
with c

ij
(x)"

Lf
i

Ly
j

(0), (1.12)

where the matrix is with respect to the base e
1
(x),2, e

4q
(x).

Let CH(x) be the adjoint of C(x) with respect to gED
Ex

and DC(x)D"JCH(x)C(x). Let K(x) be the
endomorphism of 'H(EH

x
) de"ned by

K(x)"Tr[DC(x)D]#
4q
+

i,j/1

c
ij
(x)c(e

j
(x))c( (e

i
(x)). (1.13)
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One veri"es easily that K(x) does not depend on the choice of the base e
1
(x),2, e

4q
(x). Thus it

de"nes an endomorphism K of the exterior algebra bundle 'H(EH)D
F

over F.
Now by [7, Proposition 2.21], one deduces easily that kerK forms a real line bundle o

F
(X) over

F. Clearly, the orientability of o
F
(X) does not depend on the metric gTM.

For any connected component F
i
of F, denote by o

Fi
(X) the restriction of o

F
(X) on F

i
. We can

now state the main result of this paper as follows.

Theorem 1.3. The following identity holds:

k(M),A Mi D o
Fi
(X) is orientable over F

i
N mod2. (1.14)

As an immediate consequence, if X has no zero, then one gets the following special case of
a theorem of Atiyah [1, Theorem 1.2].

Corollary 1.4. If there exist two linearly independent vector xelds on M, then k(M)"0.

Remark 1.5. The formulation of (1.14) has been inspired by a result of Gompf described in the
ICM-98 talk of Taubes [9, Section 5].

Theorem 1.3 will be proved in the next section by an analytic method.

2. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 by using the analytic interpretation of k(M) given in
Theorem 1.2. To do so, we introduce a deformation of the operator D

V
and then apply the

techniques of Bismut and Lebeau [4, Sections 8, 9] to the deformed operators. The algebraic result
proved in [7, Proposition 2.21] also plays an important role in the proof.

This section is organized as follows. In Section 2.1, we introduce the deformation mentioned
above. In Section 2.2 we apply the techniques in [4] to complete the proof of Theorem 1.3.

2.1. A deformation of the skew-adjoint operator D
V

We continue the discussions in Section 1. Recall that X is a transversal section of E and the
skew-adjoint operator D

V
is de"ned by (1.4). We "rst introduce the following deformation of D

V
.

De5nition 2.1. For any ¹3R, let D
V,T

be the operator de"ned by

D
V,T

"D
V
#¹c( (<)c( (X) : C('%7%/(¹HM))PC('%7%/(¹HM)). (2.1)

As X is perpendicular to <, by (1.2) one veri"es that D
V,T

is also skew-adjoint. Thus, by the
homotopy invariance of the mod 2 index [3], one has that for any ¹3R,

dim(kerD
V,T

),dim(kerD
V
) mod 2. (2.2)

We now prove a Bochner-type formula for !D2
V,T

.
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Let e
0
, e

1
,2,e

4q
be an oriented orthonormal base of ¹M. From (1.2), (1.5) and (2.1), one "nds

D
V,T

"c( (<)Ad#d!
1
2

c( (<)
4q
+
i/0

c(e
i
)c( (+TM

ei
<)#¹c( (X)B. (2.3)

From (1.2) and (2.3), one deduces that

!D2
V,T

"Ad#d!
1
2
c( (<)

4q
+
i/0

c(e
i
)c( (+TM

ei
<)#¹c( (X)B

2

"!D2
V
#¹[d#d, c( (X)]!¹

4q
+
i/0

S+TM
ei

X,<Tc(e
i
)c( (<)#¹2DXD2. (2.4)

On the other hand, one has standardly that

d#d"
4q
+
i/0

c(e
i
)+\

H(TH
M)

ei
, (2.5)

where +\
H(TH

M) is the canonical lift of +TM to 'H(¹HM).
From (1.2), (2.4) and (2.5), one gets the following Bochner-type formula which will play an

important role in the next subsection:

!D2
V,T

"!D2
V
#¹

4q
+
i/0

(c(e
i
)c( (+TM

ei
X)!S+TM

ei
X,<Tc(e

i
)c( (<))#¹2DXD2. (2.6)

2.2. Proof of Theorem 1.3

We "rst prove a simple estimate which enables us to localize the problem to arbitrarily small
neighborhoods of the zero set F.

Proposition 2.2. For any open neighborhood ; of F, there exist constants C@'0, b'0 such that for
any ¹*1 and any s3C('%7%/(¹HM)) with Supp sLMC;, one has the following estimate of Sobolev
norms:

DDD
V,T

sDD2
0
*C@(DDsDD2

1
#(¹!b)DDsDD2

0
). (2.7)

Proof. Since MC; is compact and X is nowhere zero on MC;, Proposition 2.2 follows trivially
from the Bochner-type formula (2.6). h

By Proposition 2.2, we need only to concentrate on the analysis near F. By this we follow closely
the arguments in [4, Sections 8, 9]. In particular, we will take the advantage of the topological
nature of the problem to simplify the analysis greatly.

The main observation is that since the normal bundle iHE to F is oriented and F consists of
a union of circles, iHE is actually a trivial bundle over F. Thus a su$ciently small neighborhood of
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F should be of the form F]R4q. Furthermore, one can choose the metric gTM such that near F it is
of the product form

gTM"gTF=gTR4q, (2.8)

with each restriction gTFi"gTF D
Fi

comes from the standard metric on the circle S1 while gTR4q comes
from the standard Euclidean metric.

Thus one can "x a covariantly constant oriented Euclidean base e
1
,2, e

4q
of iHE such that

e
0
"<,e

1
,2, e

4q
forms an oriented orthonormal base of iH(¹M). Let y

1
,2, y

4q
be the standard

Euclidean coordinates associated to e
1
,2,e

4q
. Clearly, any point su$ciently closed to F can be

represented uniquely by (x, y)"(x,y
1
,2, y

4q
) with x3F. In particular, the vector "eld X can be

written, near F, as

X(x,y)"
4q
+
i/1

f
i
(x, y)e

i
with each f

i
(x, 0),0. (2.9)

The transversal condition of X takes the same form as in (1.12), with the matrices

C(x)"Mc
ij
(x)N

1xi,jx4q
with c

ij
(x)"

Lf
i

Ly
j

(x,0) (2.10)

being invertible for all x3F. When there is no confusion we denote by C"Mc
ij
N
1xi,jx4q

the

endomorphism over F obtained from C(x)"Mc
ij
(x)N

1xi,jx4q
, x3F. Let DCD"JCHC be de"ned as

in Section 1.1.
With all of the above simpli"cations, one deduces easily that near F, one has the following very

simple form of the Bochner-type formula (2.6):

!D2
V,T

"!

4q
+
i/0

+2
ei
#¹A

4q
+

i,j/1

c
ij
c(e

j
)c( (e

i
)#O(DyD)B#¹2 (SDCDy,DCDyT#O( Dy D3)). (2.11)

Now for any x3F, by [7, Proposition 2.21] one knows that the operator

K(x)"Tr[DC(x)D]#
4q
+

i,j/1

c
ij
(x)c(e

j
)c( (e

i
) : 'H(EH

x
)P'H(EH

x
) (2.12)

is nonnegative with dim(kerK(x))"1. Furthermore, one has

kerK(x)L'%7%/(EH
x
) if detC(x)'0 (2.13)

and

kerK(x)L'0$$(EH
x
) if detC(x)(0. (2.13@)

For any x3F, we "x an element o(x) of unit length in kerK(x).
On the other hand, for any ¹'0, one veri"es easily that on each "ber E

x
, the operator

!+4q
i/1

+2
ei
!¹Tr[DCD]#¹2SDCDy, DCDyT acting on C=(E

x
) is a (rescaled) harmonic oscillator

whose kernel is one dimensional and is generated by exp (!¹SDCDy, DCDyT/2).
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4See Appendix A for a more detailed discussion.

To summarize, one has the following result (compare with [7, Corollary 2.22]) which will play
the same role as [4, Theorem 7.4] played in [4, Section 9].

Lemma 2.3. Take ¹'0. Then for any x3F, as an operator acting on C('H(EH
x
)) over E

x
,

!+4q
i/1

+2
ei
#¹+4q

i,j/1
c
ij
c(e

j
)c( (e

i
)#¹2SDCDy, DCDyT is nonnegative with the kernel being of one dimen-

sion and generated by exp (!¹SDCDy, DCDyT/2)o(x) with o(x)L'%7%/(EH
x
) if detC(x)'0 and

o(x)L'0$$(EH
x
) if detC(x)(0. Furthermore, the nonzero eigenvalues of it are all *¹A for some

positive constant A which can be chosen not depending on x.

Now let o
F
(X)L'H(EHD

F
) denote the line bundle formed by kerK(x), x3F. Then

'H(¹HF)?o
F
(X) is a sub-bundle of 'H(¹HM)D

F
. Let p denote the canonical orthogonal projection

mapping from C('H(¹HM)D
F
) onto C('H(¹HF)?o

F
(X)). Let DF"dF#dF be the de Rham}Hodge

operator acting on C('H(¹HF)?o
F
(X)).

Set

DH"
4q
+
i/0

c(e
i
)(iH+\

H(TH
M))(e

i
). (2.14)

From (2.14) and our simpli"ed assumptions near F, one gets easily the following result, which is
the analogue of [4, (8.93)].

Proposition 2.4. The following identity for diwerential operators acting on C('(1~4'/ $%5(C))@2(¹HF)
?o

F
(X)), where we use the standard notation that sgn det(C)"1 if det(C)'0 and sgn det(C)"!1

if det(C)(0, holds,

pc( (<)DHp"c( (<)DF. (2.15)

Proof of Theorem 1.3. One "rst veri"es that

!(c( (<)DF)2"DF,2. (2.16)

Let c
0
'0 be such that the operator DF,2 acting on C('(1~4'/ $%5(C))@2(¹HF)?o

F
(X)) contains no

eigenvalues in (0, 2c
0
).

By Propositions 2.2, 2.4, Lemma 2.3 and (2.16), one can proceed as in [4, Section 9] to prove the
following analogue of [4, (9.156)].4 That is, there exists ¹

0
'0 such that for any ¹*¹

0
,

AMj : j3Sp(!D2
V,T

), j)c
0
N"dim(kerDF,2). (2.17)

From (2.2), (2.17), Theorem 1.2, the skew-adjointness of D
V,T

as well as the Hodge theorem for
DF, one gets

k(M),dimH(1~4'/ $%5(C))@2(F; o
F
(X)) mod2. (2.18)
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Now as each connected component F
i
of F is a circle, it is clear that if o

Fi
(X) is orientable over F

i
,

then dimH(1~4'/ $%5(C))@2(F
i
;o

Fi
(X))"1; while if o

Fi
(X) is nonorientable over F

i
, then

dimH(1~4'/ $%5(C))@2(F
i
; o

Fi
(X))"0.

Theorem 1.3 follows from (2.18) and the above discussion. h

3. Applications and extensions

Let M be a 4q#1-dimensional smooth closed oriented manifold. Let k
2
(M) be the Z

2
-Kervaire

semi-characteristic de"ned by

k
2
(M)"

2q
+
i/0

dimH2i(M;Z
2
) mod2. (3.1)

By a result of Lusztig et al. [6], one knows that

k(M)!k
2
(M)"Sw

2
(¹M)w

4q~1
(¹M), [M]T, (3.2)

where w
i
is the ith Stiefel}Whitney class of ¹M.

Since w
2
(¹M)"0 if M is spin, one gets from (3.2) and Theorem 1.3 the following consequence

(compare also with the Remark in [1, pp. 16]).

Theorem 3.1. Under the same condition as in Theorem 1.3, if M is also a spin manifold, then

k
2
(M),AMi D o

Fi
(X) is orientable over F

i
N mod2. (3.3)

We now drop the condition that dimM"4q#1 and let M be a smooth closed oriented
manifold with vanishing Euler characteristic. Let < be a nowhere zero vector "eld on M whose
existence is given by the theorem of Hopf mentioned in Section 1.1. Then one can de"ne as in
Section 1.1 the operator D

V
as well as the associated mod 2 index

a(<)"ind
2
D

V
,dim(kerD

V
) mod 2. (3.4)

We now state the following result which extends Theorem 1.2 to all dimensions.

Theorem 3.2. (i) If dimM"4q#2 or 4q#3, then a(<)"0; (ii) if dim M"4q, then

a(<)"
sign(M)

2
mod 2, (3.5)

where sign(M) is the signature of M.

Proof. (i) Let e
1
,2,e

$*.M~1
be an oriented orthonormal base of E, the orthogonal complement to

the line bundle c
V

generated by < in ¹M. Set

c( (E)"
$*.M~1

<
i/1

c( (e
i
). (3.6)
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From (1.2)}(1.4), one veri"es that when dim M"4q#3, then

D
V
c( (E)"c( (E)D

V
, c( (E)2"!1 (3.7)

and that when dimM"4q#2, then

D
V
c( (<)c( (E)"!c( (<)c( (E)D

V
, (c( (<)c( (E))2"!1. (3.8)

From (3.7) and (3.8) one sees that when dimM"4q#2 or 4q#3, ker(D
V
) admits a complex

structure and is hence of even dimension.
(ii) Now we assume dimM"4q. Set

c(¹M)"c(<)
$*.M~1

<
i/1

c(e
i
). (3.9)

From (1.2) and (1.3) one veri"es that

c(¹M)2"1. (3.10)

Set

'
B

(¹HM)"Ms3'H(¹HM): (!1)qc(¹M)s"$sN. (3.11)

One veri"es easily that c( (<) induces an isomorphism

c( (<) : C('0$$(¹HM))WC('
~

(¹HM))PC('%7%/(¹HM))WC('
~

(¹HM)). (3.12)

On the other hand, from (1.2)}(1.5) one deduces the following identity of operators acting on
C('H(¹HM)):

c( (<)(c( (<)(d#d)!(d#d)c( (<))"!(c( (<)(d#d)!(d#d)c( (<))c( (<)

"2(d#d)!c( (<)
4q
+
i/0

c(e
i
)c( (+TM

ei
<). (3.13)

From (3.11)}(3.13) and the de"nition of the signature operator (cf. [5, Example 6.2]), one deduces
that

dim(kerD
V
)"dim(kerD

V
DC(\%7%/(TH

M)) WC(\`(TH
M))

)

#dim(kerD
V
DC(\%7%/(TH

M)) WC(\~(TH
M))

)

,dim(kerD
V
DC(\%7%/(TH

M)) WC(\`(TH
M))

)

!dim(ker (D
V
c( (<))DC(\0$$(TH

M)) WC(\~(TH
M))

) mod2

"ind [d#d!c( (<)(d#d)c( (<) : C('%7%/(¹HM))WC('
`

(¹HM))

PC('0$$(¹HM))WC('
~
(¹HM))]

"ind [d#d : C('%7%/(¹HM))WC('
`

(¹HM))

PC('0$$(¹HM))WC('
~
(¹HM))]

"1
2
(e(M)#sign(M)). (3.14)
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From (3.14) and the assumption that e(M)"0, one gets (3.5).
The proof of Theorem 3.2 is completed. h

Now let X be a transversal section of E. Let F be the zero set of X which consists of a union of
disjoint circles F

i
's. Let o

F
(X) be the line bundle over F de"ned in a similar way as the one de"ned in

Section 1.2 for the 4q#1 dimensional case. Let o
Fi
(X) be the restriction of o

F
(X) on the component

F
i
. From Theorem 3.2 and by proceeding similarly as in Section 2.2, one gets easily the following

result which is the analogue of Theorem 1.3 in other dimensions (compare with [2, Theorem 1.1]).

Theorem 3.3. (i) If dimM"4q#2 or 4q#3, then

A Mi D o
Fi
(X) is orientable over F

i
N,0 mod2, (3.15)

(ii) if dim M"4q, then

A Mi D o
Fi
(X) is orientable over F

i
N,

sign(M)
2

mod 2. (3.16)

Appendix A. Some estimates needed for the proof of Theorem 1.3

The purpose of this appendix is to provide a more detailed version of the proof of (2.17). We will
follow closely [4, Sections 8, 9].

For any k*0, let Hk(M), Hk(F) be the kth Sobolev spaces of sections of the bundles '%7%/(¹HM),
'(1~4'/ $%5(C))@2(¹HF)?o

F
(X), respectively. We use the standard ¸2-norm for 0th Sobolev norm.

Let e
0
'0 be su$ciently small so that over the tubular neighborhood B

2e0(F)"
M(x,y) Dx3F, DyD)2e

0
N of F, one has the product metric of form (2.8) and that the restricted tubular

neighborhoods around the connected components of F do not intersect with each other. Without
confusion, we identify B

2e0(F) with the corresponding disc bundle in the normal bundle iHE.
Let c :RP[0, 1] be a smooth function such that c(a)"1 if a)1

2
and that c(a)"0 if a*1. Let

0(e(2e
0

which will be further "xed later. If (x, y)3ED
F
, set ce(x,y)"c(DyD/e).

For ¹'0, x3F, set

a
T
(x)"P

Ex

exp(!¹SDCDy, DCDyT)c2e (x, y)Ddet(C)Ddv
Ex

(y). (A.1)

For any k*0, ¹'0, let J
T

:Hk(F)PHk(M) be the linear map de"ned by

u3Hk(F)C (a
T
)~1@2ce(x, y)JdetDCD expA!

¹SDCDy, DCDyT
2 Bu(x)3Hk(M). (A.2)

By the de"nition of ce, the map J
T

is well de"ned.
For k*0, ¹'0, let Hk

T
(M) be the image of Hk(F) in Hk(M) by J

T
. Let H0,M

T
(M) be the

orthogonal space to H0
T
(M) in H0(M), let p

T
, pM

T
be the orthogonal projection from H0(M) to

H0
T

(M), H0,M
T

(M), respectively. Set Hk,M
T

(M)"Hk(M)WH0,M
T

(M). Clearly, J
T

maps H0(F) onto
H0

T
(M) isometrically.
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Following [4, Section 9b], we now write D
V,T

as a (2, 2) matrix and prove the corresponding
estimates for them.

For any ¹3R, set

D
V,T,1

"p
T
D

V,T
p
T
, D

V,T,2
"p

T
D

V,T
pM
T
,

D
V,T,3

"pM
T
D

V,T
p
T
, D

V,T,4
"pM

T
D

V,T
pM
T
.

(A.3)

We now state the following result which consists of the analogues of [4, Theorems 9.8, 9.10 and
9.14] in our situation.

Proposition A.1. 1. As ¹P#R, the following formula for operators acting on C('(1~4'/ $%5(C))@2
(¹HF)?o

F
(X)) holds:

J~1
T

D
V,T,1

J
T
"c( (<)DF#OA

1

J¹B. (A.4)

2. There exists C
1
'0 such that for any ¹*1, s3H1,M

T
(M), s@3H1

T
(M), we have

DDD
V,T,2

sDD
0
)C

1A
DDsDD

1
J¹

#DDsDD
0B, (A.5)

DDD
V,T,3

s@DD
0
)C

1A
DDs@DD

1
J¹

#DDs@DD
0B. (A.6)

3. There exists e3(0, e
0
], ¹

0
'0, C

2
'0 such that for any ¹*¹

0
, s3H1,M

T
(M), we have

DDD
V,T,4

sDD
0
*C

2
(DDsDD

1
#J¹DDsDD

0
). (A.7)

Proof. Proposition (A.1) can be proved in the same way as [4, Theorems 9.8, 9.10 and 9.14] were
proved in [4, Section 9b]. As the situation here is much simpler, we outline the main steps.

First of all, by (2.3), (2.5) and the simpli"ed geometric assumptions made in this subsection, one
has the following formula for D

V,T
near F,

D
V,T

"c( (<)c(<)+
V
#c( (<)

4q
+
i/1

c(e
i
)+

ei
#¹

4q
+

i,j/1

c
ij
y
j
c( (<)c( (e

i
)#O(DyD)#¹O ( Dy D2 ), (A.8)

which is the analogue of [4, (8.58)].
Now one veri"es directly that

!Ac( (<)
4q
+
i/1

c(e
i
)+

ei
#¹c( (<)

4q
+

i,j/1

c
ij
y
j
c( (e

i
)B

2

"!

4q
+
i/1

+2
ei
#¹

4q
+

i,j/1

c
ij
c(e

j
)c( (e

i
)#¹2SDCDy, DCDyT (A.9)

which is exactly the operator dealt with in Lemma 2.3.
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On the other hand, by (2.15) one veri"es easily that

J~1
T

p
T
c( (<)c(<)+

V
p
T
J
T
"c( (<)DF. (A.10)

From (A.8)}(A.10) and Lemma 2.3, one can proceed easily as in [4, pp. 104}108] to get Parts 1,
2 of Proposition A.1.

Similarly, by using (A.8)}(A.10) and Lemma 2.3, one can proceed as in [4, pp. 109}114], in
a much simpler form, to "nd e3(0,3e

0
/2), C

3
'0, b'0 such that for any ¹*1, any s3H1,M

T
(M)

with Supp sLBe(F), one has

DDD
V,T

sDD2
0
*C

3
(DDsDD2

1
#(¹!b)DDsDD2

0
) (A.11)

which together with Proposition 2.2 and the gluing arguments in [4, pp. 115}116] give the
following

Proposition A.2. There exist e3(0, e
0
], C

4
'0, b@'0 such that for any ¹*1, any s3H1,M

T
(M), then

DDD
V,T

sDD2
0
*C

4
(DDsDD2

1
#(¹!b@)DDsDD2

0
). (A.12)

Part 3 of Proposition A.1 follows easily from Proposition A.2 as well as the proved Part 2 of
Proposition A.1. h

With Proposition A.1 in hand, one can then proceed as in [4, pp. 117}125] to complete the proof
of (2.17) easily. h
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