
ASIAN J. MATH. c© 2000 International Press
Vol. 4, No. 4, pp. 933–960, December 2000 012

SPINC MANIFOLDS AND RIGIDITY THEOREMS IN K-THEORY∗

KEFENG LIU† , XIAONAN MA‡ , AND WEIPING ZHANG§

Abstract. We extend our family rigidity and vanishing theorems in [LiuMaZ] to the Spinc case.
In particular, we prove a K-theory version of the main results of [H], [Liu1, Theorem B] for a family
of almost complex manifolds.

0. Introduction. Let M, B be two compact smooth manifolds, and π : M → B
be a smooth fibration with compact fibre X. Let TX be the relative tangent bundle.
Assume that a compact Lie group G acts fiberwise on M , that is, the action preserves
each fiber of π. Let P be a family of G-equivariant elliptic operators along the fiber
X. Then the family index of P , Ind(P ), is a well-defined element in K(B) (cf. [AS])
and is a virtual G-representation (cf. [LiuMa1]). We denote by (Ind(P ))G ∈ K(B)
the G-invariant part of Ind(P ).

A family of elliptic operator P is said to be rigid on the equivariant Chern
character level with respect to this G-action, if the equivariant Chern character
chg(Ind(P )) ∈ H∗(B) is independent of g ∈ G. If chg(Ind(P )) is identically zero
for any g, then we say P has vanishing property on the equivariant Chern character
level. More generally, we say that P is rigid on the equivariant K-theory level, if
Ind(P ) = (Ind(P ))G. If this index is identically zero in KG(B), then we say that P
has vanishing property on the equivariant K-theory level. To study rigidity and van-
ishing, we only need to restrict to the case where G = S1. From now on we assume
G = S1.

As was remarked in [LiuMaZ], the rigidity and vanishing properties on the K-
theory level are more subtle than that on the Chern character level. The reason is
that the Chern character can kill the torsion elements involved in the index bundle.

In [LiuMaZ], we proved several rigidity and vanishing theorems on the equivariant
K-theory level for elliptic genera. In this paper, we apply the method in [LiuMaZ]
to prove rigidity and vanishing theorems on the equivariant K-theory level for Spinc

manifolds, as well as for almost complex manifolds. To prove the main results of this
paper, to be stated in Section 2.1, we will introduce some shift operators on certain
vector bundles over the fixed point set of the circle action, and compare the index
bundles after the shift operation. Then we get a recursive relation of these index
bundles which will in turn lead us to the final result (cf. [LiuMaZ]).

Let us state some of our main results in this paper more explicitly. As was
remarked in [LiuMaZ], our method is inspired by the ideas of Taubes [T] and Bott-
Taubes [BT].

For a complex (resp. real) vector bundle E over M , let

Symt(E) = 1 + tE + t2Sym2E + · · · ,
Λt(E) = 1 + tE + t2Λ2E + · · ·(0.1)
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be the symmetric and exterior power operations of E (resp. E ⊗R C) in K(M)[[t]]
respectively.

We assume that TX has an S1-invariant almost complex structure J . Then we
can construct canonically the Spinc Dirac operator DX on Λ∗(T (0,1)∗X) along the
fiber X. Let W be an S1-equivariant complex vector bundle over M . We denote by
KW = det W and KX = det(T (1,0)X) the determinant line bundles of W and T (1,0)X
respectively. Let

Q1(W ) = ⊗∞n=0Λ−qn(W )⊗⊗∞
n=1 Λ−qn(W ).(0.2)

For N ∈ N, N ≥ 2, let y = e2πi/N ∈ C. Let Gy be the multiplicative group generated
by y. Following Witten [W], we consider the fiberwise action Gy on W and W by
sending y ∈ Gy to y on W and y−1 on W . Then Gy acts naturally on Q1(W ). We
define Q1(T (1,0)X) and the action Gy on it in the above way.

The following theorem generalizes the result in [H] to the family case.

Theorem 0.1. Assume c1(T (1,0)X) = 0 mod(N), the family of Gy × S1 equiv-
ariant Spinc Dirac operators DX ⊗∞n=1 Symqn(TX ⊗R C) ⊗ Q1(T (1,0)X) is rigid on
the equivariant K-theory level, for the S1 action.

The following family rigidity and vanishing theorem generalizes [Liu1, Theorem
B] to the family case.

Theorem 0.2. Assume ω2(TX −W )S1 = 0, 1
2p1(TX −W )S1 = e·π̄∗u2 (e ∈ Z)

in H∗
S1(M,Z), and c1(W ) = 0 mod(N). Consider the family of Gy × S1 equivariant

Spinc Dirac operators

DX ⊗ (KW ⊗K−1
X )1/2 ⊗∞n=1 Symqn(TX ⊗R C)⊗Q1(W ).

i) If e = 0, then these operators are rigid on the equivariant K-theory level for the
S1 action.

ii) If e < 0, then the index bundles of these operators are zero in KGy×S1(B). In
particular, these index bundles are zero in KGy (B).

We refer to Section 2 for more details on the notation in Theorem 0.2. Actually,
our main result, Theorem 2.2, holds on a family of Spinc-manifolds with Theorem 0.2
being one of its special cases.

This paper is organized as follows. In Section 1, we recall a K-Theory version
of the equivariant family index theorem for the circle action case [LiuMaZ, Theorem
1.2]. As an immediate corollary, we get a K-theory version of the vanishing theorem of
Hattori for a family of almost complex manifolds. In Section 2, we prove the rigidity
and vanishing theorem for elliptic genera in the Spinc case, on the equivariant K-
theory level. The proof of the main results in Section 2 is based on two intermediate
results which will be proved in Sections 3 and 4 respectively.

Acknowledgements. Part of this work was done while the authors were visiting
the Morningside Center of Mathematics in Beijing during the summer of 1999. The
authors would like to thank the Morningside Center for hospitality. The second author
would also like to thank the Nankai Institute of Mathematics for hospitality.

1. A K-theory version of the equivariant family index theorem. In this
section, we recall a K-theory version of the equivariant family index theorem [LiuMaZ,
Theorem 1.2] for S1-actions, which will play a crucial role in the following sections.
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This section is organized as follows: In Section 1.1, we recall the K-theory version
of the equivariant family index theorem for S1-actions on a family of Spinc manifolds.
In Section 1.2, as a simple application of Theorem 1.1, we obtain a K-theory version
of the vanishing theorem of Hattori [Ha] for the case of almost complex manifolds.

1.1. A K-theory version of the equivariant family index theorem. Let
M, B be two compact manifolds, let π : M → B be a fibration with compact fibre X
such that dim X = 2l and that S1 acts fiberwise on M . Let hTX be a metric on TX.
We assume that TX is oriented. Let (W,hW ) be a Hermitian complex vector bundle
over M .

Let V be a 2p dimensional oriented real vector bundle over M . Let L be a
complex line bundle over M with the property that the vector bundle U = TX ⊕ V
obeys ω2(U) = c1(L) mod (2). Then the vector bundle U has a Spinc-structure.
Let hV , hL be the corresponding metrics on V, L. Let S(U,L) be the fundamental
complex spinor bundle for (U,L) [LaM, Appendix D.9] which locally may be written
as

S(U,L) = S0(U)⊗ L1/2,(1.1)

where S0(U) is the fundamental spinor bundle for the (possibly non-existent) spin
structure on U , and where L1/2 is the (possibly non-existent) square root of L.

Assume that the S1-action on M lifts to V , L and W , and assume the metrics
hTX , hV , hL, hW are S1-invariant. Also assume that the S1-actions on TX, V, L
lift to S(U,L).

Let ∇TX be the Levi-Civita connection on (TX, hTX) along the fibre X. Let
∇V , ∇L and ∇W be the S1-invariant and metric-compatible connections on (V, hV ),
(L, hL) and (W,hW ) respectively. Let∇S(U,L) be the Hermitian connection on S(U,L)
induced by ∇TX ⊕ ∇V and ∇L (cf. [LaM, Appendix D], [LiuMaZ, §1.1]). Let
∇S(U,L)⊗W be the tensor product connection on S(U,L) ⊗ W induced by ∇S(U,L)

and ∇W ,

∇S(U,L)⊗W = ∇S(U,L) ⊗ 1 + 1⊗∇W .(1.2)

Let {ei}2l
i=1 (resp. {fj}2p

j=1) be an oriented orthonormal basis of (TX, hTX) (resp.
(V, hV )). We denote by c(·) the Clifford action of TX ⊕ V on S(U,L). Let DX ⊗W
be the family Spinc-Dirac operator on the fiber X defined by

DX ⊗W =
2l∑

i=1

c(ei)∇S(U,L)⊗W
ei

.(1.3)

There are two canonical ways to consider S(U,L) as a Z2-graded vector bundle.
Let

τs = ilc(e1) · · · c(e2l),
τe = il+pc(e1) · · · c(e2l)c(f1) · · · c(f2p)

(1.4)

be two involutions of S(U,L). Then τ2
s = τ2

e = 1. We decompose S(U,L) =
S+(U,L)⊕ S−(U,L) corresponding to τs (resp. τe) such that τs|S±(U,L) = ±1 (resp.
τe|S±(U,L) = ±1).

For τ = τs or τe, by [LiuMa1, Proposition 1.1], the index bundle Indτ (DX) over
B is well-defined in the equivariant K-group KS1(B).



936 K. LIU, X. MA, AND W. ZHANG

Let F = {Fα} be the fixed point set of the circle action on M . Then π : Fα → B
(resp. π : F → B) is a smooth fibration with fibre Yα (resp. Y ). Let π̃ : N → F denote
the normal bundle to F in M . Then N = TX/TY . We identify N as the orthogonal
complement of TY in TX|F . Let hTY , hN be the corresponding metrics on TY and
N induced by hTX . Then, we have the following S1-equivariant decomposition of TX
over F ,

TX|F = Nm1 ⊕ · · · ⊕Nml
⊕ TY,

where each Nγ is a complex vector bundle such that g ∈ S1 acts on it by gγ . To
simplify the notation, we will write simply that

TX|F = ⊕v 6=0Nv ⊕ TY,(1.5)

where Nv is a complex vector bundle such that g ∈ S1 acts on it by gv with v ∈ Z∗.
Clearly, N = ⊕v 6=0Nv. We will denote by N a complex vector bundle, and NR the
underlying real vector bundle of N .

Similarly let

W|F = ⊕vWv(1.6)

be the S1-equivariant decomposition of the restriction of W over F . Here Wv (v ∈ Z)
is a complex vector bundle over F on which g ∈ S1 acts by gv.

We also have the following S1-equivariant decomposition of V restricted to F ,

V|F = ⊕v 6=0Vv ⊕ V R
0 ,(1.7)

where Vv is a complex vector bundle such that g acts on it by gv, and V R
0 is the

real subbundle of V such that S1 acts as identity. For v 6= 0, let Vv,R denote the
underlying real vector bundle of Vv. Denote by 2p′ = dim V R

0 and 2l′ = dim Y .
Let us write

LF = L⊗
( ⊗

v 6=0

det Nv

⊗

v 6=0

detVv

)−1

.(1.8)

Then TY ⊕ V R
0 has a Spinc structure as ω2(TY ⊕ V R

0 ) = c1(LF ) mod (2). Let
S(TY⊕V R

0 , LF ) be the fundamental spinor bundle for (TY⊕V R
0 , LF ) [LaM, Appendix

D, pp. 397].
Let DY , DYα be the families of Spinc Dirac operators acting on S(TY ⊕V R

0 , LF )
over F, Fα as (1.3). If R is an Hermitian complex vector bundle equipped with an
Hermitian connection over F , let DY ⊗ R, DYα ⊗ R denote the twisted Spinc Dirac
operators on S(TY ⊕ V R

0 , LF )⊗R and on S(TYα ⊕ V R
0 , LF )⊗R respectively.

Recall that Nv,R and Vv,R are canonically oriented by their complex structures.
The decompositions (1.5), (1.7) induce the orientations on TY and V R

0 respectively.
Let {ei}2l′

i=1, {fj}2p′
j=1 be the corresponding oriented orthonormal basis of (TY, hTY )

and (V R
0 , hV R

0 ). There are two canonical ways to consider S(TY ⊕ V R
0 , LF ) as a

Z2-graded vector bundle. Let

τs = il
′
c(e1) · · · c(e2l′),

τe = il
′+p′c(e1) · · · c(e2l′)c(f1) · · · c(f2p′)

(1.9)
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be two involutions of S(TY ⊕ V R
0 , LF ). Then τ2

s = τ2
e = 1. We decompose S(TY ⊕

V R
0 , LF ) = S+(TY ⊕ V R

0 , LF ) ⊕S−(TY ⊕ V R
0 , LF ) corresponding to τs (resp. τe)

such that τs|S±(TY⊕V R
0 ,LF ) = ±1 (resp. τe|S±(TY⊕V R

0 ,LF ) = ±1).
Upon restriction to F , one has the following isomorphism of Z2-graded Clifford

modules over F ,

S(U,L) ' S(TY ⊕ V R
0 , LF )̂

⊗

v 6=0

ΛNv

⊗̂

v 6=0

ΛVv.(1.10)

We denote by Indτs
, Indτe

the index bundles corresponding to the involutions τs, τe

respectively.
Let S1 act on L by sending g ∈ S1 to glc (lc ∈ Z) on F . Then lc is locally constant

on F . We define the following elements in K(F )[[q1/2]],

R±(q) = q
1
2Σv|v| dim Nv− 1

2Σvv dim Vv+ 1
2 lc ⊗0<v

(
Symqv (Nv)⊗ detNv

)

⊗v<0Symq−v (Nv)⊗v 6=0 Λ±qv (Vv)⊗v qvWv =
∑

n R±,nqn,

R′±(q) = q−
1
2Σv|v| dim Nv− 1

2Σvv dim Vv+ 1
2 lc ⊗0<v Symq−v (Nv)

⊗v<0

(
Symqv (Nv)⊗ det Nv

)
⊗v 6=0 Λ±qv (Vv)⊗v qvWv =

∑
n R′±,nqn.

(1.11)

The following result was proved in [LiuMaZ, Theorem 1.2]:

Theorem 1.1. For n ∈ Z, we have the following identity in K(B),

Indτs(D
X ⊗W,n) =

∑
α(−1)Σ0<v dim Nv Indτs(D

Yα ⊗R+,n)
=

∑
α(−1)Σv<0 dim Nv Indτs(D

Yα ⊗R′+,n),
Indτe(D

X ⊗W,n) =
∑

α(−1)Σ0<v dim Nv Indτe(D
Yα ⊗R−,n)

=
∑

α(−1)Σv<0 dim Nv Indτe(D
Yα ⊗R′−,n).

(1.12)

Remark 1.1. If TX has an S1-equivariant Spin structure, by setting V = 0, L =
C, we get [LiuMaZ, Theorem 1.1].

1.2. K-theory version of the vanishing theorem of Hattori. In this sub-
section, we assume that TX has an S1-equivariant almost complex structure J . Then
one has the canonical splitting

TX ⊗R C = T (1,0)X ⊕ T (0,1)X,(1.13)

where

T (1,0)X = {z ∈ TX ⊗R C, Jz =
√−1z},

T (0,1)X = {z ∈ TX ⊗R C, Jz = −√−1z}.

Let KX = det(T (1,0)X) be the determinant line bundle of T (1,0)X over M . Then
the complex spinor bundle S(TX, KX) for (TX,KX) is Λ(T (0,1)∗X). In this case,
the almost complex structure J on TX induces an almost complex structure on TY .
Then we can rewrite (1.5) as,

T (1,0)X = ⊕v 6=0Nv ⊕ T (1,0)Y,(1.14)

where Nv are complex vector subbundles of T (1,0)X on which g ∈ S1 acts by multi-
plication by gv.
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We suppose that c1(T (1,0)X) = 0 mod(N) (N ∈ Z, N ≥ 2). Then the complex
line bundle K

1/N
X is well defined over M . After replacing the S1 action by its N -fold

action, we can always assume that S1 acts on K
1/N
X . For s ∈ Z, let DX ⊗K

s/N
X be

the twisted Dirac operator on Λ(T (0,1)∗X)⊗K
s/N
X defined as in (1.3).

The following result generalizes the main result of [Ha] to the family case.

Theorem 1.2. We assume that M is connected and that the S1 action is non-
trivial. If c1(T (1,0)X) = 0 mod(N) (N ∈ Z, N ≥ 2), then for s ∈ Z, −N < s < 0,

Ind(DX ⊗K
s/N
X ) = 0 in KS1(B).(1.15)

Proof. Consider R+(q), R′+(q) of (1.11) with V = 0, W = K
s/N
X . We know

R+,n = 0 if n < a1 = infα( 1
2

∑
v |v|dim Nv + ( 1

2 + s
N )

∑
v v dim Nv),

R′+,n = 0 if n > a2 = supα(− 1
2

∑
v |v| dim Nv + ( 1

2 + s
N )

∑
v v dim Nv).(1.16)

As −N < s < 0, by (1.16), we know that a1 ≥ 0, a2 ≤ 0, with a1 or a2 equal to zero
iff

∑
v |v|dim Nv = 0 for all α, which means that the S1 action does not have fixed

points.
From Theorem 1.1 (cf. [Z, Theorem A.1]) and the above discussion, we get The-

orem 1.2.

Remark 1.2. From the proof of Theorem 1.2, one also deduces that DX ⊗
K−1

X , DX are rigid on the equivariant K-theory level (cf. [Z, (2.17)]).

2. Rigidity and vanishing theorems in K-Theory. The purpose of this sec-
tion is to establish the main results of this paper: the rigidity and vanishing theorems
on the equivariant K-theory level for a family of Spinc manifolds. The results in this
section refine some of the results in [LiuMa2] to the K-theory level.

This section is organized as follows: In Section 2.1, we state our main results,
the rigidity and vanishing theorems on the equivariant K-theory level for a family of
Spinc manifolds. In Section 2.2, we state two intermediate results which will be used
to prove our main results stated in Section 2.1. In Section 2.3, we prove the family
rigidity and vanishing theorems.

Throughout this section, we keep the notations of Section 1.1.

2.1. Family rigidity and vanishing Theorem. Let π : M → B be a fibration
of compact manifolds with fiber X and dim X = 2l. We assume that S1 acts fiberwise
on M , and TX has an S1-invariant Spinc structure. Let V be an even dimensional
real vector bundle over M . We assume that V has an S1-invariant spin structure. Let
W be an S1-equivariant complex vector bundle of rank r over M . Let KW = det(W )
be the determinant line bundle of W .

Let KX be the S1-equivariant complex line bundle over M which is induced by
the S1-invariant Spinc structure of TX. Its equivariant first Chern class c1(KX)S1

may also be written as c1(TX)S1 .
Let S(TX, KX) be the complex spinor bundle of (TX, KX) as in Section 1.1. Let

S(V ) = S+(V )⊕ S−(V ) be the spinor bundle of V .
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We define the following elements in K(M)[[q1/2]]:

Q1(W ) =
⊗∞

n=0 Λ−qn(W )⊗⊗∞
n=1 Λ−qn(W ),

R1(V ) = (S+(V ) + S−(V ))⊗∞n=1 Λqn(V ),
R2(V ) = (S+(V )− S−(V ))⊗∞n=1 Λ−qn(V ),
R3(V ) = ⊗∞n=1Λ−qn−1/2(V ),
R4(V ) = ⊗∞n=1Λqn−1/2(V ).

(2.1)

For N ∈ N, N ≥ 2, let y = e2πi/N ∈ C. Let Gy be the multiplicative group generated
by y. Following Witten [W], we consider the fiberwise action Gy on W and W by
sending y ∈ Gy to y on W and y−1 on W . Then Gy acts naturally on Q1(W ).

Recall that the equivariant cohomology group H∗
S1(M,Z) of M is defined by

H∗
S1(M,Z) = H∗(M ×S1 ES1,Z),(2.2)

where ES1 is the usual universal S1-principal bundle over the classifying space BS1

of S1. So H∗
S1(M,Z) is a module over H∗(BS1,Z) induced by the projection π :

M×S1 ES1 → BS1. Let p1(V )S1 , p1(TX)S1 ∈ H∗
S1(M,Z) be the S1-equivariant first

Pontrjagin classes of V and TX respectively. As V ×S1 ES1 is spin over M ×S1 ES1,
one knows that 1

2p1(V )S1 is well-defined in H∗
S1(M,Z) (cf. [T, pp. 456-457]). Also

recall that

H∗(BS1,Z) = Z[[u]](2.3)

with u a generator of degree 2.
In the following, we denote by DX ⊗ R the family of Dirac operators acting

fiberwise on S(TX,KX)⊗R as was defined in Section 1.1.
We can now state the main results of this paper as follows.

Theorem 2.1. If ω2(W )S1 = ω2(TX)S1 , 1
2p1(V +W −TX)S1 = e ·π∗u2 (n ∈ Z)

in H∗
S1(M,Z), and c1(W ) = 0 mod(N). For i = 1, 2, 3, 4, consider the family of

Gy × S1-equivariant elliptic operators

DX ⊗ (KW ⊗K−1
X )1/2 ⊗∞n=1 Symqn(TX)⊗Q1(W )⊗Ri(V ).

i) If e = 0, then these operators are rigid on the equivariant K-theory level for the
S1 action.

ii) If e < 0, then the index bundles of these operators are zero in KGy×S1(B). In
particular, these index bundles are zero in KGy (B).

Remark 2.1. As ω2(W )S1 = ω2(TX)S1 , 1
2p1(W−TX)S1 ∈ H∗

S1(M,Z) is well de-
fined. The condition ω2(W )S1 = ω2(TX)S1 also means c1(KW ⊗K−1

X )S1 = 0 mod(2),
by [HaY, Corollary 1.2], the S1-action on M can be lifted to (KW ⊗K−1

X )1/2 and is
compatible with the S1 action on KW ⊗K−1

X .

Remark 2.2. If we assume c1(W )S1 = c1(TX)S1 in H∗
S1(M,Z) instead of

ω2(W )S1 = ω2(TX)S1 in Theorem 2.1, then KW ⊗K−1
X is a trivial line bundle over

M , and S1 acts trivially on it. In this case, Theorem 2.1 gives the family version of
the results of [De].

Remark 2.3. The interested reader can apply our method to get various rigidity
and vanishing theorems, for example, to get a generalization of Theorem1.2 for the
elements [W, (65)].



940 K. LIU, X. MA, AND W. ZHANG

Actually, as in [LiuMaZ], our proof of these theorems works under the following
slightly weaker hypothesis. Let us first explain some notations.

For each n > 1, consider Zn ⊂ S1, the cyclic subgroup of order n. We have the Zn

equivariant cohomology of M defined by H∗
Zn

(M,Z) = H∗(M×Zn
ES1,Z), and there

is a natural “forgetful” map α(S1,Zn) : M ×Zn ES1 → M ×S1 ES1 which induces
a pullback α(S1,Zn)∗ : H∗

S1(M,Z) → H∗
Zn

(M,Z). The arrow which forgets the S1

action altogether we denote by α(S1, 1). Thus α(S1, 1)∗ : H∗
S1(M,Z) → H∗(M,Z) is

induced by the inclusion of M into M ×S1 ES1 as a fiber over BS1.
Finally, note that if Zn acts trivially on a space Y , then there is a new arrow

t∗ : H∗(Y,Z) → H∗
Zn

(Y,Z) induced by the projection Y ×Zn ES1 = Y ×BZn
t→ Y .

We let Z∞ = S1. For each 1 < n ≤ +∞, let i : M(n) → M be the inclusion of the
fixed point set of Zn ⊂ S1 in M and so i induces iS1 : M(n)×S1 ES1 → M ×S1 ES1.

In the rest of this paper, we suppose that there exists some integer e ∈ Z such
that for 1 < n ≤ +∞,

α(S1,Zn)∗ ◦ i∗S1

(1
2
p1(V + W − TX)S1 − e · π∗u2

)
(2.4)

= t∗ ◦ α(S1, 1)∗ ◦ i∗S1

(1
2
p1(V + W − TX)S1

)
.

Remark 2.4. The relation (2.4) clearly follows from the hypothesises of Theorem
2.1 by pulling back and forgetting. Thus it is weaker.

We can now state a slightly more general version of Theorem 2.1.

Theorem 2.2. Under the hypothesis (2.4), we have
i) If e = 0, then the index bundles of the elliptic operators in Theorem 2.1 are

rigid on the equivariant K-theory level for the S1-action.
ii) If e < 0, then the index bundles of the elliptic operators in Theorem 2.1 are zero

as elements in KGy×S1(B). In particular, these index bundles are zero in KGy (B).

The rest of this section is devoted to a proof of Theorem 2.2.

2.2. Two intermediate results. Let F = {Fα} be the fixed point set of the
circle action. Then π : F → B is a fibration with compact fibre denoted by Y = {Yα}.

As in [LiuMaZ, §2], we may and we will assume that

TX|F = TY ⊕⊕
0<v Nv,

TX|F ⊗R C = TY ⊗R C
⊕

0<v(Nv ⊕Nv),
(2.5)

where Nv is the complex vector bundle on which S1 acts by sending g to gv (Here Nv

can be zero). We also assume that

V|F = V R
0 ⊕⊕

0<v Vv,
W|F = ⊕vWv,

(2.6)

where Vv, Wv are complex vector bundles on which S1 acts by sending g to gv, and
V R

0 is a real vector bundle on which S1 acts as identity.
By (2.5), as in (1.10), there is a natural isomorphism between the Z2-graded

C(TX)-Clifford modules over F ,

S(TY, KX ⊗0<v (det Nv)−1)⊗̂0<vΛNv ' S(TX, KX)|F .(2.7)
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For R a complex vector bundle over F , let DY ⊗ R, DYα ⊗ R be the twisted Spinc

Dirac operator on S(TY, KX ⊗0<v (det Nv)−1)⊗R on F, Fα respectively.
On F , we write

e(N) =
∑

0<v v2 dim Nv, d′(N) =
∑

0<v v dim Nv,
e(V ) =

∑
0<v v2 dim Vv, d′(V ) =

∑
0<v v dim Vv,

e(W ) =
∑

v v2 dim Wv, d′(W ) =
∑

v v dim Wv.
(2.8)

Then e(N), e(V ), e(W ), d′(N), d′(V ) and d′(W ) are locally constant functions on
F .

By [H, §8], we have the following property,

Lemma 2.1. If c1(W ) = 0 mod(N), then d′(W ) mod(N) is constant on each
connected component of M .

Proof. As c1(W ) = 0 mod(N), (KW )1/N is well defined. Consider the N -fold
covering S1 → S1, with µ → λ = µN , then µ acts on M and KW through λ. This
action can be lift to (KW )1/N . On F , µ acts on (KW )1/N by multiplication by µd′(W ).
However, if µ = ζ = e2πi/N , then it operates trivially on M . So the action of ζ in each
fibre of L is by multiplication by ζa, and a mod(N) is constant on each connected
component of M .

The proof of Lemma 2.1 is complete.
Let us write

L(N) = ⊗0<v(det Nv)v, L(V ) = ⊗0<v(det Vv)v,
L(W ) = ⊗v 6=0(detWv)v,
L = L(N)−1 ⊗ L(V )⊗ L(W ).

(2.9)

We denote the Chern roots of Nv by {xj
v} (resp. Vv by uj

v and Wv by wj
v), and

the Chern roots of TY ⊗R C by {±yj} (resp. V0 = V R
0 ⊗R C by {±uj

0}). Then if we
take Z∞ = S1 in (2.4), we get

1
2 (Σv,j(uj

v + vu)2 + Σv,j(wj
v + vu)2 − Σj(yj)2 − Σv,j(xj

v + vu)2)− eu2

= 1
2 (Σv,j(uj

v)2 + Σv,j(wj
v)2 − Σj(yj)2 − Σv,j(xj

v)2).(2.10)

By (2.3), (2.10), we get

c1(L) = Σv,jvuj
v + Σv,jvwj

v − Σv,jvxj
v = 0,

e(V ) + e(W )− e(N)
=

∑
0<v v2 dim Vv +

∑
v v2 dim Wv −

∑
0<v v2 dim Nv = 2e,

(2.11)

which does not depends on the connected components of F . This means L is a trivial
complex line bundle over each component Fα of F , and S1 acts on L by sending g to
g2e, and Gy acts on L by sending y to yd′(W ). By Lemma 2.1, we can extend L to a
trivial complex line bundle over M , and we extend the S1-action on it by sending g
on the canonical section 1 of L to g2e · 1, and Gy acts on L by sending y to yd′(W ).

The line bundles in (2.9) will play important roles in the next two sections which
consist of the proof of Theorems 2.3, 2.4 to be stated below.

In what follows, if R(q) =
∑

m∈ 1
2Z Rmqm ∈ KS1(M)[[q1/2]], we will also denote

Ind(DX ⊗Rm, h) by Ind(DX ⊗R(q),m, h). For k = 1, 2, 3, 4, set

R1k = (KW ⊗K−1
X )1/2 ⊗Q1(W )⊗Rk(V ).(2.12)
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We first state a result which expresses the global equivariant family index via the
family indices on the fixed point set.

Proposition 2.1. For m ∈ 1
2Z, h ∈ Z, 1 ≤ k ≤ 4, we have the following identity

in KGy
(B),

Ind(DX ⊗∞n=1 Symqn(TX)⊗R1k,m, h)
=

∑
α(−1)Σ0<v dim Nv Ind(DYα ⊗∞n=1 Symqn(TX)⊗R1k

⊗Sym(⊕0<vNv)⊗0<v det Nv,m, h).
(2.13)

Proof. This follows directly from Theorem 1.1 and (2.7).
For p ∈ N, we define the following elements in KS1(F )[[q]]: 1

Fp(X) =
⊗

0<v

(
⊗∞n=1 Symqn(Nv)⊗n>pv Symqn(Nv)

)
⊗∞n=1 Symqn(TY ),

F ′p(X) =
⊗

0<v
0≤n≤pv

(
Symq−n(Nv)⊗ det Nv

)
,

F−p(X) = Fp(X)⊗F ′p(X).

(2.14)

Then, from (2.5), over F , we have

F0(X) = ⊗∞n=1Symqn(TX)⊗ Sym(⊕0<vNv)⊗0<v det Nv.(2.15)

We now state two intermediate results on the relations between the family indices
on the fixed point set. They will be used in the next subsection to prove Theorem
2.2.

Theorem 2.3. For 1 ≤ k ≤ 4, h, p ∈ Z, p > 0, m ∈ 1
2Z, we have the following

identity in KGy (B),

∑
α(−1)Σ0<v dim Nv Ind(DYα ⊗F0(X)⊗R1k,m, h)

=
∑

α(−1)pd′(N)+Σ0<v dim Nv Ind(DYα ⊗F−p(X)⊗R1k,
m + 1

2p2e(N) + 1
2pd′(N), h).

(2.16)

Theorem 2.4. For each α, 1 ≤ k ≤ 4, h, p ∈ Z, p > 0, m ∈ 1
2Z, we have the

following identity in KGy (B),

Ind(DYα ⊗F−p(X)⊗R1k,m + 1
2p2e(N) + 1

2pd′(N), h)
= (−1)pd′(W )Ind(DYα ⊗F0(X)⊗R1k ⊗ L−p, m + ph + p2e, h).

(2.17)

Theorem 2.3 is a direct consequence of Theorem 2.5 to be stated below, which
will be proved in Section 4, while Theorem 2.4 will be proved in Section 3.

To state Theorem 2.5, let J = {v ∈ N| There exists α such that Nv 6= 0 on Fα}
and

Φ = {β ∈]0, 1]|There exists v ∈ J such that βv ∈ Z}.(2.18)

1Here by KS1 (F ) we also mean the direct sum of the form ⊕n∈ZEn with each En a finite
dimensional vector bundle over F of weight n under the S1-action.
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We order the elements in Φ so that Φ = {βi|1 ≤ i ≤ J0, J0 ∈ N and βi < βi+1}. Then
for any integer 1 ≤ i ≤ J0, there exist pi, ni ∈ N, 0 < pi ≤ ni, with (pi, ni) = 1 such
that

βi = pi/ni.(2.19)

Clearly, βJ0 = 1. We also set p0 = 0 and β0 = 0.
For 1 ≤ j ≤ J0, p ∈ N∗, we write

Ip
0 = φ, the empty set,

Ip
j = {(v, n)|v ∈ J, (p− 1)v < n ≤ pv,

n

v
= p− 1 +

pj

nj
},

I
p

j = {(v, n)|v ∈ J, (p− 1)v < n ≤ pv,
n

v
> p− 1 +

pj

nj
}.

(2.20)

For 0 ≤ j ≤ J0, set

(2.21)

Fp,j(X)=Fp(X)⊗F ′p−1(X)
⊗

(v,n)∈∪j
i=1Ip

i

(
Symq−n(Nv)⊗ detNv

) ⊗

(v,n)∈I
p
j

Symqn(Nv).

Then

Fp,0(X) = F−p+1(X),
Fp,J0(X) = F−p(X).(2.22)

For s ∈ R, let [s] denote the greatest integer which is less than or equal to the
given number s. For 0 ≤ j ≤ J0, denote by

e(p, βj , N) = 1
2

∑
0<v(dim Nv)

(
(p− 1)v + [pjv

nj
]
)(

(p− 1)v + [pjv
nj

] + 1
)
,

d′(p, βj , N) =
∑

0<v(dim Nv)([pjv
nj

] + (p− 1)v).
(2.23)

Then e(p, βj , N) and d′(p, βj , N) are locally constant functions on F . And

e(p, β0, N) = 1
2 (p− 1)2e(N) + 1

2 (p− 1)d′(N),
e(p, βJ0 , N) = 1

2p2e(N) + 1
2pd′(N),

d′(p, βJ0 , N) = d′(p + 1, β0, N) = pd′(N).
(2.24)

Theorem 2.5. For 1 ≤ k ≤ 4, 1 ≤ j ≤ J0, p ∈ N∗, h ∈ Z, m ∈ 1
2Z, we have the

following identity in KGy (B),
∑

α(−1)d′(p,βj−1,N)+Σ0<v dim Nv Ind(DYα ⊗Fp,j−1(X)⊗R1k,
m + e(p, βj−1, N), h)

=
∑

α(−1)d′(p,βj ,N)+Σ0<v dim Nv Ind(DYα ⊗Fp,j(X)⊗R1k,
m + e(p, βj , N), h).

(2.25)

Proof. The proof is delayed to Section 4.
Proof of Theorem 2.3. From (2.22), (2.24), and Theorem 2.5, for 1 ≤ k ≤ 4,

h ∈ Z, p ∈ N∗ and m ∈ 1
2Z, we have the following identity in KGy (B):

∑
α(−1)d′(p,βJ0 ,N)+Σ0<v dim Nv Ind(DYα ⊗F−p(X)⊗R1k,

m + 1
2p2e(N) + 1

2pd′(N), h)
=

∑
α(−1)d′(p,β0,N)+Σ0<v dim Nv Ind(DYα ⊗F−p+1(X)⊗R1k,

m + 1
2 (p− 1)2e(N) + 1

2 (p− 1)d′(N), h).

(2.26)

From (2.24), (2.26), we get Theorem 2.3.
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2.3. Proof of Theorem 2.2. As 1
2p1(TX −W )S1 ∈ H∗

S1(M,Z) is well defined,
by (2.8), and (2.10),

d′(N) + d′(W ) = 0 mod(2).(2.27)

From Proposition 2.1, Theorems 2.3, 2.4, (2.23), (2.27), for 1 ≤ k ≤ 4, h, p ∈ Z,
p > 0, m ∈ 1

2Z, we get the following identity in KGy
(B),

Ind(DX ⊗∞n=1 Symqn(TX)⊗R1k, m, h)
= Ind(DX ⊗∞n=1 Symqn(TX)⊗R1k ⊗ L−p,m′, h),(2.28)

with

m′ = m + ph + p2e.(2.29)

Note that from (2.1), (2.12), if m < 0, or m′ < 0, then two side of (2.28) are zero
in KGy (B). Also recall that y ∈ Gy acts on the trivial line bundle L by sending y to
yd′(W ).

i) Assume that e = 0. Let h ∈ Z, m0 ∈ 1
2Z, h 6= 0 be fixed. If h > 0, we take

m′ = m0, then for p big enough, we get m < 0 in (2.29). If h < 0, we take m = m0,
then for p big enough, we get m′ < 0 in (2.29).

So for h 6= 0, m0 ∈ 1
2Z, 1 ≤ k ≤ 4, we get

Ind(DX ⊗∞n=1 Symqn(TX)⊗R1k,m0, h) = 0 in KGy (B).(2.30)

ii) Assume that e < 0. For h ∈ Z, m0 ∈ 1
2Z, we take m = m0, then for p big

enough, we get m′ < 0 in (2.29), which again gives us (2.30).
The proof of Theorem 2.2 is complete.
Remark 2.5. Under the condition of Theorem 2.2 i), if d′(W ) 6= 0 mod(N), we

can’t deduce these index bundles are zero in KGy (B). If in addition, M is connected,
by (2.28), for 1 ≤ k ≤ 4, in KGy (B), we get

Ind(DX ⊗∞n=1 Symqn(TX)⊗R1k)
= Ind(DX ⊗∞n=1 Symqn(TX)⊗R1k)⊗ [d′(W )].(2.31)

Here we denote by [d′(W )] the one dimensional complex vector space on which y ∈ Gy

acts by multiplication by yd′(W ). In particular, if B is a point, by (2.31), we get the
vanishing theorem analogue to the result of [H, §10].

Remark 2.6. If we replace c1(W ) = 0 mod(N), y = e2πi/N by c1(W ) = 0, y =
e2πci, with c ∈ R \ Q in Theorem 2.2, then by Lemma 2.1, d′(W ) is constant on
each connected component of M . In this case, we still have Theorem 2.2. In fact, we
only use c1(W ) = 0 mod(N) to insure the action Gy on L is well defined. So we also
generalize the main result of [K] to family case.

3. Proof of Theorem 2.4. This section is organized as follows: In Section 3.1,
we introduce some notations. In Section 3.2, we prove Theorem 2.4 by introducing
some shift operators as in [LiuMaZ, §3].

Throughout this section, we keep the notations of Section 2.
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3.1. Reformulation of Theorem 2.4. To simplify the notations, we introduce
some new notations in this subsection. For n0 ∈ N∗, we define a number operator
P on KS1(M)[[q

1
n0 ]] in the following way: if R(q) = ⊕n∈ 1

n0
ZqnRn ∈ KS1(M)[[q

1
n0 ]],

then P acts on R(q) by multiplication by n on Rn. From now on, we simply denote
Symqn(TX), Λqn(V ) by Sym(TXn), Λ(Vn) respectively. In this way, P acts on TXn,
Vn by multiplication by n, and the action P on Sym(TXn), Λ(Vn) is naturally induced
by the corresponding action of P on TXn, Vn. So the eigenspace of P = n is just given
by the coefficient of qn of the corresponding element R(q). For R(q) = ⊕n∈ 1

n0
ZqnRn ∈

KS1(M)[[q
1

n0 ]], we will also denote

Ind(DX ⊗R(q),m, h) = Ind(DX ⊗Rm, h).(3.1)

Let H be the canonical basis of Lie(S1) = R, i.e., exp(tH) = exp(2πit) for t ∈ R.
If E is an S1-equivariant vector bundle over M , on the fixed point set F , let JH be
the representation of Lie(S1) on E|F . Then the weight of S1 action on Γ(F,E|F ) is
given by the action

JH =
−1
2π

√−1JH .(3.2)

Recall that the Z2 grading on S(TX, KX) ⊗∞n=1 Sym(TXn) (resp. S(TY, KX ⊗
⊗0<v(det Nv)−1) ⊗ F−p(X)) is induced by the Z2-grading on S(TX, KX) (resp.
S(TY, KX ⊗⊗0<v(detNv)−1)). Let

F 1
V = S(V )

⊗∞
n=1 Λ(Vn),

F 2
V = ⊗n∈N+ 1

2
Λ(Vn),

Q(W ) = ⊗∞n=0Λ(Wn)⊗∞n=1 Λ(Wn).
(3.3)

There are two natural Z2 gradings on F 1
V , F 2

V (resp. Q(W )). The first grad-
ing is induced by the Z2-grading of S(V ) and the forms of homogeneous degree in⊗∞

n=1 Λ(Vn), ⊗n∈N+ 1
2
Λ(Vn) (resp. Q(W )). We define τe|F i±

V
= ±1 (resp. τ1|Q(W )± =

±1) to be the involution defined by this Z2-grading. The second grading is the one
for which F i

V (i = 1, 2) are purely even, i.e., F i+
V = F i

V . We denote by τs = Id the
involution defined by this Z2 grading. Then the coefficient of qn (n ∈ 1

2Z) in (2.1)
of R1(V ) or R2(V ) (resp. R3(V ), R4(V ), or Q1(W )) is exactly the Z2-graded vector
subbundle of (F 1

V , τs) or (F 1
V , τe) (resp. (F 2

V , τe), (F 2
V , τs) or (Q(W ), τ1)), on which P

acts by multiplication by n.
We denote by τe (resp. by τs) the Z2-grading on S(TX, KX)⊗∞n=1Sym(TXn)⊗F k

V

(k = 1, 2) induced by the above Z2-gradings. We will denote by τe1 (resp. by τs1)
the Z2-gradings on S(TX, KX)⊗⊗∞n=1Sym(TXn)⊗ F k

V ⊗Q(W ) defined by

τe1 = τe ⊗ 1 + 1⊗ τ1, τs1 = τs ⊗ 1 + 1⊗ τ1.(3.4)

Let hVv be the metric on Vv induced by the metric hV on V . In the following,
we identify ΛVv with ΛV

∗
v by using the Hermitian metric hVv on Vv. By (2.6), as

in (1.10), there is a natural isomorphism between Z2-graded C(V )-Clifford modules
over F ,

S(V R
0 ,⊗0<v(det Vv)−1)⊗̂0<vΛVv ' S(V )|F .(3.5)
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By using the above notations, we rewrite (2.14), on the fixed point set F , for
p ∈ N,

Fp(X) =
⊗

0<v

( ⊗∞
n=1 Sym(Nv,n)

⊗
n∈N,
n>pv

Sym(Nv,n)
) ⊗∞

n=1 Sym(TYn),

F ′p(X) =
⊗

0<v,n∈N,

0≤n≤pv

(
Sym(Nv,−n)⊗ det Nv

)
,

F−p(X) = Fp(X)⊗F ′p(X).

(3.6)

Let V0 = V R
0 ⊗R C. From (2.5), (3.5), we get

F0(X) =
⊗∞

n=1 Sym
(
⊕0<v (Nv,n ⊕Nv,n)

)⊗∞
n=1 Sym(TYn)⊗

Sym(⊕0<vNv,0)⊗ det(⊕0<vNv),
F 1

V =
⊗∞

n=1 Λ(⊕0<v(Vv,n ⊕ V v,n)⊕ V0,n)
⊗S(V R

0 ,⊗0<v(det Vv)−1)⊗0<v Λ(Vv,0),
F 2

V =
⊗

0<n∈Z+1/2 Λ(⊕0<v(Vv,n ⊕ V v,n)⊕ V0,n),
Q(W ) =

⊗∞
n=0 Λ(⊕vW v,n)

⊗∞
n=1 Λ(⊕vWv,n).

(3.7)

Now we can reformulate Theorem 2.4 as follows.

Theorem 3.1. For each α, h, p ∈ Z, p > 0, m ∈ 1
2Z, for i = 1, 2, τ = τe1 or

τs1, we have the following identity in KGy (B),

Indτ (DYα ⊗ (KW ⊗K−1
X )1/2 ⊗F−p(X)⊗ F i

V ⊗Q(W ),
m + 1

2p2e(N) + 1
2pd′(N), h)

= (−1)pd′(W )Indτ (DYα ⊗ (KW ⊗K−1
X )1/2 ⊗F0(X)⊗ F i

V

⊗Q(W )⊗ L−p,m + ph + p2e, h).

(3.8)

Proof. The rest of this section is devoted to a proof of Theorem 3.1.

3.2. Proof of Theorem 3.1. Inspired by [T, §7], as in [LiuMaZ, §3], for p ∈ N∗,
we define the shift operators,

r∗ : Nv,n → Nv,n+pv, r∗ : Nv,n → Nv,n−pv,
r∗ : Wv,n → Wv,n+pv, r∗ : W v,n → W v,n−pv,
r∗ : Vv,n → Vv,n+pv, r∗ : V v,n → V v,n−pv.

(3.9)

Recall that L(N), L(W ), L(V ) are the complex line bundles over F defined by
(2.9). Recall also that L = L(N)−1 ⊗ L(W ) ⊗ L(V ) is a trivial complex line bundle
over F , and g ∈ S1 acts on it by multiplication by g2e.

Proposition 3.1. For p ∈ Z, p > 0, i = 1, 2, there are natural isomorphisms
of vector bundles over F ,

r∗(F−p(X)) ' F0(X)⊗ L(N)p,
r∗(F i

V ) ' F i
V ⊗ L(V )−p.

(3.10)

For any p ∈ Z, p > 0, there is a natural Gy × S1-equivariant isomorphism of vector
bundles over F ,

r∗(Q(W )) ' Q(W )⊗ L(W )−p.(3.11)
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Proof. The equation (3.10) was proved in [LiuMaZ, Prop. 3.1]. To prove (3.11),
we only need to consider the shift operator on the following elements,

QW =
⊗∞

n=0 Λ(⊕v 6=0W v,n)
⊗∞

n=1 Λ(⊕v 6=0Wv,n).(3.12)

We compute easily that

r∗QW =
⊗∞

n=0 Λ(⊕v 6=0W v,n−pv)
⊗∞

n=1 Λ(⊕v 6=0Wv,n+pv).(3.13)

Let hW be a Hermitian metric on W . Let hWv be the metric on Wv induced by hW .
As in [LiuMaZ, §3], the hermitian metric hWv on Wv induces a natural isomorphism
of complex vector bundles over F ,

ΛiW v ' Λdim Wv−iWv ⊗ detW v.(3.14)

• If v > 0, for n ∈ N, 0 ≤ n < pv, 0 ≤ i ≤ dim Wv, (3.14) induces a natural
Gy × S1-equivariant isomorphism of complex vector bundles

ΛiW v,n−pv ' Λdim Wv−iWv,−n+pv ⊗ detW v.(3.15)

• If v < 0, for n ∈ N, 0 < n ≤ −pv, 0 ≤ i ≤ dim Wv, (3.14) induces a natural
Gy × S1-equivariant isomorphism of complex vector bundles

ΛiWv,n+pv ' Λdim Wv−iW v,−n−pv ⊗ (det W v)−1.(3.16)

From (2.9), (3.15) and (3.16), we have
⊗

n∈N,v>0,

0≤n<pv

ΛinW v,n−pv

⊗
n∈N,v<0,

0<n≤−pv

Λi′nWv,n+pv

'
⊗

n∈N,v>0,

0≤n<pv

Λdim Wv−inWv,−n+pv

⊗
n∈N,v<0,

0<n≤−pv

Λdim Wv−i′nW v,−n−pv ⊗ L(W )−p.
(3.17)

From (3.13), (3.17), we get (3.11).
The proof of Proposition 3.1 is complete.

Proposition 3.2. For p ∈ Z, p > 0, i = 1, 2, the Gy-equivariant bundle
isomorphism induced by (3.10) and (3.11),

r∗ : S(TY, KX ⊗0<v (detNv)−1)⊗ (KW ⊗K−1
X )1/2

⊗F−p(X)⊗ F i
V ⊗Q(W )

→ S(TY, KX ⊗0<v (det Nv)−1)⊗ (KW ⊗K−1
X )1/2

⊗F0(X)⊗ F i
V ⊗Q(W )⊗ L−p,

(3.18)

verifies the following identities

r−1
∗ · JH · r∗ = JH ,

r−1
∗ · P · r∗ = P + pJH + p2e− 1

2p2e(N)− p
2d′(N).(3.19)

For the Z2-gradings, we have

r−1
∗ τer∗ = τe, r−1

∗ τsr∗ = τs,

r−1
∗ τ1r∗ = (−1)pd′(W )τ1.

(3.20)
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Proof. We divide the argument into several steps.
1) The first equation of (3.19) is obvious.
2) a) From [LiuMaZ, (3.23)] and (2.8), for i = 1, 2, on F i

V , we have

r−1
∗ Pr∗ = P + pJH +

1
2
p2e(V ).(3.21)

b) Note that on ⊗0<v,0≤n≤pv detNv, JH acts as pe(N) + d′(N). On S(TY, KX ⊗
det(⊕0<vNv)−1)⊗ (KW ⊗K−1

X )1/2, JH acts as − 1
2d′(N)+ 1

2d′(W ). From (2.8), (3.6),
on S(TY,KX ⊗ det(⊕0<vNv)−1)⊗ (KW ⊗K−1

X )1/2 ⊗F−p(X),

r−1
∗ Pr∗ = P + pJH − p2e(N)− 1

2
p(d′(N) + d′(W )).(3.22)

c) From (2.8), (3.17), on
⊗

n∈N,v>0,

0≤n<pv
ΛinW v,n

⊗
n∈N,v<0,

0<n≤−pv
Λi′nWv,n, one has

(3.23)

r−1
∗ Pr∗ =

∑
n∈N,v>0,

0≤n<pv

(dimWv − in)(−n + pv) +
∑

n∈N,v<0,

0<n≤−pv

(dim Wv − i′n)(−n− pv)

= P + pJH +
∑

n∈N,v>0,

0≤n<pv

(dimWv)(−n + pv) +
∑

n∈N,v<0,

0<n≤−pv

(dimWv)(−n− pv)

= P + pJH +
1
2
p2e(W ) +

1
2
pd′(W ).

From (2.11), (3.21), (3.22) and (3.23), we get the second equality of (3.19).
3) The first two identities of (3.20) were proved in [LiuMaZ, Proposition 3.2].
For the Z2-grading τ1, it changes only on

⊗
n∈N,v>0,

0≤n<pv
ΛinW v,n

⊗
n∈N,v<0,

0<n≤−pv
Λi′nWv,n.

From (2.8), (3.17), we get the last equality of (3.20).
The proof of Proposition 3.2 is complete.
Proof of Theorem 3.1. From (2.11), (3.4) and Propositions 3.2, we easily obtain

Theorem 3.1.

4. Proof of Theorem 2.5. In this section, we prove Theorem 2.5. As in [Li-
uMaZ, §4], we will construct a family twisted Dirac operator on M(nj), the fixed
point set of the induced Znj action on M . By applying our K-theory version of the
equivariant family index theorem to this operator, we prove Theorem 2.5.

This section is organized as follows: In Section 4.1, we construct a family Dirac
operator on M(nj). In Section 4.2, by introducing a shift operator, we will relate both
sides of equation (2.25) to the index bundle of the family Dirac operator on M(nj).
In Section 4.3, we prove Theorem 2.5.

In this section, we make the same assumptions and use the same notations as in
Sections 2, 3.

4.1. The Spinc Dirac operator on M(nj). Let π : M → B be a fibration of
compact manifolds with fiber X and dimR X = 2l. We assume that S1 acts fiberwise
on M , and TX has an S1-invariant Spinc structure. Let F = {Fα} be the fixed point
set of the S1-action on M . Then π : F → B is a fibration with compact fiber Y . For
n ∈ N, n > 0, let Zn ⊂ S1 denote the cyclic subgroup of order n.

Let V be a real even dimensional vector bundle over M with an S1-invariant spin
structure. Let W be an S1-equivariant complex vector bundle over M .
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For nj ∈ N, nj > 0, let M(nj) be the fixed point set of the induced Znj -
action on M . Then π : M(nj) → B is a fibration with compact fiber X(nj). Let
N(nj) → M(nj) be the normal bundle to M(nj) in M . As in [LiuMaZ, §4.1], we see
that N(nj) and V can be decomposed, as real vector bundles over M(nj), to

N(nj) '
⊕

0<v<nj/2

N(nj)v ⊕N(nj)Rnj
2

,

V |M(nj) ' V (nj)R0
⊕

0<v<nj/2

V (nj)v ⊕ V (nj)Rnj
2

(4.1)

respectively. In (4.1), the last term is understood to be zero when nj is odd. We also
denote by V (nj)0, V (nj)nj

2
, N(nj)nj

2
the corresponding complexification of the real

vector bundles V (nj)R0 , V (nj)Rnj
2

and N(nj)Rnj
2

on M(nj). Then N(nj)v, V (nj)v’s are

complex vector bundles over M(nj) with g ∈ Znj
acting by gv on it.

Similarly, we also have the following Znj -equivariant decomposition of W on
M(nj),

W = ⊕0≤v<nj W (nj)v.(4.2)

Here W (nj)v is a complex vector bundle over M(nj) with g ∈ Znj acting by gv on it.
It is essential for us to know that the vector bundles TX(nj) and V (nj)R0 are

orientable. For this we have the following lemma which generalizes [BT, Lemmas 9.4,
10.1] (See also [O]).

Lemma 4.1. Let R be a real, even dimensional orientable vector bundle over a
manifold M . Let G be a compact Lie group. We assume that G acts on M , and lifts
to R. We assume that R has a G-invariant Spinc structure. For g ∈ G, let Mg be
the fixed point set of g on M . Let R0 be the subbundle of R over Mg on which g acts
trivially. Then R0 is even dimensional and orientable.

Proof. Let hR be the metric on R which is induced from the Spinc structure on
R. As g preserves the Spinc structure of R, g is an isometry on R and preserves the
orientation of R. On Mg, we have the following decomposition of real vector bundles,

R = R0 ⊕R1.

Since the only possible real eigenvalue of g on R1 is −1, and det(g|R1) = 1 on Mg, we
know that dimR R1 = dimR R− dimR R0 must be even. So dimR R0 is even.

Let KR be the G-equivariant complex line bundle over M which is induced by the
Spinc structure of R. Then E = R⊕KR has an G-invariant spin structure. On Mg,
we have the decomposition of vector bundles E = E1⊕E0, here E0 is the subbundle of
E on which g acts trivially. Now the action of g on the fiber of the spinor bundle S(E)
at x ∈ Mg gives an element g̃ ∈ Spin(Ex) ⊂ C(Ex), here C(Ex) is the Clifford algebra
of Ex. Let ρ : Spin(Ex) → SO(Ex) be the standard representation of Spin(Ex), then
ρ(g̃) = g. So g̃c(a) = c(ga)g̃ for a ∈ Ex. Here we denote by c(·) the Clifford action.
This means that g̃ commutes c(a) for a ∈ E0x, so g̃ ∈ Spin(E1x).

Let e1, · · · , e2k be an orthonormal basis of E1x, then ei1 · · · eij (1 ≤ i1 < · · · <
ij ≤ 2k) is an orthonormal basis of the vector space C(E1x). We define σ : C(E1x) →
det(E1x) by

σ(ei1 · · · eij ) =
{

e1 ∧ · · · ∧ e2k if j = 2k = dimR E1,
0 otherwise.
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By [BGV, Lemma 3.22],

|σ(g̃)| = det1/2((1− g|E1)/2).(4.3)

So σ(g̃) is a nonvanishing section of det(E1), det(E1) is a trivial line bundle on Mg.
But E1 is equal R1 or R1 ⊕KR, this means R1 is orientable. So R0 is orientable.

This completes the proof of Lemma 4.1.
By Lemma 4.1, TX(nj) and V (nj)R0 are even dimensional and orientable over

M(nj). Thus N(nj) is orientable over M(nj). By (4.1), N(nj)Rnj
2

and V (nj)Rnj
2

are also

even dimensional and orientable over M(nj). In the following, we fix the orientations
of N(nj)Rnj

2
and V (nj)Rnj

2
over M(nj). We also fix the orientations of TX(nj) and

V (nj)R0 which are induced by (4.1) and the orientations on TX, V , N(nj)Rnj
2

and

V (nj)Rnj
2

.
Let

r(nj) =
1
2
(1 + (−1)nj ).(4.4)

Lemma 4.2. Assume that (2.4) holds. Let

L(nj) =
⊗

0<v<nj/2

(
det(N(nj)v)⊗ det(V (nj)v)

⊗ det(W (nj)v)⊗ det(W (nj)nj−v)
)(r(nj)+1)v(4.5)

be the complex line bundle over M(nj). Then we have
i) L(nj) has an nth

j root over M(nj).
ii) Let

L1 = KX

⊗
0<v<nj/2

(
det(N(nj)v)⊗ det(V (nj)v)

)

⊗det(W (nj)nj/2)⊗ L(nj)r(nj)/nj ,

L2 = KX

⊗
0<v<nj/2

(
det(N(nj)v)

)
⊗ det(W (nj)nj/2)⊗ L(nj)r(nj)/nj .

(4.6)

Let U1 = TX(nj)⊕ V (nj)R0 and U2 = TX(nj)⊕ V (nj)Rnj
2

. Then U1 (resp. U2) has a

Spinc structure defined by L1 (resp. L2).

Proof. Both statements follow from the proof of [BT, Lemmas 11.3 and 11.4].
Lemma 4.2 allows us, as we are going to see, to apply the constructions and results

in Section 1.1 to the fibration M(nj) → B, which is the main concern of this section.
For pj ∈ N, pj < nj , (pj , nj) = 1, βj = pj

nj
, let us write

F(βj) = ⊗0<n∈ZSym(TX(nj)n)
⊗

0<v<nj/2 Sym
( ⊕

0<n∈Z+pjv/nj
N(nj)v,n

⊕
0<n∈Z−pjv/nj

N(nj)v,n

)
⊗0<n∈Z+ 1

2
Sym(N(nj)nj

2 ,n
),

(4.7)

F 1
V (βj) = Λ

(
⊕0<n∈Z V (nj)0,n

⊕
0<v<nj/2

( ⊕
0<n∈Z+pjv/nj

V (nj)v,n

⊕
0<n∈Z−pjv/nj

V (nj)v,n

)
⊕0<n∈Z+ 1

2
V (nj)nj

2 ,n

)
,

F 2
V (βj) = Λ

(
⊕0<n∈Z V (nj)nj

2 ,n

⊕
0<v<nj/2

( ⊕
0<n∈Z+pjv/nj+

1
2

V (nj)v,n

⊕
0<n∈Z−pjv/nj+

1
2

V (nj)v,n

)
⊕0<n∈Z+ 1

2
V (nj)0,n

)
,

QW (βj) = Λ
( ⊕

0≤v<nj

( ⊕
0<n∈Z+pjv/nj

W (nj)v,n

⊕
0≤n∈Z−pjv/nj

W (nj)v,n

))
.
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We denote by DX(nj) the S1-equivariant Spinc-Dirac operator on S(U1, L1) or
S(U2, L2) along the fiber X(nj) defined as in Section 1.1. We denote by DX(nj) ⊗
F(βj)⊗ F i

V (βj)⊗QW (βj) (i = 1, 2) the corresponding twisted Spinc Dirac operator
on S(Ui, Li)⊗F(βj)⊗ F i

V (βj)⊗QW (βj) along the fiber X(nj).

Remark 4.1. In fact, to define an S1 (resp. Gy)-action on L(nj)r(nj)/nj , one
must replace the S1-action by its nj-fold action (resp. the Gy-action by G

y1/nj -action).
Here by abusing notation, we still say an S1 (resp. Gy)-action without causing any
confusion.

In the rest of this subsection, we will reinterpret all of the above objects when we
restrict ourselves to F , the fixed point set of the S1 action. We will use the notation
of Sections 1.1 and 2.

Let NF/M(nj) be the normal bundle to F in M(nj). Then by (2.5),

NF/M(nj) =
⊕

0<v:v∈njZ
Nv,

TX(nj)⊗R C = TY ⊗R C⊕0<v,v∈njZ (Nv ⊕Nv).
(4.8)

By (2.5), (2.6) and (4.1), the restriction to F of N(nj)v, V (nj)v (1 ≤ v ≤ nj/2) is
given by

N(nj)v =
⊕

0<v′:v′=v mod(nj)

Nv′
⊕

0<v′:v′=−v mod(nj)

Nv′ ,

V (nj)v =
⊕

0<v′:v′=v mod(nj)

Vv′
⊕

0<v′:v′=−v mod(nj)

V v′ .
(4.9)

And

V (nj)0 = V R
0 ⊗R C

⊕

0<v,v=0 mod(nj)

(Vv ⊕ V v).(4.10)

By (4.8)-(4.10), we have the following identifications of real vector bundles over F ,

N(nj)Rnj
2

=
⊕

0<v,v=
nj
2 mod(nj)

Nv,

TX(nj) = TY
⊕

0<v,v=0 mod(nj)
Nv,

V (nj)R0 = V R
0

⊕
0<v,v=0 mod(nj)

Vv,

V (nj)Rnj
2

=
⊕

0<v,v=
nj
2 mod(nj)

Vv.

(4.11)

By (2.6) and (4.2), the restriction to F of W (nj)v (0 ≤ v < nj) is given by

W (nj)v = ⊕v′=v mod (nj)Wv′ .(4.12)

We denote by V0 = V R
0 ⊗R C the complexification of V R

0 over F . As (pj , nj) = 1,
we know that for v ∈ Z, pjv/nj ∈ Z iff v/nj ∈ Z. Also, pjv/nj ∈ Z+ 1

2 iff v/nj ∈ Z+ 1
2 .

From (4.8)-(4.12), we then get

(4.13)

F(βj) = ⊗0<n∈ZSym(TYn)
⊗

0<v,v=0,
nj
2 mod(nj)

⊗
0<n∈Z+

pjv

nj

Sym(Nv,n ⊕Nv,n)
⊗

0<v′<nj/2 Sym
(
⊕v=v′ mod(nj)

(
⊕

0<n∈Z+
pjv

nj

Nv,n ⊕0<n∈Z− pjv

nj

Nv,n

)

⊕v=−v′ mod(nj)

(
⊕

0<n∈Z+
pjv

nj

Nv,n ⊕0<n∈Z− pjv

nj

Nv,n

))
,
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F 1
V (βj)=Λ

[
⊕0<n∈Z V0,n

⊕
0<v,v=0,

nj
2 mod(nj)

(
⊕

0<n∈Z+
pjv

nj

Vv,n⊕0<n∈Z− pjv

nj

V v,n

)

⊕
0<v′<nj/2

( ⊕
v=v′,−v′ mod(nj)

(
⊕

0<n∈Z+
pjv

nj

Vv,n ⊕0<n∈Z− pjv

nj

V v,n

))]
,

F 2
V (βj) = Λ

[
⊕0<n∈Z+ 1

2
V0,n⊕0<v,v=0,

nj
2 mod(nj)(

⊕
0<n∈Z+

pjv

nj
+ 1

2
Vv,n ⊕0<n∈Z− pjv

nj
+ 1

2
V v,n

)

⊕
0<v′<nj/2

(
⊕v=v′,−v′ mod(nj)

(
⊕

0<n∈Z+
pjv

nj
+ 1

2
Vv,n ⊕0<n∈Z− pjv

nj
+ 1

2
V v,n

))]
,

QW (βj) = Λ
( ⊕

v

( ⊕
0<n∈Z+pjv/nj

Wv,n

⊕
0≤n∈Z−pjv/nj

W v,n

))
.

Now, we want to compare the spinor bundles over F . From (4.5), (4.6), (4.9) and
(4.12), we get that over F we have the identities

L(nj)
r(nj)

nj =
⊗

0<v′<nj/2

( ⊗
v=v′ mod(nj)

(detNv ⊗ detV v ⊗ det W v)2v′

⊗
v=−v′ mod(nj)

(detNv ⊗ detV v ⊗ det W v)−2v′
)r(nj)/nj

,

L1 = KX ⊗ L(nj)r(nj)/nj
⊗

0<v′<nj/2

( ⊗
v=v′ mod(nj)

(detNv ⊗ detV v)
⊗

v=−v′ mod(nj)
(detNv ⊗ detV v)−1

)⊗
v=

nj
2 mod(nj)

detWv,

L2 = KX ⊗ L(nj)r(nj)/nj
⊗

0<v′<nj/2

( ⊗
v=v′ mod(nj)

detNv

⊗
v=−v′ mod(nj)

(detNv)−1
) ⊗

v=
nj
2 mod(nj)

detWv.

(4.14)

From (4.11), we have, over F ,

TX(nj)⊕ V (nj)R0 = TY ⊕ V R
0 ⊕0<v,v=0 mod(nj) (Nv ⊕ Vv),

TX(nj)⊕ V (nj)Rnj
2

= TY ⊕0<v,v=0 mod(nj) Nv ⊕0<v,v=
nj
2 mod(nj)

Vv.(4.15)

Recall that the Spinc vector bundles U1, U2 have been defined in Lemma 4.2. Denote
by

(4.16)

S(U1, L1)′ = S
(
TY ⊕ V R

0 , L1

⊗
0<v,

v=0 mod(nj)

(detNv ⊗ detVv)−1
) ⊗

0<v,

v=0 mod(nj)

ΛVv,

S(U2, L2)′ = S
(
TY, L2

⊗
0<v,

v=0 mod(nj)

(det Nv)−1
⊗
0<v,

v=
nj
2 mod(nj)

(det Vv)−1
) ⊗

0<v,

v=
nj
2mod(nj)

ΛVv.

Then from (1.10) and (4.16), for i = 1, 2, we have the following isomorphism of
Clifford modules over F ,

S(Ui, Li) ' S(Ui, Li)′ ⊗ Λ(⊕0<v,v=0 mod(nj)Nv).(4.17)

We define the Z2 gradings on S(Ui, Li)′ (i = 1, 2) induced by the Z2-gradings on
S(Ui, Li) (i = 1, 2) and on Λ(⊕0<v,v=0 mod(nj)Nv) such that the isomorphism (4.17)
preserves the Z2-grading.

We introduce formally the following complex line bundles over F ,

L′1 =
[
L−1

1 ⊗ 0<v,

v=0 mod(nj)
(detNv ⊗ detVv)⊗0<v (detNv ⊗ det Vv)−1 ⊗KX

]1/2

,

L′2 =
[
L−1

2 ⊗ 0<v,

v=0 mod(nj)
detNv ⊗ 0<v,

v=nj/2 mod(nj)
det Vv ⊗0<v (det Nv)−1 ⊗KX

]1/2

.
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From (1.10), Lemma 4.2 and the assumption that V is spin, one verifies easily that
c1(L′i

2) = 0 mod(2) for i = 1, 2. Thus L′1, L′2 are well defined complex line bundles
over F . For the later use, we also write down the following expressions of L′i (i = 1, 2)
which can be deduced from (4.14):

L′1 =
[
L(nj)−r(nj)/nj ⊗

v=
nj
2 mod(nj)

(detNv ⊗ detV v ⊗ detW v)
] 1

2

⊗
0<v≤nj

2 mod(nj)
(det Nv)−1 ⊗nj

2 <v<nj mod(nj)
(det Vv)−1,

L′2 =
[
L(nj)−r(nj)/nj ⊗

v=
nj
2 mod(nj)

(detNv ⊗ detVv ⊗ detW v)
] 1

2

⊗
0<v≤nj

2 mod(nj)
(det Nv)−1.

(4.18)

From (4.14), (4.16), and the definition of L′i (i = 1, 2), we get the following
identifications of Clifford modules over F ,

S(U1, L1)′ ⊗ L′1 = S(TY,KX ⊗0<v (det Nv)−1)⊗ S(V R
0 ,⊗0<v(detVv)−1)

⊗Λ(⊕0<v,v=0 mod(nj)Vv),
S(U2, L2)′ ⊗ L′2 = S(TY,KX ⊗0<v (det Nv)−1)⊗ Λ(⊕

0<v,v=
nj
2 mod(nj)

Vv).
(4.19)

Let

∆(nj , N) =
∑

nj
2 <v′<nj

∑

0<v=v′ mod(nj)

dim Nv + o(N(nj)Rnj
2

),

∆(nj , V ) =
∑

nj
2 <v′<nj

∑

0<v=v′ mod(nj)

dim Vv + o(V (nj)Rnj
2

),
(4.20)

with o(N(nj)Rnj
2

) = 0 or 1 (resp. o(V (nj)Rnj
2

) = 0 or 1), depending on whether the

given orientation on N(nj)Rnj
2

( resp. V (nj)Rnj
2

) agrees or disagrees with the complex

orientation of ⊕
v=

nj
2 mod(nj)

Nv (resp. ⊕
v=

nj
2 mod(nj)

Vv).
By [LiuMaZ, §4.1], (4.12) and (4.17), for the Z2-gradings induced by τs, the

difference of the Z2-gradings of (4.19) is (−1)∆(nj ,N); for the Z2-gradings induced by
τe, the difference of the Z2-gradings of the first (resp. second) equation of (4.19) is

(−1)∆(nj ,N)+∆(nj ,V ) (resp. (−1)
∆(nj ,N)+o(V (nj)

R
nj
2

)
).

4.2. The Shift operators. Let p ∈ N∗ be fixed. For any 1 ≤ j ≤ J0, inspired
by [T, §9], as in [LiuMaZ, §4], we define the following shift operators rj∗:

rj∗ : Nv,n → Nv,n+(p−1)v+pjv/nj
, rj∗ : Nv,n → Nv,n−(p−1)v−pjv/nj

,

rj∗ : Wv,n → Wv,n+(p−1)v+pjv/nj
, rj∗ : W v,n → W v,n−(p−1)v−pjv/nj

,

rj∗ : Vv,n → Vv,n+(p−1)v+pjv/nj
, rj∗ : V v,n → V v,n−(p−1)v−pjv/nj

.

(4.21)

If E is a combination of the above bundles, we denote by rj∗E the bundle on
which the action of P is changed in the above way.

Recall that the vector bundles F i
V (i = 1, 2) have been defined in (3.7). From

(2.21), we see that

Fp,j(X) = Fp(X)⊗F ′p−1(X)
⊗

(v,n)∈∪j
i=1Ip

i

(
Sym(Nv,−n)⊗ det Nv

)
⊗

(v,n)∈I
p
j
Sym(Nv,n).

(4.22)
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Proposition 4.1. There are natural isomorphisms of vector bundles over F ,

rj∗Fp,j−1(X) ' F(βj)
⊗

0<v,v=0 mod(nj)
Sym(Nv,0)

⊗0<v(det Nv)[
pjv

nj
]+(p−1)v+1 ⊗

0<v,v=0 mod(nj)
(detNv)−1,

rj∗Fp,j(X) ' F(βj)
⊗

0<v,v=0 mod(nj)
Sym(Nv,0)⊗0<v (detNv)[

pjv

nj
]+(p−1)v+1

,

rj∗F 1
V ' S(V R

0 ,⊗0<v(det Vv)−1)⊗ F 1
V (βj)

⊗
0<v,v=0 mod(nj)

Λ(Vv,0)

⊗0<v(det V v)[
pjv

nj
]+(p−1)v

,

rj∗F 2
V ' F 2

V (βj)
⊗

0<v,v=
nj
2 mod(nj)

Λ(Vv,0)⊗0<v (detV v)[
pjv

nj
+ 1

2 ]+(p−1)v
,

rj∗Q(W ) ' QW (βj)⊗0<v (det W v)[
pjv

nj
]+(p−1)v+1 ⊗

0<v,v=0 mod(nj)
(detW v)−1

⊗v<0(det Wv)[−
pjv

nj
]−(p−1)v

.

(4.23)

Proof. The proof is similar to the proof of Proposition 3.1.

Note that, by (2.19), for v ∈ J = {v ∈ N| There exists α such that Nv 6= 0 on
Fα}, there are no integer in ]pj−1v

nj−1
,

pjv
nj

[. So for v ∈ J , the elements (v, n) ∈ ∪i0
i=1I

p
i

are (v, (p− 1)v + 1), · · · , (v, (p− 1)v + [pi0v

ni0
]) for i0 = j − 1, j. Furthermore,

[
pj−1v

nj−1
] = [

pjv

nj
]− 1 if v = 0 mod(nj),

[
pj−1v

nj−1
] = [

pjv

nj
] if v 6= 0 mod(nj).

(4.24)

By using (3.7), (4.21), (4.22), (4.24), we can prove the first four equalities of (4.23)
as in the proof of [LiuMaZ, Proposition 4.1].

From (3.14), we have the natural Gy × S1-equivariant isomorphisms of complex
vector bundles over F ,

(4.25) ⊗
n∈N,v>0,

0≤n<(p−1)v+
pjv

nj

ΛinW
v,n−(p−1)v− pjv

nj

'
⊗

n∈N,v>0,

0≤n<(p−1)v+
pjv

nj

Λdim Wv−inW
v,−n+(p−1)v+

pjv

nj

⊗
0<v

(det W v)[
pjv

nj
]+(p−1)v+1 ⊗

0<v,v=0 mod(nj)

(detW v)−1,

⊗
n∈N,v<0,

0<n≤−(p−1)v− pjv

nj

ΛinW
v,n+(p−1)v+

pjv

nj

'
⊗

n∈N,v<0,

0<n≤−(p−1)v− pjv

nj

Λdim Wv−inW
v,−n−(p−1)v− pjv

nj

⊗
v<0

(detWv)[−
pjv

nj
]−(p−1)v

.

From (3.7), (4.13), (4.25), we get the last equation of (4.23).

The proof of Proposition 4.1 is complete.
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Lemma 4.3. Let us write

L(βj)1 = L′1 ⊗0<v (det Nv)[
pjv

nj
]+(p−1)v+1 ⊗0<v (detV v)[

pjv

nj
]+(p−1)v

⊗0<v,v=0 mod(nj)(det Nv)−1 ⊗v<0 (detWv)[−
pjv

nj
]−(p−1)v

⊗0<v(detW v)[
pjv

nj
]+(p−1)v+1 ⊗

0<v,v=0 mod(nj)
(det W v)−1,

L(βj)2 = L′2 ⊗0<v (det Nv)[
pjv

nj
]+(p−1)v+1 ⊗0<v (detV v)[

pjv

nj
+ 1

2 ]+(p−1)v

⊗0<v,v=0 mod(nj)(det Nv)−1 ⊗v<0 (detWv)[−
pjv

nj
]−(p−1)v

⊗0<v(detW v)[
pjv

nj
]+(p−1)v+1 ⊗

0<v,v=0 mod(nj)
(det W v)−1.

(4.26)

Then L(βj)1, L(βj)2 can be extended naturally to Gy × S1-equivariant complex line
bundles which we will still denote by L(βj)1, L(βj)2 respectively over M(nj).

Proof. Write

[
pjv

nj
] =

pjv

nj
− ω(v)

nj
.(4.27)

Note that for v = nj

2 mod(nj),
ω(v)
nj

= 1
2 .

We introduce the following line bundle over M(nj),

Lω(βj) =
⊗

0<v<
nj
2

(
det(N(nj)v)⊗ det(V (nj)v)

⊗ det(W (nj)v)⊗ det(W (nj)nj−v)
)−ω(v)−r(nj)v

.
(4.28)

As in [LiuMaZ, (4.38)], Lemma 4.2 implies Lω(βj)1/nj is well defined over M(nj).
The contributions of N and V in L(βj)1, L(βj)2 are the same as given in [Liu-

MaZ, Lemma 4.2], we only need to calculate the contribution of W in L(βj)1, L(βj)2.
Actually from [LiuMaZ, (4.37), (4.44)], (2.9), (4.12), (4.18), (4.26), (4.27) and (4.28),
we get

L(βj)1 = L−(p−1)−pj/nj ⊗ Lω(βj)1/nj

⊗

0<v≤nj
2

det(W (nj)v),

L(βj)2 = L
−(p−1)− pj

nj ⊗ Lω(βj)
1

nj

⊗

0<v≤nj
2

det(W (nj)v)

⊗

1≤m≤pj/2

⊗

m− 1
2 <pjv′/nj<m

det(V (nj)v′).

(4.29)

The proof of Lemma 4.3 is complete.
Let us write

ε(W ) = − 1
2

∑
0<v(dimWv)

[
([pjv

nj
] + (p− 1)v)([pjv

nj
] + (p− 1)v + 1)

−(pjv
nj

+ (p− 1)v)
(
2
(
[pjv

nj
] + (p− 1)v

)
+ 1

)]

− 1
2

∑
v<0(dim Wv)

[
([−pjv

nj
]− (p− 1)v)([−pjv

nj
]− (p− 1)v + 1)

+(pjv
nj

+ (p− 1)v)
(
2
(
[−pjv

nj
]− (p− 1)v

)
+ 1

)]
,

(4.30)
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ε1 = 1
2

∑
0<v(dimNv − dim Vv)

[
([pjv

nj
] + (p− 1)v)([pjv

nj
] + (p− 1)v + 1)

−(pjv
nj

+ (p− 1)v)
(
2
(
[pjv

nj
] + (p− 1)v

)
+ 1

)]
,

ε2 = 1
2

∑
0<v(dimNv)

[
([pjv

nj
] + (p− 1)v)([pjv

nj
] + (p− 1)v + 1)

−(pjv
nj

+ (p− 1)v)
(
2([pjv

nj
] + (p− 1)v) + 1

)]

− 1
2

∑
0<v(dim Vv)

[
([pjv

nj
+ 1

2 ] + (p− 1)v)2

−2(pjv
nj

+ (p− 1)v)([pjv
nj

+ 1
2 ] + (p− 1)v)

]
.

Then ε(W ), ε1, ε2 are locally constant functions on F .
Recall that the involutions τe, τs and τ1 were defined in Section 3.1. Also recall

that if E is an S1-equivariant vector bundle over M , then the weight of the S1-action
on Γ(F, E) is given by the action JH (cf. §3.1).

Proposition 4.2. For i = 1, 2, the Gy-equivariant isomorphisms induced by
(4.19) and (4.23),

ri1 : S(TY, KX ⊗0<v (detNv)−1)⊗ (KW ⊗K−1
X )1/2

⊗Fp,j−1(X)⊗ F i
V ⊗Q(W ) →

S(Ui, Li)′ ⊗ (KW ⊗K−1
X )1/2 ⊗F(βj)⊗ F i

V (βj)
⊗QW (βj)⊗ L(βj)i ⊗ 0<v,

v=0mod(nj)
Sym(Nv,0),

ri2 : S(TY, KX ⊗0<v (detNv)−1)⊗ (KW ⊗K−1
X )1/2

⊗Fp,j(X)⊗ F i
V ⊗Q(W ) →

S(Ui, Li)′ ⊗ (KW ⊗K−1
X )1/2 ⊗F(βj)⊗ F i

V (βj)
⊗QW (βj)⊗ L(βj)i ⊗ 0<v,

v=0 mod(nj)
(Sym(Nv,0)⊗ detNv),

(4.31)

have the following properties : 1) for i = 1, 2, γ = 1, 2,

r−1
iγ JHriγ = JH ,

r−1
iγ Priγ = P + ( pj

nj
+ (p− 1))JH + εiγ ,

(4.32)

where

εi1 = εi + ε(W )− e(p, βj−1, N),
εi2 = εi + ε(W )− e(p, βj , N).(4.33)

2) Recall that o(V (nj)Rnj
2

) was defined in (4.20). Let

µ1 = −∑
0<v[pjv

nj
] dim Vv + ∆(nj , N) + ∆(nj , V ) mod(2),

µ2 = −∑
0<v[pjv

nj
+ 1

2 ] dim Vv + ∆(nj , N) + o(V (nj)Rnj
2

) mod(2),

µ3 = ∆(nj , N) mod(2),
µ4 =

∑
v(dim Wv)([pjv

nj
] + (p− 1)v) + dimW + dim W (nj)0 mod(2).

(4.34)

Then for i = 1, 2; γ = 1, 2,

r−1
iγ τeriγ = (−1)µiτe, r−1

iγ τsriγ = (−1)µ3τs,

r−1
iγ τ1riγ = (−1)µ4τ1.

(4.35)

Proof. The first equality of (4.32) is trivial. From (2.23) and (4.24), one has

e(p, βj , N) = e(p, βj−1, N) +
∑

0<v,v=0 mod(nj)

(
(p− 1)v +

pjv

nj

)
dim Nv.(4.36)
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Denote by εi(V ) (i = 1, 2) the contribution of dim V in εi (i = 1, 2) respectively.
Then from [LiuMaZ, (4.52), (4.53)], on F i

V , we have

r−1
j∗ Prj∗ = P + ((p− 1) + pj

nj
)JH + εi(V ).(4.37)

From (4.25), as in (3.23), on Q(W ), we get

r−1
j∗ Prj∗ = P + ((p− 1) +

pj

nj
)JH + ε(W ) +

1
2

(
(p− 1) +

pj

nj

)
d′(W ).(4.38)

From (4.36), (4.37), (4.38), and by proceeding as in the proof of Proposition 3.2,
as in [LiuMaZ, Proposition 4.2], one deduces easily the second equation of (4.32).

Finally from the discussion following (4.20), and [LiuMaZ, (4.50)], we get the first
two equations of (4.35). By (4.12) and (4.25), we get the last equation of (4.35).

The proof of Proposition 4.2 is complete.

Lemma 4.4. For each connected component M ′ of M(nj), ε1 + ε(W ), ε2 + ε(W )
are independent on the connected component of F in M ′.

Proof. From (2.11), (4.10), (4.12), (4.27) and (4.30), we have

ε1 =
1
2

∑

0≤v′<nj

∑

v=v′ mod(nj)

(dimNv − dim Vv − dim Wv)

[
− (

pjv

nj
+ (p− 1)v)2 − ω(v′)(nj − ω(v′))

n2
j

]

= (p− 1 +
pj

nj
)2e− 1

16

(
dimR N(nj)Rnj

2
− dimR V (nj)Rnj

2
− 2 dim W (nj)nj

2

)

−1
2

∑

0<v′<nj/2

(
dim N(nj)v′ − dim V (nj)v′ − dim W (nj)v′

−dim W (nj)nj−v′
)ω(v′)(nj − ω(v′))

n2
j

.

(4.39)

By (4.30), ε2 − ε1 was given in [LiuMaZ, (4.49)], it is independent on the connected
component of F in M ′.

The proof of Lemma 4.4 is complete.
The following Lemma was proved in [BT, Lemma 9.3] and [T, Lemma 9.6] (cf.

[LiuMaZ, Lemma 4.6]).

Lemma 4.5. Let M be a smooth manifold on which S1 acts. Let M ′ be a connected
component of M(nj), the fixed point set of the subgroup Znj of S1 on M . Let F be
the fixed point set of the S1-action on M . Let V → M be a real, oriented, even
dimensional vector bundle to which the S1-action on M lifts. Assume that V is Spin
over M . Let pj ∈]0, nj [, pj ∈ N and (pj , nj) = 1, then

∑
0<v(dim Vv)[pjv

nj
] + ∆(nj , V ) mod(2),∑

0<v(dim Vv)[pjv
nj

+ 1
2 ] + o(V (nj)Rnj/2) mod(2)(4.40)

are independent on the connected components of F in M ′.

Recall that the number d′(p, βj , N) has been defined in (2.23).

Lemma 4.6. For each connected component M ′ of M(nj), d′(p, βj , N) + µi +
µ4 mod(2) (i = 1, 2, 3) are independent on the connected component of F in M ′.
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Proof. By (4.34), and Lemma 4.5, to prove Lemma 4.6, we only need to prove
∑
0<v

(dim Nv)([
pjv

nj
] + (p− 1)v) + ∆(nj , N) + µ4 mod(2)

is independent on the connected components of F in M ′. But by [BT, Lemma 9.3],
as ω2(TX ⊕W )S1 = 0, we know that, mod(2),

∑
0<v

(dimNv)[
pjv

nj
] + ∆(nj , N) +

∑
v

(dimWv)[
pjv

nj
](4.41)

is independent on the connected components of F in M ′. From (2.23), (2.27), (4.41),
we get Lemma 4.6.

The proof of Lemma 4.6 is complete.

4.3. Proof of Theorem 2.5. From (2.23), (4.9), (4.12) and (4.24), we see that

(4.42)
∑
0<v

dim Nv =
∑

0<v<
nj
2

dim N(nj)v +
1
2

dimR N(nj)Rnj/2 +
∑

0<v,v=0 mod(nj)

dim Nv,

d′(p, βj , N) = d′(p, βj−1, N) +
∑

0<v,v=0 mod(nj)

dim Nv.

By Lemma 4.6, (4.42), d′(p, βj−1, N)+
∑

0<v dim Nv +µi +µ4 mod(2) (i = 1, 2, 3)
are constant functions on each connected component of M(nj).

From Lemma 4.3, one knows that the Dirac operator DX(nj)⊗F (βj)⊗F i
V (βj)⊗

QW (βj)⊗L(βj)i (i = 1, 2) is well-defined on M(nj). Thus, by using Proposition 4.2,
Lemma 4.4, (4.17) and (4.42), for i = 1, 2, h ∈ Z, m ∈ 1

2Z, τ = τe1 or τs1, and by
applying both the first and the second equations of Theorem 1.1 to each connected
component of M(nj) separately, we get the following identity in KGy (B),

(4.43)
∑

α(−1)d′(p,βj−1,N)+
P

0<v dim Nv Indτ (DYα ⊗ (KW ⊗K−1
X )1/2 ⊗Fp,j−1(X)

⊗F i
V ⊗Q(W ), m + e(p, βj−1, N), h)

=
∑

β(−1)d′(p,βj−1,N)+
P

0<v dim Nv+µIndτ (DX(nj) ⊗ (KW ⊗K−1
X )1/2 ⊗ F (βj)

⊗F i
V (βj)⊗QW (βj)⊗ L(βj)i,m + εi + ε(W ) + ( pj

nj
+ (p− 1))h, h)

=
∑

α(−1)d′(p,βj ,N)+
P

0<v dim Nv Indτ (DYα ⊗ (KW ⊗K−1
X )1/2 ⊗Fp,j(X)

⊗F i
V ⊗Q(W ), m + e(p, βj , N), h).

Here
∑

β means the sum over all connected components of M(nj). In (4.43), if τ = τs1,
then µ = µ3 + µ4; if τ = τe1, then µ = µi + µ4.

The proof of Theorem 2.5 is complete.
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