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A mod 2 index theorem for pin~ manifolds

Weiping Zhang

Abstract. We establish a mod 2 index theorem for real vector bundles
over 8 -+ 2 dimensional compact pin~ manifolds. The analytic index is the
reduced 7 invariants of (twisted) Dirac operators and the topological index
is defined through KO-theory. Our main result extends the mod 2 index
theorem of Atiyah and Singer [AS] to non-orientable manifolds.

Introduction

Let B be an 8k + 2 dimensional compact pin~ manifold. By this we
always assume a pin~ structure has been chosen on TB. Let E be 2 real
vector bundle over B. By introducing suitable metrics and connections on
TB and E, one can define a self-adjoint ‘twisted’ Dirac operator EB,E on
B with coefficient E. The reduced 7 invariant [APS] of Dg i, denoted by
7(Dg g), turns out to be mod 2 independent of the metrics and connections
appeared in the definition of JDB!E. Thus ﬁ(f)B,E) is a mod -2 topological
- invariant (in fact a pin~ cobordism invariant, as we will see in the main
text).

The purpose of this paper is to give a purely topological formula for this
analytically defined invariant. Our motivation of proving such a formula
comes from the Rokhlin type congruence formulas we proved in Zhang [Zi],
where pin~ manifolds appear as obstructions to the existence of spin struc-
tures on oriented manifolds.

Now suppose B is orientable and carries an orientation. Then B is a spin
manifold carrying a spin structure induced from the pin— structure. The
reduced n invariant turns out to be the mod 2 analytic index defined by
Atiyah and Singer [AS].



Recall that in this case a topological index was defined by Atiyah-Singer
[AS] and an equality between the analytic and topological indices was estab-
lished in [AS]. '

Our topological interpretation of the reduced 7 invariants for pin~ man-
ifolds is inspired by Atiyah-Singer’s construction. The topological index we
will define will turn out to lie in Z{1] (mod 2).

After making clear what should be proved, we find the result follows from
an easy modification of the paper by Bismut-Zhang [BZ] where a Riemann-
Roch property for reduced 7 invariants on odd dimensional manifolds was
formulated and proved. In fact, a direct proof of the Atiyah-Singer mod 2
index theorem [AS] along the lines of [BZ] has already been worked out in
Zhang [Z2]. One thing to be remarked is that while in [Z2], one need not
use the local index techniques in [BZ], here for non-orientable manifolds, the
full strength of the techniques in [BZ], which in turn relie on Bismut-Lebeau
[BL], should be used. )

Twisted Dirac operators and their reduced 7 invariants were first studied
by Gilkey [G] for pin® manifolds. In [St], Stolz studied the reduced # invari-
ants on pin* 4-manifolds and used them to detect for example the exotic
RP* constructed by Cappell and Shaneson [CS]. The same method here can
be used to give unified topological formulas for these reduced 7 invariants
too. The modifications are fairly easy and will not be carried out in this
paper.

Our results suggest that one can use the reduced 7 invariants to detect
pin~ cobordism classes. This will be carried out elsewhere (see [LinZ]).

Also our definition of the topological index seems to be closely related to
the K R-theory developed by Atiyah [A] and hopefully will find applications
in real algebraic geometry. In fact one of the first applications of the original
Rokhlin congruence [R} lies in real algebraic geometry.

This paper is organized as follows. In the first section, we recall some
algebaic preliminaries which will be used in the rest of this paper. In Section
2 we define twisted Dirac operators and the associated analytic index. Section
3 contains the definition of the topological index. In Section 4 we establish
an equality between the analytic and topological indices defined in Sections
2 and 3 respectively, based on a Riemann-Roch property for analytic indices.
This Riemann-Roch property will be proved in Section 5. There is also an
Appendix in which we prove an extended Rokhlin congruence formula not
included in Zhang [Z1]. The mod 2 indices studied in the main text appear
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most naturally in this version of Rokhlin cohgruences.
1. Algebraic preliminaries

In this Section, we recall some elementary algebraic facts for the com-
pleteness of this paper. A standard reference is the paper of Atiyah, Bott
and Shapiro [ABS]. One can also consult Lawson-Michelsohn’s book [LM].

This section is organized as follows. In a), we recall the basic definitions
of pin~ groups and their representations. We pay special attention to dimen-
sions 8% 4 2 and 8% +- 3 which are essential for this paper. In b), we recall
the real structure of the spinor representations in dimension 8%. This plays
the basic role in our definition of the topological index in Section 3. In c)
we recall a factorization formula for pin~ representations.

3

a). Pin~ groups and their representations

Let E' be an n dimensional oriented Euclidean space. Let c(E) be the real
Clifford algebra of E. That is, ¢(E) is spanned over Rby 1, e, ¢ € E and the
commutation relations ee’ +e'e = —2 < e, ¢’ >. The pin™ group in dimension

n, pin~(n), is the multiplication group generated by € € E ¢ c(E), el =1.

Let x be the representation y : pin~(n) — O(1) given by
(1) x:eqoey — (1) G Ly [ £k

Let v : pin™(n) = O(n) be the canonical representation defined by
Y(e}(w) = —ewe for w,e € E C ¢(E),|lel] = 1. Let A be a pin~ {n) mod-
ule. Then one verifies that

(1.2)  wlew) = wew ™ w)w = x(w)(y(w)e)(ww)

for w € pin~(n),e € E,w € A.
Thus, the Clifford action

(1.3) c: EQA—x®A
is pin~(n) invariant. -
- Wenow assume n = 8k + 3. Then by Atiyah-Bott-Shapiro [ABS], c(E) =

Endg(S4) ® Endp(S_), dimS, = dimS_ = 2%. Let ey, ..., e, be an oriented
orthonormal base of E. Set s, = €1...en. Then Si are characterized by
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$n, acting on 5. as =Id. We will fix S as the irreducible module of ¢(F)
as well as pin~(n). One has S. = x ® S, and that the Clifford action
c: BE®S; — S.is pinT(n) invariant. Also Si carry naturally induced
metrics.

Now let G be a Euclidean space of dimension 8k + 2. Let £ = R & G.
Then viewing G C F, we can view S.(E) as a pin~ (&) module and have the
Clifford action

(1.4) c: G@85L — xS,

Let e € G* C E, |lefj = 1. One then composes (1.4) to a pin~ invariant

action
(1.5) cle)Je :G®S, — 5,

Without any confusion, we will note S, (G) from now on for this S.. This
is sometimes called a tangential representation. It plays a fundamental role
in the construction of ‘twisted’ Dirac operators in Section 2.

b). Spin representations in dimension 8k
Now let E be an 8k dimensional oriented Euclidean space. Then by
[ABS],
(1.6) ¢(E)=Endg(F)=F® F~,

where F' = F, @& F_ is the Z,-graded Eulidean space of E-spinors. Let
€1, .-, €gx, be an oriented orthonormal base of £. Then F, are characterized
by sgr = e3...es; acts on F. as +1d. |
The real space structure of an 8% dimensional Clifford algebra and the

‘corresponding irreducible spin representations play important roles in the
definition of the topological index in Section 3.

'Now let E* be the 'dual of E carrying the dual metric. If e € E, let
e” € L* corresponds to e by the scalar product of E. If e € E, let, cle), é(e)
be the operators acting on A(E*),

(1'7) C(e) =€ N —i,,
| &e) = €* A +i,.
Recall that we have the identification of Z-graded real vector spaces

(1.8)  co(B) = A(EY).




Let o be +1 on ¢****(E), —1 on c®(E). Then o also acts in the obvious
way on A(E*). Under the identification (1.8), c(e) is exactly the left Clifford
multiplication by e and é(e)o is the right Clifford action by e. Also, as F is
a ¢(E) module, (1.6) is an identification of left and right Clifford modules

Let 7=+l on Fy, 7* =41 on Ff. Thent, 7™ acton FR F* as r ® 1,
1® 7*. One easily verifies that

(1.9) ™ =o7.

¢). Decomposition of pin~ invariant representations

Now let G be an 8k + 2 dimensional oriented Euclidean space and F an
8/ dimensional oriented Euclidean space. Then by using the notation as in
the previous subsections one gets

(1.10) (G @ E) = c(G)®c(E),

where & is the standard notation for super tensor product. By (1.10) one
gets easily the following pin~ invariant factorization of representations,

(1.11) S (GO E)=S.(G)QF(E).

‘2. Twisted Dirac operators on pin~ manifolds and 7 invariants

In this Section, we define the twisted Dirac operators on 8 + 2 dimen-
sional pin~ manifolds with coefficients in real vector bundles. The word
‘twisted’ reflects the fact that these operators are defined as ‘tangential op-
erators’ of Dirac operators on associated 8k -+3 dimensional manifolds. Then
we recall the definition of the reduced 7 invariants of twisted Dirac operators
and show that these invariants are mod 2 topological invariants.

This Section is organized as follows. In a), we recall the definition of
pin~ manifolds. In b), we define the twisted Dirac operators associated to
vector bundles over pin~ manifolds. In ¢), we recall the definition of reduced
7 invariants and its basic properties. ‘

a). Pin~ structures on vector bundles and manifolds.
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A basic reference for this subsection is Kirby-Taylor [KT].
Let B be a compact manifold. Let E be an n dimensional real vector
bundle over B.

Definition 2.1. If there is a pin~(n) principle bundle P over B and a
representation p : pin~(r) — End(R") such that E = P x, R", then we call
E a pin~(n) vector bundle over E carrying a pin~ structure determined by

(P, ).

'The following characterization of a vector bundle to be a pin~ bundle can
be found for example in Stolz [St].

Proposition 2.2. A real vector bundle E over a compact manifold B
is a pin~ vector bundle if and only if it’s Stiefel-Whitney classes satisfy the
condition that w}(E) + wy(E) = 0.

Definition 2.3. If the tangent bundle TB of a compact manifold B
carries a pin~ structure, then B is called a pin~ manifold. And in general by
this we will mean B has been equipped with a pin~ structure.

b). The twisted Dirac operators on an 8k + 2 dimensional pin~ manifold

Let B be a compact 8k + 2 dimensional pin~ manifold. Then M =
(—1,0] x B is an 8k + 3 dimensional pin~ manifold with boundary &M =
{0} ® B, and carries an induced pin~ structure. Note 7 : (—1, 0] x B— B
the projection map.

Let g™® be a metric on TB. Let (—1,0] carry the standard metric d#?,
Let g7 = dt* @ g7® be the product metric on M. '

Recall that an 8% + 3 dimensional pin™ representation has been specified
in Section 1 a).

Let 5, (M) be the associated pinor bundle over M for (M, g™™). Then
54(M) carries a canonical metric g5+™) induced from ¢g7M. Also the Levi-
Civita connection VI of ¢TM lifts to a Euclidean connection VS+(3) op
S(M). |

Let E be a real vector bundle over B. Let ¢ be a metric on E. Let VE
be a Euclidean connection on E. Then 7*VZ is a Euclidean connection on
(m*E, 7*g®).



Let VS+()®7°F be the connection on Sy (M) ® 7*E defined by
(2.1) VSHMETE, g v) = VH*+My @ v+ uw @ 77VFy

for u € T'(S4(M)),v € T(n*E). Then VS+M)®="E i 3 Fuclidean connection
on (S, (M) @ m*E, g5+M) @ 7 gE),

Let o(T'M) be the orientation bundle of TM.

Let ey, ..., egk2 be an orthornomal base of T'B. Then %, €1, vevy T €810
is an orthonormal base of TM.

‘Definition 2.4. The Dirac operator Dyt g is a differential operator
from T'(S.(M) @ 7*E) to T'(o(TM) ® S, (M) @ mE) defined by
8k+2

9 ™ *
(2:2) Dyep = c(a—t)fo(M)@ F 4 > c(ﬁ*ei)VfiéM)m g
Bt _ T

i
Clearly, Dy is a first order elliptic differential operator. : |

! . S4(M)@m*E
Now since M is of product structure, one has V5 (Mo E 5% and we
ot

can write (2.2) as

i 0 g a e * S (M)@n*E
(23) DM,'JT*E = —C(a)(—gt‘ + C(gt‘) Z C(?T 6,‘)vw¢ei )
1
8., 8 .-
= —o(z) (5 + 7' Dsy),

where Dp p is a uniquely determined differential operator on I'(S{(M) |z
®F).

Notation 2.5. From now on, we will denote by S, (B) the bundle
S+(M) |B over B. . - .

Definition 2.6. The operator DB, e is called the twisted Dirac operator
on B with coefficient E.

One verifies easily that Dp g : T'(S,(B) ® E) — I'(S.(B) @ E) is a self
adjoint first order elliptic differential operator.



¢). Reduced n invariants as analytic indices

The 7 and reduced 7 invariants were introduced by Atiyah, Patodi and
Singer [APS] in their study of index theorems for manifolds with boundary.
We recall the definitions in our context.

The 7 function of DB, £ is defined by

' sign
(24) n(Dpg,s Z | i - } >> 0,

where A runs over non-zero eigenvalues of D B,E-

Standard methods showes that 7(Dp g, s) is a holemorphic function on
the half plane Re(s) >> 0, and can be extended to a meromorphic function
on the whole complex plane and is holomorphic at s = 0 [APS].

The value of n(DB £,5) at s = 0 is called the 7 invariant of Dp g and is
denoted by 5(Dp ). The reduced 7 invariant of D g,g is defined by [APS]

3 1, 9 .
(2.5)  #{Dpp)= g(dimkerDg g +7(Dp p))-

New assume B bounds an 8% + 3 dimensional _compact pin~ manifold K,
and assume E extends to a real vector bundle E over K. Let g'K, g be
the metrics on TK, E respectively such that they restrict to g7#, ¢ on
the boundary and are of product structures near the boundary. Then the

-constructions in the previous subsection can be applied here.

Let VZ be a Euclidean connection on £ which is of product structure
near the boundary.

Let D s be the Dirac operator associated to (K, 7%, E, g%, VE, 5, (K)),
which is defined similarly as in Definition 2.4. We impose the Atiyah-Patodi-
Singer boundary condition [APS] on Dy - Then by the index theorem for
manifolds with boundary of Atiyah, Patodi and Singer [APS], one has

(26) HldDKjf;; : _ﬁ(-DB,E)

The local index term disappeares in (2.6) simply because dimX is odd.

Now by Section 1a), we know that S, (K} carries a quaternionic structure.
Furthermore, Dy, z, as well as it’s Atiyah-Patodi-Singer boundary condition,
is easily seen to be H linear. From (2.6), one gets the following important
result. ‘



Propositiop 2.7. If B bounds a compact pin~ manifold X and F extends
to K. Then 7(Dp ) is an even interger. '

By Proposition 2.7, we know that for any 8k + 2 dimensional compact
- pin~ manifold B and a real vector bundle E over B. The quantity ﬁ(ﬁB,E)
(mod 2) is a well defined pin~ cobordism invariant. In particular, it does not
depend on the metrics and connections used to define it.

Definition 2.8. The quantity 7(Dpg) (mod 2) is called the mod 2
analytic index of £ and is denoted by ind®(E). -

It is easy to verify that ind® provides a homomorphism ind® : I?Z)(B) -
R. The purpose of this paper is to give a unified topological formula for this
analytically defined homomorphism.

3. The topological index for vector bundles over pin~ manifolds

‘The purpose of this Section is to define what we call the topological index
of a real vector bundle over an 8k -+ 2 pin~ manifold.

Our construction is inspired by a construction of Atiyah and Singer [AS]
(cf. also [LM]), but is different in several aspects. The reason is that we
here should take more care of the situation where our manifold is no longer
orientable and that the group I?_(’)(RPJ) satisfies no periodicity of Bott type.

This Section is organized as follows. In a), we give a geometric construc-
tion of the direct image in KO-theory for emdeddings between manifolds. In
b), we discuss the pin~ structures on real projective spaces. In ¢}, we present
our definition of the mod 2 topological index.

a). A geometric construction of the direct image for emdeddings

Let 7:Y < X be an embedding of compact manifolds without boundary.
Let m : N - Y be the normal bundle to ¥ in X.

We make the assumption that dimN = 0 (mod 8) and that N is an
oriented spin vector bundle over Y, carrying a fixed spin structure.

Let E be a real vector bundle over Y. Then by the standard construction
of Atiyah and Hirzebruch [AH] and of Atiyah, Bott and Shapiro [ABS] (cf.



also Lawson-Michelsohn [LM]), the direct image of E under 7 is a well defined
element i\E € KO(X).

In what follows we will give a concrete geometric realization of i!E. This
construction is inspired by Quillen’s superconnection [Q]. A similar construc-
tion for complex vector bundles has already appeared in Bismut-Zhang [BZ].

Let gTX be a metric on TX. Let g7* be the metric on TY determined by

g"™*. Let g" be the induced metric on N such that we have the orthogonal
decomp051t10ns of vector bundles and metrics,

(31)  TX|y=TY &N,

(32) g =g"eg"
Set for any r > 0,

(33) D.(N)={neN||lnll <7}, S{(N)=08D,(N).

Let F(N ) = FL.(N)®F_(N) be the bundle of N-spinors. Since dim/N = 0
(mod 8), F: are real vector bundlés by Section 1b). Let F*(N) = F¥(N) &
F2{N) be the dual of F(N). We are mainly interested in the Z,-graded
vector bundle F*(N)® E=F}(N)Q E® F*(N)® E.

Let n € N. Let ¢(n) be the transpose of the Clifford action ¢(n) on F(N).
Then &(n) extends to an action on F*(N) ® E as &(n) @ Idg which we still
note by &(n).

Let now G be a real vector bundle over Y such that F*(NY@ E@ G is a
trivial vector bundle over Y. The existence of G is clear.

Consider the pair of vector bundles 7 (F{(N)® E & G) over D.(N). For
any n € D,(N),n # 0, the map

(3.4) En)®ldpg: T (FIIN)RESG) — " (F*(N)QEDG)

is a linear isomorphism. In other words, 7*(F*(N)® E®G) and 7*(F{(N)®
E & G) are equivalent over D, (N) ~ Y for any r > 0. In particular, over
S1(NV), we have two trivial vector bundles #*(F} ® E & G) and an identifying
map given by v(n) = é(n) @ Id,.g. This map v can be trivially extended to
the whole X — D; (V) as an invertible map between two tr1v1al vector bundles
extending 7*(F3(N) ® E & G) respectively.

Denote by &1 the two resulting vector bundles over X. Then it is clear
that £ —&_ is a representative of the direct image i!E € KO(X) constructed
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in [AH] and [ABS]. This is our geometric realization of the direct image. We
emphasis again that we have also constructed a map v : £4 — &_ between
&4+ and £_ such that v is invertible on X — Y and that when restricted to
Di(N), as & = n*(F1(N) @ E® G), v takes the form

(36) v(n) = &(n) ® Ideg

for n € D((N). ‘
In the rest of this paper, whenever we refer to a direct image for an em-
bedding, we will mean a geometric realization in the sense of this subsection.

b). The pin~ structures on real projective spaces

Let g be a positive integer. Let RP? be the g dimensional real projective
space. Recall that the total Stiefel-Whitney class of RP? is given by (cf.
Milnor-Stasheff [MS)) '

(3.7) w(RPT) = (1 + a)??,

where a is the generator of H 1(}:31"3‘I v Za).
From (3.7) one deduces that

(3.8) wf(RP‘-‘;') + we(RPY) = g+ 1)53(1 *+2) a’.

By (3.8), w}(RPY) + wy(RP?) = 0 occurs when i), ¢ is odd and g =3
(mod 4} or ii), ¢ is even and ¢ =2 (mod 4).

In the first case we get a spin manifold while in the second case we get
a non-orientable pin~ manifold. We will concentrate on the non-orientable
case. ‘

On RP**2 there are exactly two different pin~ structures. We will fix
one as follows. :

The orientation cover S*+2 of RP*+2 hounds a disk D**3 with its an-
tipodal involution. We can extend this involution on P = D*+3 xpin~ (4k+3)
by left multiplication with Ssk+3 = €1...€3k+3 on the second factor, where
€1;..,€gk+3 i an oriented orthonormal base of R*+3. There is an obvious
isomorphism between the associated bundle P X., R¥+3 and the tangent bun-
dle of D*+3 This Z/2 equivariant pin~ structure induces a pin~ structure
on RP**2_ In the rest of this paper, we will always assume that RP%+? has
this pin~ structure.
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c). The definition of the topological index _

Let B be an 8k + 2 dimensional compact pin~ manifold with a fixed pin~
structure. Let RP®*2 be the real projective space with the pin~ structure
specified in the last subsection. Let v be the canonical line bundle over
RP®*2_ That is v = o(TRP®+?), the orientation bundle of TRP+2,

By a classical result of Steenrod-Whitney [S], there is a classifying map
f: B — RP%+2 uniquely determined up to homotopy, such that

(3.9) F*(7) = o(TB),

where o(T'B) is the orientation bundle of TB.

On the otherhand, one can find easily a sufficiently large integer m so
that there is an embedding g : B — S%™.

The maps f and g together give an embedding

(3.10) h={(f,9): B RP¥?2 x S* 1 (f(z),qg(x)).

Now as S is an oriented spin manifold carrying the unique spin struc-
ture, RP#+2 x $8™ ig 3 pin~ manifold carrying an induced pin— structure.

Let N be the normal bundle to B in RP¥**2 x S8 From (3.9), one
verifies that

(311)  wn(N) = h* (i (RP*? x S*™)) — wy(B)
= f*w (RP¥+2) — 4 (B) = 0
and that
(3.12) wa(N) = R*wo(RP¥+2 % S%™) — wy(B)
= f*wi(RP**%) 1 w,(B)
= wi(B) + wy(B) = 0.

From (3.11) and (3.12), N is a spin vector bundle over B. The arientation
of TS® induces an orientation on N. Furthermore the pin~ structures on
B and RP¥*2 x %" determine a spin structure on N.

Thus the constructions in Section 3a) applies here.

Let E be a real vector bundle over B, we then get an element i'E €
Ko(RP8k+2 % SSm)
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Now let dgryp : RP®12 < RP®+2 be the identity map. Let p be a
point in S and let 4, : RP%+2 — S¥ be the collapsing map with image
p. Then igpio, = (33k+2, p) ¢ RP¥¥2 —y RPBF42 5 8™ 5 an embedding.
Furthermore, ¢gx12 . determines a map

(3.13)  tgpiom! 1 KO(RP®+?) KO(RPB"” x S8y,

By the Bott periodicity theorem (cf. [LM]), isk+2,m! is an isomorphism
not depending on the choice of the point p.

Notation 3.1. If a,b,c,... € R is a series of real nu'mbers, then we
denote by Z{a,b,c, ...} the abelian subgroup of R generated by the numbers
a,b,c,.... '

The following result on the structure of KO(RP®+2) is essential to our
definition of the topological index. It replaces the Bott penodlcity theorem
in the spin case.

Lemma 3.2 (Adams [Ad, Theorem 7.4, Atiyah-Bott-Shapiro [ABS]).
The group KO(RP®*2) is an abelian group of order 24k+2 generated by

1—7.
By this Lemma, any element a of KO(RP*+2) can be represented as
(3.14) o="mg+ne(1—7), Ma,na € Z, 0 < ny < 2%+2 _ 1,
Let gset2 : KO(RP¥%%) — Z{51-1/27 be the homomorphism defined
by

m Na
(3.15) _ qgk+2(a) = 241:;2 + AR (Il’l()d 2).

We can now give our definition of the topological index.

Definition 3.3. Let E be a real vector bundle over an 8k +2 dimensional
compact pin~ manifold B. The topological index of E, denoted by ind*(E),
is an element in Z{zi}/2Z given by Geit2(Tekram!)” 1h'(E)

Remark 3.4. Using the standard methods in KO-theory and the fact
that induced Vector bundles are independent of the homotopy type of the
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induced maps, one sees easily that ind*(E) does not depend on the integer
m, the classifying map f and the embedding g appeared in the process of it’s
definition. Thus ind*(E) is a well defined object.

Remark 3.5. Similarly, one can also define the topological index for real
vector bundles over an 8k + 6 dimensional compact pin~ manifold. In this
<ase the value of the index will Lie in Z{5zh+}/Z.

4. A mod 2 index theorem for 8k +2 dimensional pin~ manifolds

In this Section, we establish a mod 2 index theorem for real vector bundles
over 8k + 2 dimensional compact pin~ manifolds, which is the main concern
of this paper. The proof relies on a Riemann-Roch formula for the analytic
index which we state in Theorem 4.1. The proof of this Riemann-Roch
property will be carried out in Section 5.

This Section is organized as follows. In &), we state the Riemann-Roch
formula to be proved in Section 5. In b), we will state and prove the mod 2
index theorem.

a). A Riemann-Roch formula for the analytic index

Let X, Y be two compact pin~ manifolds of dimensions 8m + 2, 8n + 2
respectively, such that there is an embedding i : ¥ — X.

We make the assumption that

(4.1) wy (TX) = w, (TY).

Let /N be the normal bundle to ¥ in X. By (4.1), N is an orientable spin
vector bundle of dimension 8(m — n). We fix an orientation on N. Then N
carries a spin structure canonically induced from the given pin~ structures
onTX and TY.

We can then apply the direct image construction in Section 3a).

The following Riemann-Roch type formula is essential.

Theorem 4.1. Let E be a real vector bundle over Y. Then the following
identity holds, ._
(4.2) ind*(F) = ind*(i!E).
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Proof. The proof of (4.2) will be given in Section 5. 0

b). An equality between the analytic and topological indices

We now use the notation as in Section 3c).

Again, B is a compact 8% + 2 dimensional pin~ manifold and E is a real
vector bundle over B.

Recall that we have constructed various direct images in the course of th
definition of the topological index. ‘

By using Theorem 4.1 two times, we have the following equality between
analytic indices,

(4.3) ind*(E} = ind®((igxsam!) 'RIE).
So in order to prove an equality between the analytic and topological

indices, we need only to check it on rea} projective spaces.

Lemma 4.2. Let o be a real vector bundle over the pin~ manifold
RP®+2 Then the following identity holds,

(44)  (Dgpssaa) = gepsa(a)  (mod 2).

Proof. By Lemma 3.2, wé need only to check (4.4) for v =1 and o = .
This can be done in exactly the same way as in Gilkey [G] and Stolz [St).
All what one need to do is the trivial modification of [St, Corollary 5.4] by
relacing ‘pin*’ there by ‘pin™, and by replacing ‘RP®***' there by ‘RP%+2’,

We leave the details to the interested reader. O

We can now state the main result of this paper.

Theorem 4.3. The following identity holds for a real vector bundle F
over a compact 8k + 2 dimensional pin~ manifold,

(4.5) ind*(E) = ind*(E).

Proof. By (4.3) and Lemma 4.2, we need finally check that for any real
vector bundle o over RP®**2, we have

(4.6) gsk+2() = indt(a).

In fact, if we take B in Section 3a} to be the RP%+2 and the classifying
map to be the identity, then by deforming the embedding g : RP8*+2 «y g8m
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to the constant map g,, A = (f, g) deformes to an embedding k, = (f, g,) :
RP#+2 —y RP8*+2 5 S¥n In particular, the deformed maps in this process
from A to h, remain to be embeddings. Thus, we have

(47) h'(a) == hp'(a) = i3k+2,m!(a).

The proof of Theorem 4.3 is completed. O

Remark 4.4. By Theorem 4.3, the definition of the topological index
does not depend on the specific choice of the pin™ structure on RP%+2, In
fact, this can be verified directly from the definition in Section 3c).

The following consequence is of independent interest.

Corollary 4.5. For any real vector bundle B over a compact 8k + 2
dimensional pin~ manifold B, if D g is a twisted Dirac operator defined by
using suitable metrics and connections on B, E respectively, thep one has

(D) € Z{zHm}-
This extends a result of Gilkey [G].

Remark 4.6. There is an analogues mod Z index theorem for real vector
bundles over 8k + 6 dimensional pin~ manifolds. Details are easy to carry
out and are left to the interested reader.

5. A Riemann-Roch formula for pin~ manifolds

The purpose of this Section is to prove Theorem 4.1. Recall that a sim-
ilar result for n invariants on odd dimensional spin manifolds has already
been proved in Bismut-Zhang [BZ]. All what we need to do is to modify the
argument in [BZ] to fit our specific situation here.

We recall that the techniques in [BZ] depend heavily on the paper of
Bismut and Lebeau [BL]. :

This Section is organized as follows. In a), we restate Theorem 4.1 in
terms of reduced # invariants. In b), we employ some simplifying assumptions
on certain metrics and connections. In ¢), we state six technical results. The
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Riemann-Roch property is proved in d), based on the intermediary results in
c). These intermediary results are then proved in e).

a). A Riemann-Roch formula for reduced n invariants

Let i : Y < X be an embedding of a pair of compact pin~ manifolds of
dimensions 8m + 2 and 8n + 2 respectively.

As in Section 4a), we make the assumption that

(5.1) i'wy (TX) = wy(TY).

Let 72 N — Y be the normal bundle to ¥ in X. From (5.1), one sees
easily that NV is an orientable spin bundle over ¥ (compare with (3.11) and
(3.12)). We fix an orientation on /N. Then the pin~ structures on 7X and
. T'Y determine a spin structure on N. And we can apply the direct image
construction of Section 3a) to real vector bundles over Y.

We will use the notation of Section 3a).

Let E be a real vector bundle over Y.

Recall that in Section 3a), starting with a metric on g7, we constructed
two real vector bundles &, of a same dimension on X such that £y — €6 =
ilE € KO{X). '

Let g™ be the restriction of g7 on TY. ‘

We introduce metrics and Euclidean connections on E and £ respectively.

The main result of this Section can be stated as follows for the twisted
Dirac operators constructed as in Section 2.

Theorem 5.1. The following identity holds,

(5.2) M(Dxe,) —7(Dxe ) = 7(Dyp) (mod 2).

b). Some geometric simplifying assumptions

Recall that by Proposition 2.7, the reduced % invariants in (5.2) do not
depend on the metrics and connections used to define the twisted Dirac
operators. So in order to prove Theorem 5.1, we can and we will make these
metrics and connections as simple as possible. _

First of all, we assume that the embedding i : (Y,¢™) — (X, ¢7X) is
- totally geodesic.
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Let g" be the metric on N so that we have the orthogonal decompositions
of vector bundles and metrics

(5.3) TX ly=TY @ N,

0™ |y= g™ @ V.
Then g" lifts to metrics g™ (™), gF2¥) on F, (N), Ft(N) respectively.
Let PTY, PV Dbe the orthogonal projection maps from TX to TY and N
respectively.
Let V7%, VT be the Levi-Civita connections associated to g7%, ¢T¥
respectively. Then

(54) vTY — PTYVTXIYPTY.
Let V¥ be the connection defined by
(5.5) VY = pNyTXly pN,

Then V7V is a Euclidean connection on N. It lifts to Euclidean connections
VW) and VFEY) on FL (V) and FE(N) accordingly.

Let g© be a metric on the vector bundle appeared in the construction of
£+ in Section 3a). Let V© be a Buclidean connection on G. Then &y |y=
F1(N)®@E®G carry the metrics g™V®9" g4 guch that F1(N)® E and G
are orthogonal to each other, and corresponding connections VFZN®E 5y 7€,
We can and we do lift these metrics and connections to 7*(FI(N) Q@ E @
G) {py~) and then extend them to metrics ¢ and Euclidean connections
V&% on £y

Let £ = £ @ £_ be the Zy-graded vector space. Let gt = g&+ @ g¢-
be the metric on £ so that £, and £_ are orthogonal to each other. Let
V¢ = V& & V- be the corresponding Euclidean connection on €.

Then on Dy(N), one has

(56) E=m(FI(N)QEa&G)am(F*(N)® Ea®G),

g ="M eg" @ ) e (¢" N & g¥ @ ¢°),
v.f — W#(VF_T_(N)®E o VG) D ﬁ*(VF:(N)®E o) VG)
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Furthermore, by Section 3a), there is a map v : £, — £_, which is invertible
on X — Y, and, when restricted to D;{N), takes the form

(5.7) v(n) = &(n) @ Ideeg, n € Di(N),

where () is the Clifford action of n on #*(F}(N)® E). The Clifford action
also acts on 7 (F*(N)® E).

Let 7% be the action on F(N) such that 7V |p, )= +IdF, . Let 7V
be the transpose of V. Then T™* extends to an action on F*(N) ® F as
7¥* @ Idg which we still note by 7V*. '

Let v* be the adjoint of v with respect to g¢. Set V = v+ ¢*. Then V is
an invertible element in End®®(¢), and one has on D, (N) that

(5.8) Vin) = V*é(n) + Idp-c.

Remark 5.2. All the simplifying conditions in Bismut-Zhang [BZ, Sec-

tion 1c) and 2a)] for direct images of complex vector bundles have now real
analogues. Compare also with Zhang [Z2, (1.1)].

¢). Siz intermediary results

We use the same assumptions and notation as in the previous two sub-
sections. In particular, we assume that the simplifying conditions made in
the last subsection hold.

Let Dy be the twisted Dirac operator defined by

(59) Dx‘f == EX,E.,. - bx’f_.
Then
(5.10)  7(Dx,¢) = i(Dxge,) — i(Dxe ) + dim kerDx_.

Now since S4(X) has a quaternionic structure, dimkerDyx_ is an even
integer. From (5.10), one gets '

(5.11) #i(Dxe) = (Dxe,) — (Dxe.), (mod 2).
Let V be the operator acting on I'(S4:(X) ® ) defined by
(5.12) Via®Bma®Vp
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for a € T(S.. (X)), 8 € T(¢).
Then V is a pin~ invariant selfadjoint element in End®*(5,(X) ® ¢ )
For any T > 0, set,

(5.13) DX,{,T = DX.E + TV.

For a > 0,T > 0, let K% be the direct sum of the eigenspaces of the
operator Dx ¢ which are associated to eigenvalues whose absolute value is
strictly smaller than a. Let P# be the orthogonal projection operator from
T(S4(X)®€&)on K¢ Set Pp~ =1— P2

The following results, which are similar to those of Bismut-Zhang [BZ,

Theorems 3.7-3.12] for odd dimensional manifolds and complex bundies case,
will play essential roles in the proof of Theorem 5.1 in the next subsection.
The proof of these results will be given in Section Se}.

Theorem 5.3. For any ay > 0, there exists C' > 0 such that for o > aq,
T>1,

~ ~ ~ - C
(514) | Tr[DX’E‘T eXp('—ﬂ'(DX,{,T)2)] - TI[DY,E exp(“a(Dy:E)Q)] !S W

Theorem 5.4. For any a > 0, there exist ¢ > 0, C > 0 such that for
a>1 T >1, then,

(515) | TY[Pr Dx g rexp(—a(Dxer)?)] I< cexp(~Ca).
Take now ag > 0 such that the operator ij‘E has no nonzero eigenvalues
in the interval [~2aq, 2ag).
Theorem 5.5. For T large enough, then
(5.16) dim K7° = dim ker(Dy ).

Moreover, _
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Theorem 5.6. There exist ¢ > 0, v €]0,1] such that for u €0, 1], 0 <
T < 1/u, then

(5.18) | sup(T, 1)Ti"[17 BXP(“(UDX!E + Tluf)z)] 1< c(uil + T))".A

Theorem 5.7. For any T > 0, the following identity holds,

, T~ -3 T-
(5.19) 11115(1) 'Ik[EV exp(—(uDx ¢ + EV)Z)] =

Theorem 5.8. There exist ¢ > 0, 6 €]0,1] such that for u €]0,1], T > 1,
then

(5.20) ITr[;L—-f/exp( (’U,ng-i- V) )] < %

d). Proof of Theorem 5.1
We construct a closed one form on Ry x R, and then use it to prove
Theorem 5.1, in exactly the same way as in Bismut-Zhang [BZ].

Theorem 5.9. Let u >0, T > 0. Let 8,1 be the 1-form on R xR,
(5.21) Bur= du’I‘r[]j X.£T exp(—uQD'j}’E)T)] + dTTk[uf;’ exp(muzﬁi’&T)].

Then the 1-form Bu,r 18 closed. .
Proof. Theorem 5.9 can be proved in exactly the same way as in [BZ,
Theorem 3.4]. O E

Proof of Theorem 5.1. Fix constants ¢, A, Ty such that 0 < € < 1 <
A < 400, 0< Ty < +o0. Let I, AT, be the oriented contour in R x R+ as
constructed in [BZ], consisting of four oriented pieces,

IN:T=T; e<u<A,

F:0<T<Ty: u=A4A,
I'3:T=0; e<u<A,
Fy: 0T <T}y; u=c,
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with the counterclockwise orientation.
For 1 <k <4, set

L= Bur
Ty
Then by Theorem 5.9, one gets the identity,
4
k=1

Theorem 5.1 then follows by making in (5.22}, A = +c0, Ty — +00,
and € — 0 in this order, and proceeding in exactly the same strategy as in
Bismut-Zhang [BZ, Section 3e)-g)). All one need to notify is the following
two points, :

i). We use the intermediary results Theorems 5.3-5.8 here, instead of
those in [BZ, Section 3d)];

ii). Since S4(X) and S, (Y) are H linear spaces and the twisted Dirac
operators I”DX,&, ﬁY,E as well as the map V are H linear, all the mod Z
‘terms in [BZ, Section 3e)-g)] can and will be replaced by mod 22.

By noting these two points and by proceeding in exactly the same way
as in [BZ, Section 3e)-g)], one gets Theorem 5.1. O

e). Proof of Theorems 5.5-5.8

The methods of Bismut-Zhang [BZ, Section 4], which goes back to Bismut-
Lebeau [BLJ, can be adapted here with little change to prove Theorems 5.3-
5.8. All one need to take care is the following two points,

1). We should modify the harmonic oscillator construction in [BZ, Section
4a)] for complex spinor spaces in order to fit the real situatuion here;

ii). Since we are now in the even dimensional situation, the local index
techniques in {BZ] should be modified. But the even dimensional case turns
out to be much simpler here, and does not cause any extra difficulty than
[BZ]. Details are faily easy to fill and are left to the reader.

So we now concentrate on the modification of the harmonic oscillator
construction, which is also easy. It is included here only for completeness.

We use the notation of Section 1b).

Set m = dim E = 0 (mod 8). Let ey, ..., e, be an orthonormal base of F
and let ef, ..., e}, be the dual base of E*.
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Let I'(A(E*)) be the vector space of smooth sections of A(E*) over E.
Let DF be the operator acting on T'(A(E")) defined by

(523)  DF= i::(c(ei) & V...

Let Z be the generic point of E. Then 7*¢(Z) acts on T{A(E")).
Set

(5.24) S = Zc (e:)E(es).
1

Proposition 5.10. The following identity holds,
(5.25) (DF+7*8(Z)) =~ A+ | Z 2 +85.
Proof. The proof of (5.25) is trivial. O

We now give another expression for S. Let N be the number operator of
/\(E*) Le., N acts on AP(E*) by multilication by p.

Proposition 5.11. The following identity holds,
(5.26) S = (2N — m)o.

Proof. By the considerations in Section 1b), we know that
(5.27) ée;) = é(e)e.

Also one verifies easily that

m

(5.28) > cle)é(es) = 2N —m.

1

(5.26) follows from (5.27), (5.28) and (5.24). O

Proposition 5.12. The lowest eigenvalue of the operator S is —m. The
correponding eigenspace is one dimensional and is spanned by 1.
Proof. For any p and a € AP(E*), one has

(5.29) (2N —m)oa = (-1 (2p — m)a.
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Now for any 0 < p < m, one has (—1)?(2p — m) > —m with equality
holds only for p = 0 (for m is even).
Proposition 5.12 follows immediately. I

From (5.25), the operator (D® + 7*#(Z))? is of harmonic oscillator type.
Therefore it has discret spectrum and compact resolvent.
We now have the following analogue of [BZ, Theorem 4.3).

Theorem 5.13. The kernel of (D¥ 4+ 7*¢(Z))? is one dimensional and is

spanned by \
| Z |
2 )

(5.30) B =exp(-

Also
(5.31) (DE +78(Z2))8 = 0.
Proof. The kernel of the operator — A + | Z |? —m is spanned by
exp(— U—) "The first part of the theorem follows from Propositions 5.10 and
5.12.

Equation (5.31) is a consequence of the fact that 8 € ker(D¥ 4+ 7*¢(Z))2.
One can also check it directly. O

'We now come back to the proof of Theorems 5.3-5.8. Note that near the
embedded manifold Y, we have the following pin~ equivariant factorizations
via {1.10),

(5.32) e(TX) ly=c(TY )&e(N),

and
(5.33) S4(X) ly= S+(Y)QF(N).

The proof of Theorem 5.3-5.8 can then be proceeded with little change
. as in [BZ, Section 4b)-e)].

As we have remarked, the difference in the local index calculation causes
no difficulty and is even simpler here.

"The other details are easy to fill and we will not make a line by line copy
of [BZ, Section 4b)-e)]. O

Appendix. An extended Rokhlin congruence formula
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In this Appendix, we prove a new Rokhlin type congruence not included
in Zhang [Z1]. As mentioned in the Introduction, the mod 2 indices studied
in the main text appear most naturally in this version of congruences.

Let K be an 8% + 4 dimensional compact oriented manifold such that
wo(TK) # 0. Let B be a compact connected codimension two submanifold of
K such that [B] € Hgy2(K, Z;) is the Poincaré dual of wy(TK) € H2(K, Zy).
We assume the existence of such a submanifold and consider the case where
B is non-orientabe.

We fix a spin structure on K — B. Then B carries a canonically induced
pin~ structure (cf. Kirby-Taylor [KT)).

Remark A.1. The case where B is orientable has already been consid-
ered in Zhang [Z3].

Let E be a real vector bundle over K. Let Eg be the complexification of
E.

Let N be the normal bundle to B in K Let e € H*(TB,o(N)) =
H*(T'B,o(TB)) be the Euler class of N,

Denote by 7 : B < K the embedding of B in K.

Let ind*(:*E) be the mod 2 topological index of the real vector bundle
1*E over B.

The main result of this Appendix can be stated as follows.

Theorem A.2. The following identity holds,
(A1) < A(TK)ch(Ep), K] >= ind(i*E)

- < A(rB); = tanh(S)ch(i*Eo), [B] > (mod 2).

Remark A.3. Since tanh(£) is an odd function in e, the characteristic
number in the right hand side of (A.1) is well defined.

The proof of Theorem A.2 is almost the same as in Zhang [Z21] with minor
modifications. So we will only give a sketch.
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Proof of Theorem A.2 Let g™ be a metric on TB. Let g" be a metric
on N. Let m: N — B be the projection map of the normal bundle.

Set Ny ={n € N |||n|,~ <1}, M = 8N;. Then N, is a disc bundle over
B with fibre D, M is a circle bundle over B with fibre S*. The metric ¢¥
restricts to each fibre S a metric g5

One constructs easily a metric g7 on TD and a series of metrics g’k
€ > 0 on TK such that i). ¢"*¢is product near M, ii). g7 |y= 1 gTB @
g7 and iii). ¢TFe |y = 1n*¢"8 @ g7P. Note R¥* the curvature of the
Levi-Civita connection of g7 ¥

Let g*'F be a metric on i*E. Let V"E be a Euclidean connection on ¢*E.
g"'F and V*Z extends to i*E¢ accordingly.

We can then construct a metric ¢ and a Euclidean connection VZ on E
such that i). g% and V¥ are of product structure near M, ii). g% |y, = 7*¢"Z
and iii). VE |y = m*V7E,

Let Dy q-i g, be the Dirac operator associated to (M, g7, 7i*F). Then,
asin [Z1, Lemma 3.3], one can apply the Atiyah-Patodi-Singer index theorem
for manifolds with boundary [APS] to K — N; to get the following formula,

(A.3) < A(TK)ch(Eg), [K] >= H(Dagweinpe)

1 im ~
+(52) " [ A(RF)ch(Ee, V%) (mod 2).
27 M
Now since the coupled connection on 7*i*E does not depend on e, the

formula of [Z1, (3.6)] will take the following form in our situation here,
(A4) EI_I;% ﬁ(DM,‘.'T*i*E,E) = ﬁ(DB,‘i*E)

tanh() — £
W, [B] > (mod -2).

And the analogue of [Z1, (3.7}] turns out to be

+ < A(TB)ch(i" E)

(A.5) lim (— - f A(RX)ch(E¢)

e—0

-< A(TB) e (51 hg

(A.1) now follows from (A.3)—(A.5) and our index theorem Theorem 4.3.

—~ 1)ch(i*E¢), B} >
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The proof of Theorem A.2 is completed. O

‘Remark A.4. While in general the mod 2 topological index is difficult
to calculate, Theorem A.2 and [Z1, Theorem 3.2] show that they can be
computed through characteristic numbers in some cases.

Remark A.5. Comparing with Zhang [Z3], where we treated the case
of orientable B, we are not satisfied that in [Z23], a formula corresponding to
(A.2) here implies the formula corresponding to [Z1, Theorem 3.2]. While
here for the case where B is non-orientable, we don’t see such an implication,
at least at this moment.

Remark A.6. As we now have formulated the Rokhlin type congruence
in a pure topological way, we would like to see a proof of (A.2) similar to
what we have done in [Z3] for the case where B is orientable.

Now set £ =TK in (A.2). One gets
(4.6) < A(TK)ch(ToK), [TK] >=ind'(TB & N)

_< A(TB)% tanh($)ch(ToB ® No), [B) > .

On the otherhand, by [Z1, Theorem 3.2] and the index theorem Theorem
4.3, one has . ‘

(A.7) < A(TK)ch(TcK),[K] >= ind{TB & R o(TB))

- < ﬁ(TB)%tanh(-z)ch(TcB), [B] >

ch(Ng) — 2 cosh £
esinh(3)

The following result is a direct consequence of (A.7) and (A.6).

+ < A(TB) B> (mod2).

Theorem A.7. The following identity holds,
(A.8)  ind"(N) - ind"(R® o(TB)) =< A(TB)sinh(e),[B] > (mod 2).
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Corollary A.8. For any two dimensional vector bundle N over an 8% -+ 2
dimendional compact pin~ manifold B verifying that w; (N) = wy(TB), the
following identity holds,

(A.9) 2ind"(N) = 2ind" (R @ o(T'B)) (mod Z).

Proof. Let B be the orientation cover of B. Then N lifts to an orientable
vector bundle N over B with Euler class & Now B is a spin manifold, so
by the classical theorem of _Atiyah and Hirzebruch [AH], the number <
A(TB)sinh(é),[B) >=2 < A(T B)sinh(e), [B] > is an integer. (A.9) follows
from this fact and (A.8). O

Remark A.9. A formula of form (A.8) for the case where B is a spin has
been proved in [Z3, Corollary 13] before. This later result has been extended
by Tianjun Li [Li] to the case where N can be any complex vector bundle
over an 8k + 2 dimensional compact spin manifold. It would be interesting
to formulate and prove an analogues generalization for (A.8) here.
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