
Clifford Asymptotics and the Local Lefschetz Index 

John D. Lafferty t Yn Yanlin, and Zhang VCeiping 

In this note we indicate a direct proof of the Lefschetz fixed point formulas of Atiyah, Bott, 

Segal, and Singer for isometrics. 

Consider the standa.rd setup of the Dirac operator D acting on sections of the spin bundle 

associated with a compact and smooth spin manifold M. Thinking of D 2 = A as a perturbed 

Laplacian via. the Liehnerowicz formula., we are led to consider the parametrix HN(t , x, y) of A 

given by 

exp ( ~ )  t'U(')(y,x) (1) HN(I , x, y) "= (4rr/) n 

as a parametrized family of endomorphisms defined in a neighborhood of the diagonal in M × M. 

Here 2N > 2n = dim(M), p(x, y) is the Riemannian distance and u(~)(y, x) : 7r-l(y) --, :*-l(x)  
are endomorphisms with U(°)(x, x) = Id and 

0 exp( 4t )tNAIT(N)r. ")v. (2) + A  HN(t , . , u ) v = -  (47rt) n - ---- ,y, 

It was precisely this construction that was used by Patodi [5] in the case of the de Rham complex 

as a means of matching the local asymptotics, as t approaches zero, to evaluate the Euler-Poincar~ 

characteristic in terms of the Chern polynomial. In [6], this program was carried through for 

the spin complex using the above parametrix and a. detailed analysis of the associated Clifford 

asymptotics. 

The first observation to make in such an approach is that a quick asymptotic match gives 

the order of the term contributing to the final answer. For the spin complex, this is of course 

the observation that only the term of top order 2n in the generators {ci} of the Clifford algebra 

C2n = End(S+ @ S_) contributes to the evaluation of the index of D. In terms of the parametrix, 

this reads 

fMTrs  u(i)(x,x) dx = 0 (3) 

for i < n, and 
1 n 

The second observation to make is that choosing the geodesic moving frame greatly simplifies the 

analysis. Thus, working locally in normal coordinates Yi at x E M, let Enorm be an orthonormal 

frame at z which is moved parallelty along geodesics through x, yielding a local frame field. One 

then identifies x with zero and proceeds with the analysis by taking local Taylor expansions of 
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operators with respect to this frame field and, essentially, matching terms on both sides of equation 

(1). Toward this end, the following construction is extremely useflll. Let multi-indices a , ~  6 Z 2n 

and 7 6 (Z2) 2" be given and define 

X(Y'~D~e "~) = 181-  I'~t + I~'1 (5) 

when ya = y~l " "" S2n"a2", D~y = (8/8y1)~1 . . . . .  .. (O/8y2n) f~" and e7 - e~' e2n72". Thus, for example, 

the Lichnerowicz formula then takes the form 

D2 = _ ~ 8 2 1 ~ 0 

T 

i~j ,k ~ l  a 2 a s a 4  

The point, of course, is that if q~ (a local section of some bundle) has a zero of order m at x then 

there is no contribution from the supertrace Trs (yaD~eT¢)  at x in case X(yaD~e 7) - m < 2n. 

The above thus provides an efficient scheme for throwing away terms. 

Now, let T act as an isometry on M, and assume that the action of dT lifts to an action of 

S p i n ( M )  which commutes with the Spin(2n) action, thereby inducing a map on cohomology. Then 

a map T* is induced as a linear operator on sections of the spin bundle E = Sp in (M)  xspln(2n) S. 

As a heat problem, the evaluation of the Lefschetz number  

L(T)  = T r  T*]kerD+ - T r  T*lkerD_ (6) 

localizes on the fixed point set F = {x I Tx = x}, which consists of the disjoint union of a finite 

number  of even-dimensional totally geodesic submanifolds F1, F2 , . . .  Ft .  There is thus no harm in 

assuming that r -- 1. Let t, be the normal bundle of F and u(e) = {v e ~'] IIv]l < e} for e > 0. The 

bundle v is invariant under dT  and dTIv is nondegenerate. 

We denote by Pt=t:(x, y) : E~}y --* E~Iz  the fundamental  solutions for the heat operators O/Ot + 

•+.  The s tandard heat equation argument yields 

L(T)  = / M ( T r T * P t + ( T x ,  x) - T r T * P t ( T z ,  z))  dz,  t > 0 (7) 

where dz is the Riemannian volume element. Denote the integrand by 

£(t ,  x) = Tr  T*P + (Tx, x) - Tr  T*P~- (Tx, z).  (8) 

Then straightforward pseudodifferential operator and parametrix estimates allow us to write 

L(T)  = f F  Ll°c(T)(~) d~ (9) 
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where the local Lefschetz number, defined by the limit 

Lloc(T)(~) = limt~o fv~(,) £(i, ezp,,) dv 

exists and is independent of e. 

(1o) 

Patodi 's parametrix strategy for evaluating the local index is equally appropriate here. How- 

ever, a more delicate treatment of the Clifford asymptotics is now required near the fixed-point 

submanifold. 

We have already observed that in normal coordinates, and with respect to the geodesic mov- 

ing frame Enorm, the expression of the parametrix as a parametrized family of endomorphisms 

is particularly tractable. The next important observation is that in what we call "orthogonal" 
coordinates near F the action of our isometry T has a particularly nice form. Such coordinates are 

expressed in terms of geodesics in F and transversals normal to F; and, as such, they trivialize the 

normal bundle. In particular, the action of dT is constant along fibers of v in this trlvlalization. 

The key to evaluating the local Lefschetz index lies in relating the geodesic moving frame Enorm 
and the moving frame Eorthog obtained from orthogonal coordinates (by moving parallelly along 

geodesics in F and then along geodesics normal to F)  in terms of an infinitesimal holonomy. 

Let us now fix ~ E F and work locally near ~. Then in our orthogonal coordinates the map 

dT acts as the identity in directions tangential to F and as, say, e -O(~') in the normal fiber over 

z '  E F,  where @(z') E so(2n - 2n') and 2n' = dim(F). Of course, we may arrange things so that 

e(:) = -. (11) 

0 On-n' 
- O n -n '  0 

It turns out that the infinitesimal holonomy relating the frames Enorm and Eortho9 , expressed 

as a Lie atgel, ra-vah:ed map q, : V --* so(2n) defined in a neighborhood U of ~ by Enorrn(Z) = 
Eorthog(Z)eq'(~') has the property that for x = (z' ,  v) (in terms of the local trlvialization of v) 

1 2n-2n' 
+ij(~) = - ~  ~ (ve-°(~'))~vaR~+2.,, ~+2.,, i, g=') + o(Ivl 2) (12) 

a,B=l 

where the curvature R is computed with respect to the frame Eorthog. 

Now, to investigate the Clifford asymptotics, it is best to scale the metric in the normal direc- 

tions, setting v = v~w. It is also helpful to consider a modified X operator, setting 

2 ( ~ ( t ) e i ' ' " e i ' ) = s - s u p { k E Z I  t--o+lim ~ [ff(t)l < ~ }  (13) 

0 O~ 

-01 0 
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for a monoid ¢(t)e 6 " ' e i ,  with real-valued ¢. 

The notation is simplified by letting Pt(z), T*(x) C Horn(S:~, S:~) be defined locally through the 

equivalence relations 

PdTx,  x)[((r(x), v)] = [(a(Tx), Pt(x,)v] (14) 

and 

so that 

T*[(a(T.e), u)] = [((r(x), T*(x)u]. 

c(~. ~) = T~ ~*(~)P,(~)ls+ - T~ T*(~)P,(~)Is_ = T~.,~*P(~). 

It may then be shown that 

n- -h i  #_ 
T*(x) = ( -1 )  n -n  ( H sin 2 e x p { - t / 4  

o t = l  

(15) 

(16) 

2n-2n ~ 
bab[~(e-O( O A'l- )c~[~ } )e2n' + l " " e2n + 

mB=l (17) 

+ o ( x  < 2( .  - . %  

where A -L is the (2n - 2n') x (2n - 2n') matrix whose (a, fl) element, is given by 

1 2n' 
= , ~  R,~+~.,, ~+2,,,, i, j(~)ei% (18) ( AA-)aB -- 2 i "= 1 

(A T is defined in the obvious analogous fashion, replacing a + 2n t and fl + 2n r by indices ranging 

between 1 and 2hi.) Finally, let A be the 2n x 2n matrix given by 

i 2n . 

Aij = - ~ k~t_ 1 Rijklekel, (19) 

where Rijkl are the components of the Riemannian curvature tensor now computed with respect 

to the frame field Enorm , and set 

2n 
Ak(u) = E u~ui(ak)~i, k=  1,2,... (20) 

i,j=] 

Then there is a operator P(t; zt, z2,. . .  ;wl,w2,. . . )  which is a power series in t with coefficients 

polynomials in zi and wi such that 

-p(xjTx) ~ 
/5t(¢) = exp 4~ p(t;Tr~2 . . . .  ,Tr f l2k , . . . ,Tr~2n;~2(y) , . . . ,~2k(y) , . . . ,~2n(y))  

(47rt) n (21) 

+ Z ~ o ( ~  < 2m). 
m_>0 

Furthermore, in diagonal form we have, by solving harmonic oscillator-type equations, 
B 

p(~; ((_1)~2(~k + . . .  + ,  2k)); ( ( -17  Z (~L-,  + ,L),,~k)) = 
~=1 

=(47rt)neHv"'/4t f l  (~=1 87rs in - - ""  e x P / - - - : - - ( v 2 c ~ - ! h ~  \ 8  iT"ta [ - i u a ,  2 + v 2 a ) e o t h ~ )  ) . (22) 
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These then, are all of the pieces necessary to a final calculation of the local Lefschetz index. 

It remains simply to note that to compute the supertrace it suffices to compute the coefficient 

of e I ...e2n and that since eie j = - e j e  i -b O(~" < 1), if we formally replace e i by wl, where 

w = (Wl,... ,W2n) is the frame dual to Enorm, and then substitute the associated forms ~T and 

l-/± for A T and A ±, where 

oT 1 2n 
= - ~ ~ R~jkt~k A ~l 

k,l=l 

1 2n 

k,l= l 

1 < i, j < 2n I 

2n I + l < i , j < 2 n  r 

(23) 

then computing the supertrace is equivalent to computing the form of the top order 2n r on F, if we 
JL._n multiply by (vfZ-f) , which is the so-called Berezin-Patodi constant. (To explain the appearance 

2n-t 
of this term, simply note that Trls:e(el . . .  e2n) = ~ . )  

Letting ~2 = 

f~T = 

0] 
0 f/± be given formally as 

- u  1 0 - v  l 
... ~± = 

° o"' --Unt 

Vl 

0 

0 

--Vn_n~ 
v.oo, ] (24) 

where ui and vi are indeterminates, a straightforward (however tedious) calculation gives at last 

that as a 2n I form on F, 

a = l n ' u a / 4 : r / n - n ' ' V s i n h  ua /47r -~- -  1 _ ~ ) - 1  LIoc(T) : H ( a ~  2 s l n h ( ~  + ) (25) 

whence the main result 

Theo rem.  

ezpressed by 

where in the notation used above 

[Zto:(T)] i = qdet~rf 

= A ( T F I ) [ P f  (2 sin(f~/47r + ~2-10/2) ) ( t , (F i ) ) ] - '  

The Le]schetz number L(T)  of the isometry T acting on lhe spin manifold M is 

(26) 

(27) 

Clearly the introduction of a twisting bundle results in only minor changes necessary in the 

above approach. For details of the above direct and purely elementary geometrical program, as 

well as comments on related approaches to the local index theory, we refer to [4]. 
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