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1 Introduction

In [8, 9, 16], it has been shown that both of the Alvarez-Gaumé-Witten miraculous anomaly cancellation

formula [1] and the Green-Schwarz anomaly factorization formula [7] for the gauge group SO(32) can be

derived (and extended) through a pair of modularly related modular forms, which are over the modular

subgroups Γ0(2) and Γ0(2), respectively. In answering a question of Schwarz [19], we deal with the

remaining case of gauge group E8 × E8 in this article.

Let Z → X → B be a fiber bundle with fiber Z being 10-dimensional. Let TZ be the vertical

tangent bundle equipped with a metric gTZ and an associated Levi-Civita connection ∇TZ (see [3,

Proposition 10.2]). Let RTZ = (∇TZ)2 be the curvature of ∇TZ , which we also for simplicity denote

by R. Let TCZ be the complexification of TZ with the induced Hermitian connection ∇TCZ .

Let (P1, ϑ1) and (P2, ϑ2) be two principal E8 bundles with connections over X. Let ρ be the adjoint

representation of E8. Let Wi = Pi ×ρ C248, i = 1, 2 be the associated vector bundles, which are of

rank 248. We equip both W1 and W2 with Hermitian metrics and Hermitian connections, respectively.

Let Fi denote the curvature of the bundle Wi. Let “Tr” denote the trace in the adjoint representation.

The elementary facts about E8 tells us that TrF 2n+1
i = 0, TrF 4

i = 1
100 (TrF

2
i )

2 and TrF 6
i = 1

7200 (TrF
2
i )

3

(see [2]). It is easy to see that c2(Wi) = − 1
2 · 2π · TrF 2

i . Simply denote TrFn1 +TrFn2 by TrFn.

∗Corresponding author



986 Han F et al. Sci China Math June 2017 Vol. 60 No. 6

The Green-Schwarz anomaly formula [7] asserts that the following factorization for the 12 forms holds1):

I12 = {Â(TZ)ch(W1 +W2) + Â(TZ)ch(TCZ)− 2Â(TZ)}(12)

=
−1

64π6

1

720

(
− 15

8
trR2trR4 − 15

32
(trR2)3 +TrF 6 +TrF 2

(
1

16
trR4 +

5

64
(trR2)2

)
− 5

8
TrF 4trR2

)
=

−1

4π2

1

2

(
trR2− 1

30
TrF 2

)
· 1

16π4

1

180

(
1

960
(TrF 2)2− 5

16
TrF 4+

1

32
trR2TrF 2− 15

16
trR4− 15

64
(trR2)2

)
...

=

(
p1(TZ) +

1

30
(c2(W1) + c2(W2))

)
· I8. (1.1)

In [11, 12], Hořava and Witten observed, on the other hand, that the following anomaly factorization

formula holds for each i = 1, 2:

Îi12 =

{
Â(TZ)ch(Wi) +

1

2
Â(TZ)ch(TCZ)− Â(TZ)

}(12)

=
−1

64π6

1

1440

(
− 15

8
trR2trR4 − 15

32
(trR2)3 + 2TrF 6

i +TrF 2
i

(
1

8
trR4 +

5

32
(trR2)2

)
− 5

4
TrF 4

i trR
2

)
=

−1

4π2

1

4

(
trR2 − 1

15
TrF 2

i

)
· Îi8

=

(
1

2
p1(TZ) +

1

30
c2(Wi)

)
· Îi8, (1.2)

where Îi8 can be written explicitly as

Îi8 =
1

16π4

1

24

(
− 1

4

(
1

2
trR2 − 1

30
TrF 2

i

)2

− 1

8
trR4 +

1

32
(trR2)2

)
,

and therefore

I12 = Î112 + Î212 =

(
1

2
p1(TZ) +

1

30
c2(W1)

)
· Î18 +

(
1

2
p1(TZ) +

1

30
c2(W2)

)
· Î28 .

The purpose of this article is to show that the above anomaly factorization formulas can also be derived

naturally from modularity as in the orthogonal group case dealt with in [9]. This provides a positive

answer to a question of Schwarz mentioned at the beginning of the article.

To be more precise, we construct in Section 2 a modular form Q(Pi, Pj , τ) of weight 14 over SL(2,Z),

for any i, j ∈ {1, 2}, such that when i = 1, j = 2, the modularity of Q(P1, P2, τ) gives the Green-Schwarz

factorization formula (1.1), while when i = j, the modularity of Q(Pi, Pi, τ) gives the Hořava-Witten

factorization formula (1.2). Actually what we construct is a more general modular form Q(Pi, Pj , ξ, τ),

which involves a complex line bundle (or equivalently a rank two real oriented bundle) and we are able to

obtain generalizations of the Green-Schwarz formula and the Hořava-Witten formula by using the asso-

ciated modularity. Our construction of the modular form Q(Pi, Pj , ξ, τ) involves the basic representation

of the affine Kac-Moody algebra of E8.

Inspired by our modular method of deriving the Green-Schwarz and Hořava-Witten factorization for-

mulas, we also construct a modular form R(Pi, ξ, τ) of weight 10 over SL(2,Z), the modularity of which

will give us a new factorization formula of Hořava-Witten type. See Theorem 1.4 for details. It would be

interesting to compare (1.8) and (1.9) with the Hořava-Witten factorization (1.2) or (1.6). Actually, an-

other interesting question of Schwarz is to construct quantum field theories associated to the generalized

anomaly factorization formulas in this paper and [9].

In the rest of this section, we present our generalized Green-Schwarz and Hořava-Witten formula, as

well as the new formulas of Hořava-Witten type obtained from R(Pi, ξ, τ). They are proved in Section 2

1) In what follows, we write characteristic forms without specifying the connections when there is no confusion (see [20]).
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by using modularity after briefly reviewing some knowledge of the affine Kac-Moody algebra of E8 in

Section 1.

Let ξ be a rank two real oriented Euclidean vector bundle over X carrying a Euclidean connection ∇ξ.

Let c = e(ξ,∇ξ) be the Euler form canonically associated to ∇ξ (see [20, Subsection 3.4]). Let TCZ be

the complexification of TZ and ξC the complexification of ξ. For a complex vector bundle E, denote

Ẽ := E −Crk(E).

Theorem 1.1. For 1 6 i, j 6 2, the following identities hold:

{Â(TZ)e c
2 ch(Wi +Wj) + Â(TZ)e

c
2 ch(TCZ)− 2Â(TZ)e

c
2 + Â(TZ)e

c
2 ch(ξ̃C + 3ξ̃C ⊗ ξ̃C}(12)

=

(
p1(TZ)−3c2 +

1

30
(c2(Wi)+c2(Wj))

)
·
{
− e

1
24 (p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj))) − 1

p1(TZ)− 3c2 + 1
30 (c2(Wi)+c2(Wj))

Â(TZ)e
c
2 ch(A)

+ e
1
24 (p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)))Â(TZ)e
c
2

}(8)

, (1.3)

where A =Wi +Wj + TCZ − 2 + ξ̃C + 3ξ̃C ⊗ ξ̃C .

Putting i = j, one has for each i,{
Â(TZ)e

c
2 ch(Wi) +

1

2
Â(TZ)e

c
2 ch(TCZ)− Â(TZ)e

c
2 +

1

2
Â(TZ)e

c
2 ch(ξ̃C + 3ξ̃C ⊗ ξ̃C)

}(12)

=

(
1

2
p1(TZ)−

3

2
c2 +

1

30
c2(Wi)

)
·
{
− e

1
24 (p1(TZ)−3c2+ 1

15 c2(Wi)) − 1

p1(TZ)− 3c2 + 1
15c2(Wi)

Â(TZ)e
c
2 ch(Bi)

+ e
1
24 (p1(TZ)−3c2+ 1

15 c2(Wi))Â(TZ)e
c
2

}(8)

, (1.4)

where Bi = 2Wi + TCZ − 2 + ξ̃C + 3ξ̃C ⊗ ξ̃C .

If ξ is trivial, we obtain the Green-Schwarz formula (1.1) for E8 × E8 and the Hořava-Witten formu-

la (1.2) for E8 in the following corollary.

Corollary 1.2. One has

{Â(TZ)ch(W1 +W2) + Â(TZ)ch(TCZ)− 2Â(TZ)}(12)

=

(
p1(TZ) +

1

30
(c2(W1) + c2(W2))

)
·
{
− e

1
24 (p1(TZ)+ 1

30 (c2(W1)+c2(W2))) − 1

p1(TZ) +
1
30 (c2(W1) + c2(W2))

Â(TZ)ch(C)

+ e
1
24 (p1(TZ)+ 1

30 (c2(W1)+c2(W2)))Â(TZ)

}(8)

, (1.5)

where C =W1 +W2 + TCZ − 2.

In addition, for each i,{
Â(TZ)ch(Wi) +

1

2
Â(TZ)ch(TCZ)− Â(TZ)

}(12)

=

(
1

2
p1(TZ) +

1

30
c2(Wi)

)
·
{
− e

1
24 (p1(TZ)+ 1

15 c2(Wi)) − 1

p1(TZ) +
1
15c2(Wi)

Â(TZ)ch(Di)

+ e
1
24 (p1(TZ)+ 1

15 c2(Wi))Â(TZ)

}(8)

, (1.6)

where Di = 2Wi + TCZ − 2.

Remark 1.3. It can be checked by direct computations that the second factors in the right-hand sides

of (1.5) and (1.6) are equal to I8 and Îi8, respectively.

We now state a new factorization formula, which is of the Hořava-Witten type.
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Theorem 1.4. For each i, the following identity holds:

{Â(TZ)e c
2 ch(Wi) + Â(TZ)e

c
2 ch(TCZ) + 246Â(TZ)e

c
2 + Â(TZ)e

c
2 ch(ξ̃C + 3ξ̃C ⊗ ξ̃C)}(12)

=

(
p1(TZ)− 3c2 +

1

30
c2(Wi)

)
·
{
− e

1
24 (p1(TZ)−3c2+ 1

30 c2(Wi)) − 1

p1(TZ)− 3c2 + 1
30c2(Wi)

Â(TZ)e
c
2 ch(Ei)

+ e
1
24 (p1(TZ)−3c2+ 1

30 c2(Wi))Â(TZ)e
c
2

}(8)

, (1.7)

where Ei =Wi + TCZ + 246 + ξ̃C + 3ξ̃C ⊗ ξ̃C .

If ξ is trivial, we have

{Â(TZ)ch(Wi) + Â(TZ)ch(TCZ) + 246Â(TZ)}(12)

=

(
p1(TZ) +

1

30
c2(Wi)

)
·
{
− e

1
24 (p1(TZ)+ 1

30 c2(Wi)) − 1

p1(TZ) +
1
30c2(Wi)

Â(TZ)ch(Fi)

+ e
1
24 (p1(TZ)+ 1

30 c2(Wi))Â(TZ)

}(8)

, (1.8)

where Fi =Wi + TCZ + 246.

Remark 1.5. We can express (1.8) by direct computations as follows:

−1

64π6

1

1440

(
− 15

4
trR2trR4 − 15

16
(trR2)3 + 2TrF 6

i +TrF 2
i

(
1

8
trR4 +

5

32
(trR2)2

)
− 5

4
TrF 4

i trR
2

)
=

−1

4π2

1

2

(
trR2 − 1

30
TrF 2

i

)
· 1

16π4

1

180

(
− 1

480
(TrF 2

i )
2 +

1

32
trR2TrF 2

i − 15

16
trR4 − 15

64
(trR2)2

)
=

(
p1(TZ) +

1

30
c2(Wi)

)
· Ĵ i8. (1.9)

Remark 1.6. As in [19], one may ask whether there is a physics model corresponding to (1.8) and (1.9).

We point out that the appearance of the factor (trR2 − 1
30TrF

2
i ) in the Green-Schwarz anomaly can-

cellation formulas being linked to the modularity of certain q-series after being multiplied by

e
1
24E2(τ)

−1

8π2 (trR2− 1
30F

2)

was already realized by physicists (see [15,17]), of which we do not claim priority. However, no concrete

and precise formulas were given in those work such that later when needed one still derives the Green-

Schwarz type anomaly cancellation formulas by using the traditional method without applying modularity

(see [11,12,18]).

Actually, the motivation of our work (as well as [9]) is simply to derive explicitly all the above mentioned

formulas in a unified framework of applying modularity. Moreover, the formulas derived in this unified

framework make the Green-Schwarz formulas more transparent by showing explicitly what are the factors

in the anomaly factorization. For example, the second factor in the right-hand side of (1.5) explicitly

gives I8 in (1.1). This essentially comes from the application of the basic representation of affine E8,

which was not explicitly used in [15, 17]. This unified framework can also inspire many new formulas.

For example, (1.8) and (1.9) give a new Hořava-Witten type formula with one E8 bundle involved; (1.3)

and (1.7) give formulas with a complex line bundle being involved, which should deal with anomalies

coming from nontriviality of determinant line bundles of (twisted) spinc Dirac operators. We hope these

new formulas could be physically meaningful.

2 The basic representation of affine E8

In this section, we briefly review the basic representation theory for the affine E8 by following [13] (see

also [14]).
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Let g be the Lie algebra of E8. Let ⟨·, ·⟩ be the Killing form on g. Let g̃ be the affine Lie algebra

corresponding to g defined by

g̃ = C[t, t−1]⊗ g⊕Cc,

with bracket

[P (t)⊗ x+ λc,Q(t)⊗ y + µc] = P (t)Q(t)⊗ [x, y] + ⟨x, y⟩Rest=0

(
dP (t)

dt
Q(t)

)
c.

Let ĝ be the affine Kac-Moody algebra obtained from g̃ by adding a derivation t ddt , which operates on

C[t, t−1]⊗ g in an obvious way and sends c to 0.

The basic representation V (Λ0) is the ĝ-module defined by the property that there is a nonzero vector v0
(highest weight vector) in V (Λ0) such that cv0 = v0, (C[t] ⊕ Ct ddt )v0 = 0. Setting Vk := {v ∈ V (Λ0) |
t ddt = −kv} gives a Z+-gradation by finite spaces. Since [g, d] = 0, each Vk is a representation of g.

Moreover, V1 is the adjoint representation of E8.

Let q = e2π
√
−1τ . Fix a basis for the Cartan subalgebra and let {zi}8i=1 be the corresponding coordi-

nates. The character of the basic representation is given by

ch(z1, z2, . . . , z8, τ) :=
∞∑
k=0

(chVk)(z1, z2, . . . , z8)q
k = φ(τ)−8Θg(z1, z2, . . . , z8, τ),

where φ(τ) =
∏∞
n=1(1− qn) so that η(τ) = q1/24φ(τ) is the Dedekind η function; Θg(z1, z2, . . . , z8, τ) is

the theta function defined on the root lattice Q by

Θg(z1, z2, . . . , z8, τ) =
∑
γ∈Q

q|γ|
2/2e2π

√
−1γ(−→z ).

It is proved in [6] (see [10]) that there is a basis for the E8 root lattice such that

Θg(z1, . . . , z8, τ) =
1

2

( 8∏
l=1

θ(zl, τ) +

8∏
l=1

θ1(zl, τ) +

8∏
l=1

θ2(zl, τ) +

8∏
l=1

θ3(zl, τ)

)
, (2.1)

where θ and θi (i = 1, 2, 3) are the Jacobi theta functions (see [4, 8]).

3 Derivation of Green-Schwarz and Horava-Witten type anomaly factoriza-

tions via modularity

In this section, we derive the Green-Schwarz and Hořava-Witten type factorization formulas in Theorem-

s 1.1 and 1.4 via modularity.

For the principal E8 bundles Pi, i = 1, 2, consider the associated bundles

Vi =
∞∑
k=0

(Pi ×ρk Vk)qk ∈ K(X)[[q]].

Since ρ1 is the adjoint representation of E8, we have Wi = Pi ×ρ1 V1.
Following [5], set

Θ(TCZ, ξC) :=

( ∞⊗
m=1

Sqm(T̃CZ)

)
⊗
( ∞⊗
n=1

Λqn(ξ̃C)

)
⊗
( ∞⊗
u=1

Λ−qu−1/2(ξ̃C)

)
⊗
( ∞⊗
v=1

Λqv−1/2(ξ̃C)

)
∈ K(X)[[q]],

where ξC is the complexification of ξ.

Clearly, Θ(TCZ, ξC) admits a formal Fourier expansion in q as

Θ(TCZ, ξC) = C +B1q +B2q
2 + · · · , (3.1)
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where the Bj ’s are elements in the semi-group formally generated by complex vector bundles over X.

Moreover, they carry canonically induced connections denoted by∇Bj . Let∇Θ be the induced connection

with q-coefficients on Θ.

For 1 6 i, j 6 2, set

Q(Pi, Pj , ξ, τ) :=

{
e

1
24E2(τ)(p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)))Â(TZ)

× cosh

(
c

2

)
ch(Θ(TCZ, ξC))φ(τ)16ch(Vi)ch(Vj)

}(12)

. (3.2)

Theorem 3.1. Q(Pi, Pj , ξ, τ) is a modular form of weight 14 over SL(2,Z).

Proof. By the knowledge reviewed in Section 2, we see that there are formal two forms yil , 1 6 l 6 8,

i = 1, 2 such that

φ(τ)8ch(Vi) =
1

2

( 8∏
l=1

θ(yil , τ) +

8∏
l=1

θ1(y
i
l , τ) +

8∏
l=1

θ2(y
i
l , τ) +

8∏
l=1

θ3(y
i
l , τ)

)
. (3.3)

Since θ(z, τ) is an odd function about z, one can see that up to degree 12, the term
∏8
l=1 θ(y

i
l , τ) can

be dropped and we have

φ(τ)8ch(Vi) =
1

2

( 8∏
l=1

θ1(y
i
l , τ) +

8∏
l=1

θ2(y
i
l , τ) +

8∏
l=1

θ3(y
i
l , τ)

)
. (3.4)

Since θ1(z, τ), θ2(z, τ) and θ3(z, τ) are all even functions about z, the right-hand side of the above

equality only contains even powers of yij ’s. Therefore, ch(Wi) only consists of forms of degrees divisible

by 4 (this is actually a basic fact about E8). So

ch(Vi) = 1 + ch(Wi)q + · · · = 1 + (248− c2(Wi) + · · · )q + · · · . (3.5)

On the other hand,

1

2

( 8∏
l=1

θ1(y
i
l , τ) +

8∏
l=1

θ2(y
i
l , τ) +

8∏
l=1

θ3(y
i
l , τ)

)
= 1 +

(
240 + 30

8∑
l=1

(yil)
2 + · · ·

)
q +O(q2). (3.6)

From (3.4)–(3.6), we have
8∑
l=1

(
yil
)2

= − 1

30
c2(Wi). (3.7)

Note that this is also a basic fact about representations of E8, although it could be deduced in this

interesting way by playing with modular forms.

Let {±2π
√
−1xk} (1 6 k 6 5) be the formal Chern roots for (TZC ,∇TZC ). Let c = e(ξ,∇ξ)

= 2π
√
−1u be the Euler form canonically associated to ∇ξ. One has

Q(Pi, Pj , ξ, τ)

=

{
e

1
24E2(τ)(p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)))Â(TZ) cosh

(
c

2

)
ch(Θ(TCZ, ξC))φ(τ)16ch(Vi)ch(Vj)

}(12)

=

{
e

1
24E2(τ)(p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)))

( 5∏
k=1

(
xk

θ′(0, τ)

θ(xk, τ)

))
θ1(u, τ)

θ1(0, τ)

θ2(u, τ)

θ2(0, τ)

θ3(u, τ)

θ3(0, τ)

× 1

4

( 8∏
l=1

θ1(y
i
l , τ) +

8∏
l=1

θ2(y
i
l , τ) +

8∏
l=1

θ3(y
i
l , τ)

)

×
( 8∏
l=1

θ1(y
j
l , τ) +

8∏
l=1

θ2(y
j
l , τ) +

8∏
l=1

θ3(y
j
l , τ)

)}(12)

. (3.8)
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Then we can perform the transformation formulas for the theta functions and E2(τ) (see [4,8]) to show

that Q(Pi, Pj , ξ, τ) is a modular form of weight 14 over SL(2,Z).

Proof of Theorem 1.1. Expanding the q-series, we have

e
1
24E2(τ)(p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)))Â(TZ) cosh

(
c

2

)
ch(Θ(TCZ, ξC))φ(τ)16ch(Vi)ch(Vj)

=

(
e

1
24 (p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj))) − e
1
24 (p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)))

×
(
p1(TZ)− 3c2 +

1

30
(c2(Wi) + c2(Wj))

)
q +O(q2)

)
· Â(TZ)

× cosh

(
c

2

)
ch(C +B1q +O(q2))(1− 16q +O(q2))(1 + ch(Wi)q +O(q2))(1 + ch(Wj)q +O(q2))

= e
1
24 (p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)))Â(TZ) cosh

(
c

2

)
+ q

(
e

1
24 (p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)))Â(TZ) cosh

(
c

2

)
ch(B1 − 16 +Wi +Wj)

− e
1
24 (p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)))

(
p1(TZ)− 3c2 +

1

30
(c2(Wi) + c2(Wj))

)
Â(TZ) cosh

(
c

2

))
+O(q2). (3.9)

It is well known that modular forms over SL(2,Z) can be expressed as polynomials of the Eisenstein

series E4(τ) and E6(τ), where

E4(τ) = 1 + 240q + 2160q2 + 6720q3 + · · · , (3.10)

E6(τ) = 1− 504q − 16632q2 − 122976q3 + · · · . (3.11)

Their weights are 4 and 6, respectively.

Since the weight of the modular form Q(Pi, Pj , ξ, τ) is 14, it must be a multiple of

E4(τ)
2E6(τ) = 1− 24q + · · · . (3.12)

So from (3.9) and (3.12), we have{
e

1
24 (p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)))Â(TZ) cosh

(
c

2

)
ch(B1 − 16 +Wi +Wj)

}(12)

−
{
e

1
24 (p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)))

(
p1(TZ)− 3c2 +

1

30
(c2(Wi) + c2(Wj))

)
Â(TZ) cosh

(
c

2

)}(12)

= −24

{
e

1
24 (p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)))Â(TZ) cosh

(
c

2

)}(12)

. (3.13)

Therefore,{
Â(TZ) cosh

(
c

2

)
ch(Wi +Wj +B1 + 8)

}(12)

=

(
p1(TZ)− 3c2 +

1

30
(c2(Wi) + c2(Wj))

)
×
{
− e

1
24 (p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj))) − 1

p1(TZ)− 3c2 + 1
30 (c2(Wi) + c2(Wj))

Â(TZ) cosh

(
c

2

)
ch(Wi +Wj +B1 + 8)

+ e
1
24 (p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)))Â(TZ) cosh

(
c

2

)}(8)

. (3.14)
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To find B1, we have

Θ(TCZ, ξC)

=

( ∞⊗
m=1

Sqm(T̃CZ)

)
⊗
( ∞⊗
n=1

Λqn(ξ̃C)

)
⊗
( ∞⊗
u=1

Λ−qu−1/2(ξ̃C)

)
⊗
( ∞⊗
v=1

Λqv−1/2(ξ̃C)

)
= (1 + (TCZ − 10)q +O(q2))⊗ (1 + ξ̃Cq +O(q2))

⊗ (1− ξ̃Cq
1/2 − 2ξ̃Cq +O(q3/2))⊗ (1 + ξ̃Cq

1/2 − 2ξ̃Cq +O(q3/2))

= 1 + (TCZ − 10 + ξ̃C + 3ξ̃C ⊗ ξ̃C)q +O(q2). (3.15)

So

B1 = TCZ − 10 + ξ̃C + 3ξ̃C ⊗ ξ̃C .

Plugging B1 into (3.14), we have{
Â(TZ) cosh

(
c

2

)
ch(Wi +Wj + TCZ − 2 + ξ̃C + 3ξ̃C ⊗ ξ̃C)

}(12)

=

(
p1(TZ)− 3c2 +

1

30
(c2(Wi) + c2(Wj))

)
×
{
− e

1
24 (p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj))) − 1

p1(TZ)− 3c2 + 1
30 (c2(Wi) + c2(Wj))

Â(TZ)

× cosh

(
c

2

)
ch(Wi +Wj + TCZ − 2 + ξ̃C + 3ξ̃C ⊗ ξ̃C)

+ e
1
24 (p1(TZ)−3c2+ 1

30 (c2(Wi)+c2(Wj)))Â(TZ) cosh

(
c

2

)}(8)

. (3.16)

Since ch(Wi) and ch(Wj) only contribute degree 4l forms, we can replace cosh( c2 ) by e
c
2 . Then in (2.16),

putting i = 1, j = 2 gives (1.4) and putting i = j gives (1.5).

To prove Theorem 1.4, for each i, set

R(Pi, ξ, τ) :=

{
e

1
24E2(τ)(p1(TZ)−3c2+ 1

30 c2(Wi))Â(TZ) cosh

(
c

2

)
ch(Θ(TCZ, ξC))φ(τ)8ch(Vi)

}(12)

. (3.17)

Theorem 3.2. R(Pi, ξ, τ) is a modular form of weight 10 over SL(2,Z).

Proof. This can be similarly proved to Theorem 3.1 by seeing that

R(Pi, ξ, τ)

=

{
e

1
24E2(τ)(p1(TZ)−3c2+ 1

30 c2(Wi))Â(TZ) cosh

(
c

2

)
ch(Θ(TCZ, ξC))φ(τ)8ch(Vi)

}(12)

=

{
e

1
24E2(τ)(p1(TZ)−3c2+ 1

30 c2(Wi))

( 5∏
l=1

(
xl
θ′(0, τ)

θ(xl, τ)

))
θ1(u, τ)

θ1(0, τ)

θ2(u, τ)

θ2(0, τ)

θ3(u, τ)

θ3(0, τ)

× 1

2

( 8∏
l=1

θ1(y
i
l , τ) +

8∏
l=1

θ2(y
i
l , τ) +

8∏
l=1

θ3(y
i
l , τ)

)}(12)

, (3.18)

and then applying the transformation laws of theta functions.

Proof of Theorem 1.4. Similar to that in the proof of Theorem 1.1, expanding the q-series, we have

e
1
24E2(τ)(p1(TZ)−3c2+ 1

30 c2(Wi))Â(TZ) cosh

(
c

2

)
ch(Θ(TCZ, ξC))φ(τ)8ch(Vi)

=

(
e

1
24 (p1(TZ)−3c2+ 1

30 c2(Wi)) − e
1
24 (p1(TZ)−3c2+ 1

30 c2(Wi))

(
p1(TZ)− 3c2 +

1

30
c2(Wi)

)
q +O(q2)

)
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× Â(TZ) cosh

(
c

2

)
ch(C +B1q +O(q2))(1− 8q +O(q2))(1 + ch(Wi)q +O(q2))

= e
1
24 (p1(TZ)−3c2+ 1

30 c2(Wi))Â(TZ) cosh

(
c

2

)
+ q

(
e

1
24 (p1(TZ)−3c2+ 1

30 c2(Wi))Â(TZ) cosh

(
c

2

)
ch(B1 − 8 +Wi)

− e
1
24 (p1(TZ)−3c2+ 1

30 c2(Wi))

(
p1(TZ)− 3c2 +

1

30
c2(Wi)

)
Â(TZ) cosh

(
c

2

))
+O(q2). (3.19)

However, modular form of weight 10 must be a multiple of E4(τ)E6(τ) = 1− 264q + · · · , so we have{
e

1
24 (p1(TZ)−3c2+ 1

30 c2(Wi))Â(TZ) cosh

(
c

2

)
ch(B1 − 8 +Wi)

}(12)

−
{
e

1
24 (p1(TZ)−3c2+ 1

30 c2(Wi))

(
p1(TZ)− 3c2 +

1

30
c2(Wi)

)
Â(TZ) cosh

(
c

2

)}(12)

= −264

{
e

1
24 (p1(TZ)−3c2+ 1

30 c2(Wi))Â(TZ) cosh

(
c

2

)}(12)

. (3.20)

Therefore,{
Â(TZ) cosh

(
c

2

)
ch(Wi +B1 + 256)

}(12)

=

(
p1(TZ)− 3c2 +

1

30
c2(Wi)

)
·
{
− e

1
24 (p1(TZ)−3c2+ 1

30 c2(Wi)) − 1

p1(TZ)− 3c2 + 1
30c2(Wi)

Â(TZ)

× cosh

(
c

2

)
ch(Wi +B1 + 256) + e

1
24 (p1(TZ)−3c2+ 1

30 c2(Wi))Â(TZ) cosh

(
c

2

)}(8)

. (3.21)

Plugging in B1, we have{
Â(TZ) cosh

(
c

2

)
ch(Wi + TCZ + 246 + ξ̃C + 3ξ̃C ⊗ ξ̃C)

}(12)

=

(
p1(TZ)− 3c2 +

1

30
c2(Wi)

)
×
{
− e

1
24 (p1(TZ)−3c2+ 1

30 c2(Wi)) − 1

p1(TZ)− 3c2 + 1
30c2(Wi)

Â(TZ) cosh

(
c

2

)
ch(Wi + TCZ + 246 + ξ̃C + 3ξ̃C ⊗ ξ̃C)

+ e
1
24 (p1(TZ)−3c2+ 1

30 c2(Wi))Â(TZ) cosh

(
c

2

)}(8)

. (3.22)

Since ch(Wi) only contribute degree 4l forms, we can replace cosh( c2 ) by e
c
2 , and (3.22) gives (1.7).

4 Discussion

Combining with the results in this paper and our previous work in [9], it is interesting to see that the

fundamental anomaly cancellation formulas in various string theories can be unified in the framework of

modular forms and modular transformations. This phenomena has its roots in the hidden symmetry of

the much larger configuration space of string theory, namely, loop space, double loop space, path space,

etc. We expect that many other anomaly cancellation formulas in string theory and M -theory can also

be derived from the modular form method.

On the other hand, the modular form method can help one detect new cancellation formulas, for

example, in [9] one finds similar cancellation formulas for general gauge group SO(N), not restricted in
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SO(32); and in this paper, for a single E8 bundle, we find (1.9), which is different from the Hořava-

Witten’s formula (1.2). Moreover, we find formulas with a complex line bundle involved, which give

cancellations of anomalies coming from families of (twisted) spinc Dirac operators instead of spin Dirac

operators. We hope these new formulas can find applications in physics.
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