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We prove the following generalization of the classical Lichnerowicz vanishing theorem:
if F is an oriented flat vector bundle over a closed spin manifold M such that TM carries
a metric of positive scalar curvature, then ⟨̂A(TM) e(F ), [M]⟩ = 0, where e(F ) is the Euler
class of F .
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1. Introduction

The classical Lichnerowicz vanishing theorem [1] states that if a closed spin manifold M admits a Riemannian metric of
positive scalar curvature, then its Hirzebruch Â-genus (cf. [2, §1.6.3]) vanishes: Â(M) = 0.

Let F be an oriented real flat vector bundle over a closed manifold M . Let Â(TM) denote the Hirzebruch Â-class of TM
(cf. [2, p. 13]) and e(F ) denote the Euler class of F (cf. [2, §3.4]). The purpose of this paper is to prove the following
generalization of the Lichnerowicz vanishing theorem.

Theorem 1.1. If TM is spin and carries a metric of positive scalar curvature, then ⟨̂A(TM) e(F ), [M]⟩ = 0.

Remark 1.2. Recall that Milnor [3] constructs on any oriented closed surface Σg of genus g > 1 a rank two oriented flat
vector bundle Fg such that ⟨e(Fg ), [Σg ]⟩ ̸= 0. Let M be any closed spin manifold such that TM carries a metric of positive
scalar curvature, then T (M ×Σg ) also carries a metric of positive scalar curvature, and one gets by Theorem 1.1 that

0 =
⟨̂
A
(
T
(
M ×Σg

))
e
(
π∗Fg

)
,
[
M ×Σg

]⟩
= Â(M)

⟨
e
(
Fg
)
,
[
Σg
]⟩
, (1.1)

where π : M × Σg → Σg denotes the natural projection, which implies Â(M) = 0. Thus Theorem 1.1 indeed recovers the
Lichnerowicz theorem.

The following consequence of Theorem 1.1, which generalizes the well-known fact that TΣg (g > 1) does not carry a
metric of positive scalar curvature, is of independent interest.
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Corollary 1.3. Let F be an oriented flat vector bundle over a closed spin manifold M such that rk(F ) = dimM. If ⟨e(F ), [M]⟩ ̸= 0,
then TM does not carry a metric of positive scalar curvature.

Inspired by [4], we call a closedmanifoldM a Smilliemanifold if TM carries a flat connection,while the Euler characteristic
χ (M) ̸= 0. By Corollary 1.3, one sees that a closed spin Smilliemanifold does not admit a Riemannianmetric of positive scalar
curvature.

On the other hand, Theorem 1.1 can also be reformulated as follows.

Theorem 1.4. If a closed spin manifold M admits a Riemannian metric of positive scalar curvature, then for any representation
ρ : π1(M) → GL(q,R)+, q ∈ N, one has⟨̂

A(TM) f ∗
(
e
(
Eπ×ρRq)) , [M]

⟩
= 0, (1.2)

where Eπ×ρRq, with π = π1(M), is the oriented real flat vector bundle over Bπ associated to the representation ρ, and
f : M → Bπ is the classifying map.

Thus our result provides a new evidence to support the famous Gromov–Lawson conjecture on the vanishing of higher
Â-genera [5].

The main difficulty in proving Theorem 1.1 is that the flat connection on F need not preserve any metric on F . Similar
difficulties have appeared in the foliation situations studied in [6] and [7], where one uses the Connes fibration introduced
in [6] to overcome such difficulties.

Our proof of Theorem 1.1 is index theoretic. On one hand, it is inspired by [7] and makes use of the Connes fibration, as
well as the constructions of deformed sub-Dirac operators. On the other hand, a significant technical difference with respect
to what in [7] is that while in [7], one identifies the characteristic number in question with the indices of certain nonexplicit
pseudodifferential operators on a closed manifold, here we will work intrinsically on a sub-manifold with boundary of the
Connes fibration and apply directly the analytic localization techniques developed in [8,9] and [10].

The rest of this paper is organized as follows. In Section2,weprovide an index theoretic interpretation of ⟨̂A(TM)e(F ), [M]⟩,
and prove a simple vanishing result for it. In Section 3, we construct the sub-Dirac operators as well as the key deformations
of them on the Connes fibration associated to the flat vector bundle F , and reduce Eq. (1.1) to an estimating result concerning
the Atiyah–Patodi–Singer elliptic boundary valued problem. In Section 4, we prove the above estimating result.

2. Flat vector bundles and the twisted index

In this section, we provide an index theoretic interpretation of the characteristic number under consideration, and prove
a simple vanishing result.

This section is organized as follows. In Section 2.1, we construct certain vector bundles associated to the given flat vector
bundle. In Section 2.2, we construct a twisted Dirac operator of which the index is equal to the given characteristic number.
A simple vanishing result is also established.

2.1. Flat vector bundles and the signature splitting

Let (F ,∇F ) be an oriented real flat vector bundle over a closed manifold M . Let gF be a Euclidean metric on F . As in [11,
(4.1)], set

ω
(
F , gF )

=
(
gF )−1

∇
FgF . (2.1)

Then F carries a canonical Euclidean connection (see [11, (4.3)])

∇
F ,e

= ∇
F
+

1
2
ω
(
F , gF ) . (2.2)

By [11, Proposition 4.3], its curvature is given by(
∇

F ,e)2
= −

1
4

(
ω
(
F , gF ))2, (2.3)

which is usually nonzero.
LetΛ(F∗) be the (complex) exterior algebra bundle of F . ThenΛ(F∗) carries a Hermitian metric canonically induced from

gF and a Hermitian connection ∇
Λ(F∗),u induced from ∇

F ,e.
For any f ∈ F , let f ∗

∈ F∗ be the metric dual of f with respect to gF . Let c(f ), ĉ(f ) be the Clifford actions onΛ(F∗) defined
by

c(f ) = f ∗
∧ −if , ĉ(f ) = f ∗

∧ +if , (2.4)

where f ∗
∧ and if are the exterior and interior multiplications of f ∗ and f .
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Let {fµ}
rk(F )
µ=1 be an orthonormal basis of (F , gF ), and {f µ}rk(F )µ=1 be its dual basis. Then by [12, (1.26)], the curvature (∇Λ(F∗),u)2

of ∇Λ(F∗),u can be computed as follows,(
∇
Λ(F∗),u

)2
=

rk(F )∑
µ, ν=1

⟨(
∇

F ,e)2fµ, fν⟩ f ν ∧ ifµ . (2.5)

From (2.3)–(2.5), we deduce that(
∇
Λ(F∗),u

)2
= −

1
16

rk(F )∑
µ, ν=1

⟨
fµ, ω

(
F , gF )2fν⟩ (̂c (fµ) ĉ (fν)− c

(
fµ
)
c (fν)

)
. (2.6)

On the other hand, when rk(F ) is even, set

τ
(
F , gF )

=

(
1

√
−1

) rk(F )
2

c (f1) . . . c
(
frk(F )

)
. (2.7)

Then (τ (F , gF ))2 = Id
⏐⏐
Λ(F∗), and τ (F , g

F ) induces a Z2-graded splitting

Λ
(
F∗
)

= Λ+

(
F∗
)
⊕Λ−

(
F∗
)
, (2.8)

where

Λ±

(
F∗
)

=
{
α ∈ Λ

(
F∗
) ⏐⏐ τ (F , gF )α = ±α

}
. (2.9)

Moreover, c(f ) exchangesΛ±(F∗) for any f ∈ F .

2.2. Dirac operators and an easy vanishing result

We assume that M is spin and of even dimension, and that rk(F ) is even. Let gTM be a Riemannian metric on M , and
∇

TM be the associated Levi-Civita connection. Let S(TM) be the Hermitian bundle of spinors associated to (TM, gTM ) with the
Z2-graded splitting

S(TM) = S+(TM) ⊕ S−(TM). (2.10)

Then ∇
TM induces naturally a Hermitian connection ∇

S(TM) on S(TM) preserving the Z2-grading.
From the Z2-graded vector bundles in (2.8) and (2.10), we form the following Z2-graded tensor product (see [13, p. 11])

S(TM)⊗̂Λ
(
F∗
)

=
(
S(TM)⊗̂Λ

(
F∗
))

+
⊕
(
S(TM)⊗̂Λ

(
F∗
))

−
, (2.11)

which carries the Z2-graded tensor product connection

∇
u

= ∇
S(TM)

⊗ Id|Λ(F∗) + IdS(TM) ⊗ ∇
Λ(F∗),u. (2.12)

For e ∈ TM , we denote by c(e) the Clifford action of e on S(TM). Then it extends to an action c(e)⊗Id
⏐⏐
Λ(F∗) on S(TM)⊗̂Λ(F∗),

which we still denote by c(e).
Take an oriented orthonormal basis {ei}dimM

i=1 of (TM, gTM ). Let

DM
=

dimM∑
i=1

c (ei)∇u
ei : Γ

(
M, S(TM)⊗̂Λ

(
F∗
))

−→ Γ
(
M, S(TM)⊗̂Λ

(
F∗
))

(2.13)

be the corresponding twisted Dirac operator, and denote

DM
±

= DM
⏐⏐
Γ (M,(S(TM)⊗̂Λ(F∗))±)

. (2.14)

Since (F ,∇F ) is flat, by the Atiyah–Singer index theorem [14], we get

ind
(
DM

+

)
=
⟨̂
A(TM) ch

(
Λ+

(
F∗
)
−Λ−

(
F∗
))
, [M]

⟩
= 2

rk(F )
2
⟨̂
A(TM) e(F ), [M]

⟩
. (2.15)

Let∆u
=
∑dimM

i=1 (∇u
ei∇

u
ei − ∇

u
∇

TM
ei ei

) be the Bochner Laplacian. Let kTM denote the scalar curvature of (TM, gTM ). We have

the following standard Lichnerowicz formula [1],(
DM)2

= −∆u
+

kTM

4
+

1
2

dimM∑
i, j=1

c (ei) c
(
ej
) (

∇
Λ(F∗),u

)2 (
ei, ej

)
. (2.16)
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From (2.15) and (2.16), one obtains the following easy vanishing result.

Proposition 2.1. If there holds over M that

kTM

4
+

1
2

dimM∑
i, j=1

c (ei) c
(
ej
) (

∇
Λ(F∗),u

)2 (
ei, ej

)
> 0, (2.17)

then one has ⟨̂A(TM) e(F ), [M]⟩ = 0.

In the next two sections, we will eliminate the summation term in (2.17).

3. Connes fibration and sub-Dirac operators

In this section, we reduce the proof of Theorem 1.1 to an estimating result of certain Atiyah–Patodi–Singer elliptic
boundary valued problems for deformed sub-Dirac operators constructed on the Connes fibration associated to a given flat
vector bundle.

This section is organized as follows. In Section 3.1, we present the construction of the Connes fibration associated to a flat
vector bundle as well as certain basic properties of the Connes fibration. In Section 3.2, we construct the needed sub-Dirac
operator on the Connes fibration. In Section 3.3, we study the induced sub-Dirac operator on the boundary. In Section 3.4,
we introduce certain deformations of the sub-Dirac operators and reduce Theorem 1.1 to an estimating result.

3.1. Connes fibration associated with a flat bundle

Let (M, gTM ) be a closed Riemannian manifold, and (F ,∇F ) an oriented real flat vector bundle over M . Following [6, §5]
(cf. [7, §2.1]), let π : M → M be the Connes fibration over M such that for any x ∈ M , Mx is the space of Euclidean
metrics on the vector space Fx. Let E⊥

= T VM denote the vertical tangent bundle of this fibration. Then it carries a naturally
induced metric gE⊥

such that each Mx = π−1(x), x ∈ M , is of nonpositive sectional curvature. In particular, any two points
p1, p2 ∈ Mx can be joined by a unique geodesic in Mx (cf. [15]). Let dMx (p1, p2) denote the length of this geodesic .

By using the flat connection ∇
F , one lifts TM to an integrable horizontal subbundle E = THM of TM so that we have a

canonical splitting TM = E ⊕ E⊥.
Set F = π∗F . Then there is a canonical Euclidean metric gF on F defined as follows: by construction, any p ∈ M

determines a Euclidean metric on Fπ (p), which in turn determines a metric on Fp ≃ π∗Fπ (p).

Lemma 3.1. (1). The Bott connection on (E⊥, gE⊥

) is leafwise Euclidean.
(2). There exists a canonical Euclidean connection on (F, gF ) such that for any X, Y ∈ Γ (M, E), one has(

∇
F)2(X, Y ) = 0. (3.1)

Proof. Let F̂ denote the total space of the flat vector bundle πF : F → M . Then TM lifts to an integrable subbundle TH F̂ of
T F̂ such that TH F̂ |M = TM , and that (T F̂/TH F̂ )|M ≃ F .

Following [6, §5] and [7, §2.1], let π̂ : F̂ → F̂ be the Connes fibration such that for any x ∈ F̂ , F̂x = π̂−1(x) is the space of
Euclidean metrics on T F̂x/TH F̂x. Then one verifies that

M ≃ π̂−1(M). (3.2)

By restricting [7, Lemma 1.5] from F̂ to M, one gets Lemma 3.1. We leave the details to the interested reader. □

Let gE
= π∗gTM be the pullback Euclidean metric on E . Let gTM be the Riemannian metric onM given by the orthogonal

splitting

TM = E ⊕ E⊥, gTM
= gE

⊕ gE⊥

. (3.3)

Let p and p⊥ be the orthogonal projections from TM to E and E⊥. Let ∇
TM be the Levi-Civita connection of gTM. Set

∇
E

= p∇TMp, ∇
E⊥

= p⊥
∇

TMp⊥. (3.4)

Then ∇
E⊥

does not depend on gE . Moreover, by Lemma 3.1, one has(
∇

E⊥
)2

(X, Y ) = 0, for any X, Y ∈ Γ (M, E). (3.5)

Take a Euclideanmetric gF on F , which amounts to taking an embedded section ȷ : M ↪→ M ofM into the Connes fibration
π : M → M . Then we have the canonical inclusion ȷ(M) ⊂ M.

For any p ∈ M \ ȷ(M), we connect p and ȷ(π (p)) ∈ ȷ(M) by the unique geodesic in Mπ (p). Let σ (p) ∈ E⊥
|p denote the unit

vector tangent to this geodesic. Set ρ(p) = dMπ (p) (p, ȷ(π (p))).
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By (3.2) and [7, Lemma 2.1], we have the following estimating result.

Lemma 3.2. There exists C > 0, which depends only on the embedding ȷ : M ↪→ M, such that for any X ∈ Γ (M, E) with
|X | ⩽ 1, the following pointwise inequality holds on M,⏐⏐⏐∇E⊥

X (ρσ )
⏐⏐⏐ ⩽ C . (3.6)

3.2. Sub-Dirac operators on the Connes fibration

Without loss of generality, we can and we will assume that both dimM and rk(F ) are divisible by 4. Then both dimM
and rk(E⊥) are even. By passing to a double covering if necessary, we also assume that E⊥ is oriented.

We assume from now on thatM is spin, then E = π∗(TM) is spin and carries a naturally induced spin structure. Let

S(E) = S+(E) ⊕ S−(E) (3.7)

be the Z2-graded Hermitian bundle of spinors associated to (E, gE ). Then∇
E induces naturally a Hermitian connection∇

S(E)

on S(E) preserving the Z2-grading. For e ∈ E , let c(e) denote the Clifford action of e on S(E), which exchanges S±(E).
LetΛ(E⊥,∗) be the (complex) exterior algebra bundle of E⊥ with the Z2-graded splitting

Λ
(
E⊥,∗

)
= Λeven (E⊥,∗

)
⊕Λodd (E⊥,∗

)
. (3.8)

Then Λ(E⊥,∗) carries a Hermitian metric canonically induced from gE⊥

and a Hermitian connection ∇
Λ(E⊥,∗) induced from

∇
E⊥

. For h ∈ E⊥, let c(h) and ĉ(h) be the actions of h onΛ(E⊥,∗) defined as in (2.4).
Let Λ(F∗) be the (complex) exterior algebra bundle of F . The Euclidean connection ∇

F on F naturally induces a
connection ∇

Λ(F∗) onΛ(F∗), which preserves the metric onΛ(F∗) induced by gF . We denote by c(·) and ĉ(·) the actions of
F onΛ(F∗) defined as in (2.4). Let

Λ(F∗) = Λ+(F∗) ⊕Λ−(F∗) (3.9)

be the Z2-graded splitting ofΛ(F∗) determined as in (2.7)–(2.9).
Using the Z2-graded vector bundles in (3.7)–(3.9), we form the following Z2-graded tensor product (see [13, p. 11])

S(E)⊗̂Λ
(
E⊥,∗

)
⊗̂Λ

(
F∗
)

=
(
S(E)⊗̂Λ

(
E⊥,∗

)
⊗̂Λ

(
F∗
))

+
⊕
(
S(E)⊗̂Λ

(
E⊥,∗

)
⊗̂Λ

(
F∗
))

−
, (3.10)

which carries the tensor product connection ∇
S(E)⊗̂Λ(E⊥,∗)⊗̂Λ(F∗) induced by ∇

S(E), ∇Λ(E⊥,∗) and ∇
Λ(F∗).

The action of E on S(E) and that of E⊥ onΛ(E⊥,∗) as well as that ofF onΛ(F∗) extend to actions on S(E)⊗̂Λ(E⊥,∗)⊗̂Λ(F∗)
in an obvious way. We still use the same notation to denote these extended actions.

Let {hi}
dimM
i=1 (resp. {hj}

dimM
j=dimM+1) be an oriented orthonormal basis of (E, gE ) (resp. (E⊥, gE⊥

)). Let S be the End(TM)-
valued one-form on M defined by

S(·) = ∇
TM
·

−

(
∇

E
·

⊕ ∇
E⊥

·

)
. (3.11)

Following [16] and [7, (1.60)], we define a Hermitian connection

∇̂· = ∇
S(E)⊗̂Λ(E⊥,∗)⊗̂Λ(F∗)
·

+
1
4

dimM∑
i, j=1

⟨
S(·)hi, hj

⟩
c (hi) c

(
hj
)

(3.12)

on S(E)⊗̂Λ(E⊥,∗)⊗̂Λ(F∗).
As in [16] and [7, (1.61)], let

DM
=

dimM∑
i=1

c (hi) ∇̂hi : Γ
(
M, S(E)⊗̂Λ

(
E⊥,∗

)
⊗̂Λ

(
F∗
))

−→ Γ
(
M, S(E)⊗̂Λ

(
E⊥,∗

)
⊗̂Λ

(
F∗
))

(3.13)

be the sub-Dirac operator with respect to the spinor bundle S(E). Then DM is a formally self-adjoint first order elliptic
differential operator, which exchanges the Z2-grading in (3.10). Moreover, as indicated in [7, Remark 1.8], DM can locally
be viewed as a twisted Dirac operator.

Let∆M
=
∑dimM

i=1 (∇̂hi ∇̂hi −∇̂
∇

TM
hi

hi
) be the Bochner Laplacian, and kTM be the scalar curvature of (TM, gTM). We have

the following Lichnerowicz formula,(
DM)2

= −∆M
+

kTM

4
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+
1
8

dimM∑
k, l=dimM+1

dimM∑
i, j=1

⟨
hk,

(
∇

E⊥
)2 (

hi, hj
)
hl

⟩
· c (hi) c

(
hj
)
ĉ (hk) ĉ (hl)

+
1
8

rk(F)∑
µ, ν=1

dimM∑
i, j=1

⟨
fµ,
(
∇

F)2 (hi, hj
)
fν
⟩
· c (hi) c

(
hj
) (̂

c
(
fµ
)
ĉ (fν)− c

(
fµ
)
c(fν)

)
, (3.14)

where {fµ}rkFµ=1 is an orthonormal basis of (F, gF ).

3.3. Induced sub-Dirac operators on the boundary

For any R > 0, denote MR = {p ∈ M | ρ(p) ⩽ R}. Then MR is a compact smooth manifold with boundary ∂MR.
We follow the convention as in [17].
Let ϵR > 0 be a sufficiently small positive number. We use the inward geodesic flow to identify a neighborhood of

∂MR with the collar ∂MR × [0, ϵR). Let edimM be the inward unit normal vector field to T∂MR so that e1, . . . , edimM is an
oriented orthonormal basis of TM|∂MR

. Then using parallel transport with respect to ∇
TM along the unit speed geodesics

perpendicular to ∂MR, e1, . . . , edimM forms an oriented orthonormal basis of TM over ∂MR × [0, ϵR).
For 1 ⩽ i, j ⩽ dimM − 1, let πij = ⟨∇

TM
ei ej, edimM⟩|∂MR

be the second fundamental form of the isometric embedding
i∂MR : ∂MR ↪→ MR. Let

D∂MR : Γ

(
∂MR,

(
S(E)⊗̂Λ

(
E⊥,∗

)
⊗̂Λ

(
F∗
))⏐⏐

∂MR

)
−→ Γ

(
∂MR,

(
S(E)⊗̂Λ

(
E⊥,∗

)
⊗̂Λ

(
F∗
))⏐⏐

∂MR

)
be the differential operator on ∂MR defined by

D∂MR = −

dimM−1∑
i=1

c (edimM) c (ei) ∇̂ei +
1
2

dimM−1∑
i=1

πii . (3.15)

By [17, Lemmas 2.1 and 2.2], D∂MR is a formally self-adjoint first order elliptic differential operator intrinsically defined on
∂MR. Also, it preserves the Z2-grading of (S(E)⊗̂Λ(E⊥,∗)⊗̂Λ(F∗))|∂MR

induced by (3.10).

3.4. Deformations of sub-Dirac operators and their indices

Let ψ : [0, 1] → [0, 1] be a smooth function such that ψ(t) = 0 for 0 ⩽ t ⩽ 2
3 , while ψ(t) = 1 for 3

4 ⩽ t ⩽ 1. For any
0 < ε ⩽ 1 and R > 0, let

gTM
ε,R =

(
1 − ψ

(ρ
R

))
gTM
ε + ψ

(ρ
R

)
gTM (3.16)

be the Riemannian metric on MR, where gTM
ε is the Riemannian metric on M defined by the orthogonal splitting

(cf. [7, (1.11)])

TM = E ⊕ E⊥, gTM
ε = ε2gE

⊕ gE⊥

. (3.17)

Then

gTM
ε,R = gTM

ε over M 2
3 R
, while gTM

ε,R = gTM over MR \ M 3
4 R
. (3.18)

Inwhat follows, wewill use the subscripts (or superscripts) ‘‘ ε, R ’’ to decorate the geometric objectswith respect to gTM
ε,R .

Let kε,R be the scalar curvature of gTM
ε,R . Then by Lemma 3.1 and (3.18) (cf. [7, Proposition 1.4]), one has over M 2

3 R
that

kε,R =
π∗kTM

ε2
+ OR(1), (3.19)

where kTM is the scalar curvature of (TM, gTM ), and by OR(·) we mean that the estimating constant might depend on R.
As in Section 3.2, we construct the sub-Dirac operator

DMR
ε : Γ

(
MR, Sε,R(E)⊗̂Λ

(
E⊥,∗

)
⊗̂Λ

(
F∗
))

−→ Γ
(
MR, Sε,R(E)⊗̂Λ

(
E⊥,∗

)
⊗̂Λ

(
F∗
))

on MR associated with gTM
ε,R , which is given by

DMR
ε =

dimM∑
j=1

cε,R(hj)∇̂
ε,R
hj

+

dimM∑
j=dimM+1

c(hj)∇̂
ε,R
hj
, (3.20)



J. Yu, W. Zhang / Journal of Geometry and Physics 126 (2018) 193–203 199

where {hj}
dimM
j=1 is an orthonormal basis of (E,

(
ε2(1 − ψ( ρR )) + ψ( ρR )

)
gE ), and ∇̂

ε,R denotes the connection on Sε,R(E)⊗̂
Λ(E⊥,∗)⊗̂Λ(F∗) associated with gTM

ε,R as in (3.12). In particular, in view of [7, Remark 1.8], one deduces that for any
V ∈ Γ (MR, E⊥),[

∇̂
ε,R, ĉ(V )

]
= ĉ

(
∇

E⊥

V
)
. (3.21)

Inspired by [7, (2.21) and Remark 2.6], we introduce the following key deformation of the sub-Dirac operator DMR
ε ,

DMR
ε,R = DMR

ε +
ĉ(ρσ )
εR

: Γ
(
MR, Sε,R(E)⊗̂Λ

(
E⊥,∗

)
⊗̂Λ

(
F∗
))

−→ Γ
(
MR, Sε,R(E)⊗̂Λ

(
E⊥,∗

)
⊗̂Λ

(
F∗
))
. (3.22)

Recall that D∂MR is defined in (3.15). Set

D∂MR
ε = D∂MR −

1
ε
c (edimM) ĉ(σ ) : Γ

(
∂MR,

(
S(E)⊗̂Λ

(
E⊥,∗

)
⊗̂Λ

(
F∗
))⏐⏐

∂MR

)
−→ Γ

(
∂MR,

(
S(E)⊗̂Λ

(
E⊥,∗

)
⊗̂Λ

(
F∗
))⏐⏐

∂MR

)
. (3.23)

Then D∂MR
ε is the induced boundary operator of DMR

ε,R . Write

DMR
ε,R,± = DMR

ε,R

⏐⏐⏐
Γ (MR,(Sε,R(E)⊗̂Λ(E⊥,∗)⊗̂Λ(F∗))±)

,

D∂MR
ε,± = D∂MR

ε

⏐⏐
Γ (∂MR,(S(E)⊗̂Λ(E⊥,∗)⊗̂Λ(F∗))±|∂MR )

.

For any λ ∈ Sp{D∂MR
ε }, the spectrum of D∂MR

ε , let Eλ be the eigenspace corresponding to λ. For any b ∈ R, denote by
P⩾b,ε,R and P>b,ε,R the orthogonal projections from the L2-completion of

Γ

(
∂MR,

(
S(E)⊗̂Λ

(
E⊥,∗

)
⊗̂Λ

(
F∗
))⏐⏐

∂MR

)
onto⊕λ⩾bEλ and⊕λ>bEλ, respectively. Let P⩾b,ε,R,± and P>b,ε,R,± be the restrictions of P⩾b,ε,R and P>b,ε,R on the L2-completions
of

Γ

(
∂MR,

(
S(E)⊗̂Λ

(
E⊥,∗

)
⊗̂Λ

(
F∗
))

±

⏐⏐⏐
∂MR

)
.

One verifies (cf. [18] and [17]) that the Atiyah–Patodi–Singer boundary valued problems (DMR
ε,R,+, P⩾0,ε,R,+) and (DMR

ε,R,−,

P>0,ε,R,−) are elliptic, and that (DMR
ε,R,+, P⩾0,ε,R,+) is the adjoint of (DMR

ε,R,−, P>0,ε,R,−). Set

ind
(
DMR
ε,R,+, P⩾0,ε,R,+

)
= dim ker

(
DMR
ε,R,+, P⩾0,ε,R,+

)
− dim ker

(
DMR
ε,R,−, P>0,ε,R,−

)
. (3.24)

Let ∥·∥∂MR denote the L
2-normwith respect to the volume element dv∂MR of (∂MR, gTM

|∂MR
). Let ei, 1 ⩽ i ⩽ dimM−1,

be an orthonormal basis of (∂M, gTM
|∂M).

Proposition 3.3. For any (fixed) R > 0, there exists ε0 > 0 (which may depend on R) such that for any 0 < ε ⩽ ε0, one hasD∂MR
ε s

2
∂MR

⩾
1
2

dimM∑
i=1

∇̂eis
2
∂MR

+
1

4ε2
∥s∥2

∂MR
, (3.25)

for any s ∈ Γ

(
∂MR,

(
S(E)⊗̂Λ

(
E⊥,∗

)
⊗̂Λ (F∗)

)⏐⏐
∂MR

)
.

Proof. From (3.23), one deduces that(
D∂MR
ε

)2
=
(
D∂MR

)2
−

1
ε

[
D∂MR , c (edimM) ĉ(σ )

]
+

1
ε2
. (3.26)

It is easy to see that [D∂MR , c (edimM) ĉ(σ )] is of zeroth order. On the other hand, by the Lichnerowicz formula onededuces
that ⟨(

D∂MR
)2
s, s
⟩
∂MR

⩾
1
2

dimM∑
i=1

∇̂eis
2
∂MR

+ OR(1) ∥s∥2
∂MR

. (3.27)

From (3.26) and (3.27), one gets (3.25). □
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Recall that DM is introduced in (2.13) and (2.14).
Since DMR

ε = DMR near ∂MR, by a simple homotopy in the interior of MR and a simplified version of the analytic
Riemann–Roch property proved in [9, Theorem 2.4], one obtains from Proposition 3.3 the following proposition.

Proposition 3.4. For any R > 0, there exists ε0 > 0 such that if 0 < ε ⩽ ε0, then

ind
(
DMR
ε,R,+, P⩾0,ε,R,+

)
= ind

(
DM

+

)
. (3.28)

Let dvε,R denote the volume element of (MR, gTM
ε,R ), and ∥ · ∥ε,R denote the corresponding L2-norm. From (2.15) and

Propositions 3.3 and 3.4, one sees that in order to prove Theorem 1.1, one need only to prove the following result.

Theorem 3.5. Under the assumptions of Theorem 1.1, there exists R0 > 0 such that for any R ⩾ R0, there exist c1 > 0 and ε1 > 0
such that for any 0 < ε ⩽ ε1 and smooth section s ∈ Γ (MR, Sε,R(E)⊗̂Λ(E⊥,∗)⊗̂Λ(F∗)) verifying P⩾0,ε,R(s|∂MR

) = 0, one hasDMR
ε,R s

2
ε,R

⩾ c1

(
dimM∑
i=1

∇̂ε,R
hi

s
2
ε,R

+
1
ε2

∥s∥2
ε,R

)
. (3.29)

4. Proof of Theorem 3.5

This section is organized as follows. In Section 4.1, we establish an estimating result near ∂MR. In Section 4.2, we establish
two interior estimating results. In Section 4.3, we complete the proof of Theorem 3.5.

4.1. The estimate near the boundary

In this subsection, we prove the following estimating result near ∂MR.

Proposition 4.1. For any R > 0, there exist c2 > 0 and ε2 > 0 such that for any 0 < ε ⩽ ε2 and any s ∈

Γ (MR, Sε,R(E)⊗̂Λ(E⊥,∗)⊗̂Λ(F∗)) verifying Supp(s) ⊆ MR \ M 3
4 R

and P⩾0,ε,R(s|∂MR
) = 0, one hasDMR

ε,R s
2
ε,R

⩾ c2
dimM∑
i=1

∇̂his
2
ε,R +

1
2 ε2

∥s∥2
ε,R . (4.1)

Proof. Since ψ( ρR ) = 1 on MR \ M 3
4 R
, by (3.20) and (3.22), one has on MR \ M 3

4 R
that

DMR
ε,R = DMR +

ĉ(ρσ )
εR

. (4.2)

We now proceed as in the proof of [10, Proposition 2.4]. By Green’s formula (cf. [17, (2.28)]), one deduces thatDMR
ε,R s

2
ε,R

=

∫
MR

⟨
s,
(
DMR
ε,R

)2
s
⟩
dvε,R

+

∫
∂MR

⟨
s, c (edimM)DMR

ε,R s
⟩
dv∂MR (4.3)

for any s ∈ Γ (MR, Sε,R(E)⊗̂Λ(E⊥,∗)⊗̂Λ(F∗)) with Supp(s) ⊆ MR \ M 3
4 R
.

By (4.2), one has(
DMR
ε,R

)2
=
(
DMR

)2
+

1
εR

[
DMR , ĉ(ρσ )

]
+

ρ2

ε2R2 . (4.4)

Following [17, (2.26) and (2.27)], one verifies that on ∂MR,

c(edimM)DMR
ε,R = −∇̂edimM − D∂MR

ε +
1
2

dimM−1∑
i=1

πii . (4.5)

By using the Lichnerowicz formula for (DMR )2 and proceeding as in [10, (2.10) and (2.11)], one gets for section s with
Supp(s) ⊆ MR \ M 3

4 R
that∫

MR

⟨
s,
(
DMR

)2s⟩ dvε,R −

∫
∂MR

⟨
s, ∇̂edimM

⟩
dv∂MR

=

dimM∑
i=1

∇̂his
2 + OR(1) ∥s∥2. (4.6)



J. Yu, W. Zhang / Journal of Geometry and Physics 126 (2018) 193–203 201

By Proposition 3.3 and proceeding as in [10, (2.21)], one sees that when ε > 0 is small enough, for any smooth section s
verifying P⩾0,ε,R(s|∂MR

) = 0, one has that∫
∂MR

⟨
s,−D∂MR

ε s
⟩
dv∂MR +

1
2

∫
∂MR

⟨
s,

dimM−1∑
i=1

πii s

⟩
dv∂MR ⩾ 0. (4.7)

Since [DMR , ĉ(ρσ )] is of zeroth order, and ρ

R ⩾ 3
4 on MR \ M 3

4 R
, from (4.3)–(4.7), one gets (4.1). □

4.2. The interior estimates

From now on, we assume that there exists δ > 0 such that

kTM ⩾ δ overM. (4.8)

We prove two interior estimating results. The first one is as follows.

Proposition 4.2. There exists R1 > 0 such that for any R ⩾ R1, there exist c3 > 0 and ε3 > 0 such that for any 0 < ε ⩽ ε3, one
has DMR

ε,R s
2
ε,R

⩾ c3
dimM∑
i=1

∇̂ε,R
hi

s
2
ε,R

+
δ

9 ε2
∥s∥2

ε,R, (4.9)

for any s ∈ Γ (MR, Sε,R(E)⊗̂Λ(E⊥,∗)⊗̂Λ(F∗)) supported in M 2
3 R
.

Proof. Recall that one has ψ( ρR ) = 1 on M 2
3 R
. From (3.20), one has on M 2

3 R
that(

DMR
ε,R

)2
=
(
DMR
ε

)2
+

1
εR

[
DMR
ε , ĉ(ρσ )

]
+

ρ2

ε2R2 . (4.10)

In view of (3.20), (3.21) and (4.10), we compute

[
DMR
ε , ĉ(ρσ )

]
=

dimM∑
i=1

cε,R (hi) ĉ
(
∇

E⊥

hi (ρσ )
)

+

dimM∑
j=dimM+1

c
(
hj
)
ĉ
(
∇

E⊥

hj (ρσ )
)
. (4.11)

From Lemma 3.2 and (4.11), one finds[
DMR
ε , ĉ(ρσ )

]
=

O(1)
ε

+ OR(1). (4.12)

From Lemma 3.1, (3.14), (3.19) and (4.8), one finds (compare with [7, (1.71) and (2.28)])(
DMR
ε

)2
⩾ −∆

MR
ε,R +

δ

4 ε2
+

OR(1)
ε

, (4.13)

where −∆
MR
ε,R ⩾ 0 is the corresponding Bochner Laplacian.

From (4.10), (4.12) and (4.13), one completes the proof of Proposition 4.2 easily. □

The second interior estimating result can be stated as follows.

Proposition 4.3. There exists R2 > 0 such that for any R ⩾ R2, there exist c4 > 0 and ε4 > 0 such that for any 0 < ε ⩽ ε4, one
has DMR

ε,R s
2
ε,R

⩾ c4
dimM∑
i=1

∇̂ε,R
hi

s
2
ε,R

+
1

11 ε2
∥s∥2

ε,R, (4.14)

for any s ∈ Γ (MR, Sε,R(E)⊗̂Λ(E⊥,∗)⊗̂Λ(F∗)) supported in M 7
8 R

\ M 1
3 R
.

Proof. On M 7
8 R

\ M 1
3 R
, one has

ρ

R
⩾

1
3
. (4.15)

Also, one finds that (4.12) still holds on M 7
8 R

\ M 1
3 R
.
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From (4.10), (4.12) and (4.15), one finds that there exists R3 > 0 such that for any R ⩾ R3, when ε > 0 is small enough,
one hasDMR

ε,R s
2
ε,R

⩾
DMR

ε s
2
ε,R +

1
10 ε2

∥s∥2
ε,R, (4.16)

for any s ∈ Γ (MR, Sε,R(E)⊗̂Λ(E⊥,∗)⊗̂Λ(F∗)) supported in M 7
8 R

\ M 1
3 R
.

Formula (4.14) follows easily from (4.16). □

4.3. Proof of Theorem 3.5

Let β1 : [0, 1] → [0, 1] be a smooth function such that β1(t) = 0 for 0 ⩽ t ⩽ 3
4 +

1
100 , while β1(t) = 1 for 3

4 +
1
50 ⩽ t ⩽ 1.

Let β2 : [0, 1] → [0, 1] be a smooth function such that β2(t) = 1 for 0 ⩽ t ⩽ 1
2 +

1
100 , while β2(t) = 0 for 2

3 −
1
50 ⩽ t ⩽ 1.

Inspired by [8, pp. 115–116], let α1, α2 and α3 be the smooth functions on MR defined by

α1 =
β1
(
ρ

R

)√
β1
(
ρ

R

)2
+ β2

(
ρ

R

)2
+
(
1 − β1

(
ρ

R

)
− β2

(
ρ

R

))2 , (4.17)

α2 =
β2
(
ρ

R

)√
β1
(
ρ

R

)2
+ β2

(
ρ

R

)2
+
(
1 − β1

(
ρ

R

)
− β2

(
ρ

R

))2 (4.18)

and

α3 =
1 − β1

(
ρ

R

)
− β2

(
ρ

R

)√
β1
(
ρ

R

)2
+ β2

(
ρ

R

)2
+
(
1 − β1

(
ρ

R

)
− β2

(
ρ

R

))2 . (4.19)

Then α2
1 + α2

2 + α2
3 = 1 on MR. Thus, for any s ∈ Γ (MR, Sε,R(E)⊗̂Λ(E⊥,∗)⊗̂Λ(F∗)), one hasDMR

ε,R s
2
ε,R

=

3∑
i=1

αiD
MR
ε,R s

2
ε,R

⩾
1
2

3∑
i=1

DMR
ε,R (αis)

2
ε,R

−

3∑
i=1

cε,R (dαi) s
2
ε,R , (4.20)

where we identify each dαi (i = 1, 2, 3) with the gradient of αi.
From Lemma 3.2 and (4.17)–(4.19), one finds (compare with [7, (2.47)])

3∑
i=1

⏐⏐cε,R (dαi)
⏐⏐
ε,R =

O(1)
εR

+ OR(1). (4.21)

Clearly, Supp(α1s) ⊆ MR \ M 3
4 R
, Supp(α2s) ⊆ M 2

3 R
and Supp(α3s) ⊆ M 7

8 R
\ M 1

3 R
.

From Propositions 4.1–4.3 and formulas (4.20) and (4.21), one completes the proof of Theorem 3.5 easily (compare with
[8, pp. 115–117]).

The proof of Theorem 1.1 is thus also completed.
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