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Abstract

We establish am?l-equivariant index theorem for Dirac operatorsOfk-manifolds. As an application, we generalize the
Atiyah—Hirzebruch vanishing theorem f§t-actions on closed spin manifolds to the casg p-manifolds To citethisarticle:
W. Zhang, C. R. Acad. Sci. Paris, Ser. | 337 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Actions du cercle et Z/ k variétés.On établit un théoréme d'indicg!-équivariant pour les opérateurs de Dirac surzlgs
variétés. On donne une application de ce résultat, qui généralise le théoréme d’Atiyah—Hirzebruch sur les aglianscde
Z/k variétésPour citer cet article: W. Zhang, C. R. Acad. Sci. Paris, Ser. | 337 (2003).

O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Sl-actions and the vanishing theorem

Let X be a closed connected smooth spin manifold admitting a non-trivial circle action. A classical theorem
of Atiyah and Hirzebruch [1] states that X) = 0, whereA (X) is the Hirzebruchi-genus ofX. In this Note we
present an extension of the above result to the cage bfmanifolds, which were introduced by Sullivan in his
studies of geometric topology. We recall the basic definition for completeness (cf. [6]).

Definition 1.1. A compact connected / k-manifold is a compact manifold with boundaryd X, which admits
a decompositiod X = Ule(aX)i into k£ disjoint manifolds and diffeomorphismsrz; : (3 X); — Y to a closed
manifoldY.

Letz:9X — Y be the induced map. In what follows, we will call an objecte.g., metrics, connections, etc.)
of X aZ/k-object if there will be a corresponding objggbn Y such thatx|;x = 7 *8. We make the assumption
thatX is Z/k oriented,Z/k spin and is of even dimension.
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Let g”X be aZ/k Riemannian metric oX which is of product structure neaX. Let R”X be the curvature
of the Levi-Civita connection associated 6. Let E be aZ/k complex vector bundle ovex. Let gZ be a
Z/k Hermitian metric onE which is a product metric nearX. Let V£ be aZ/k connection onE preserving
g% such thatv £ is of product structure nearX. Let R® be the curvature oV . Let DX : I'(S1(TX) ® E) —
I'(S_(TX) ® E) be the associated Dirac operatorhrandeyax (and thean) be its induced Dirac operator

onaX (and then ort). Letﬁ(Df) be the reduceg-invariant ofo in the sense of [2]. Then

1 pTX
Aw (X, E)= / deﬂ/2< 1R /4 )tr[e(“/‘_l/Z”)RE]—kﬁ(Df) modkZ (1)
X

sinh(v/—1RTX /4m)

does not depend orz{*, ¢#, V¥) and determines a topological invariantan kZ (cf. [2] and [6]). Moreover,
Freed and Melrose [7] have proved a mbdndex theorem, givingA)(X, E) € Z/kZ a purely topological
interpretation. Wherk = C is the trivial vector bundle oveX, we usually omit the superscript.

Theorem 1.2.If X admits a nontrivial Z/k circle action preserving the orientation and the Spin structureon 7'X,,
then A, (X) = 0. Moreover, the equivariant mod & index in the sense of Freed and Melrose vanishes.

It turns out that the original method in [1] is difficult to extend to the case of manifolds with boundary to
prove Theorem 1.2. Thus we will instead make use of an extension of the method of Witten [10]. Analytic
localization techniques developed by Bismut and Lebeau [3, Section 9] and their extensions to manifolds with
boundary developed in [5] play important roles in our proof.

2. A mod k localization formula for circle actions

We make the assumption that tl&/ k circle action onX lifts to a Z/k circle action onE. Without
loss of generality, we may and we will assume that hjs circle action preserveg’ X, ¢f and VE. Let
Df’APS: 'S+(TX)® E)— I'(S_(TX) ® E) be the elliptic operator obtained by imposing the standard Atiyah—
Patodi—Singer boundary condition [2] @ .

Let H be the Killing vector field onX generated by thé! action onX. ThenH|;x C 39X induces a Killing
vector field Hy on Y. Let Ly denote the corresponding Lie derivative acting B0S+(7X) ® E). ThenLy

' E
commutes withD ' APS:

For anyn € Z, let F! be the eigenspaces 0f(S+ (T X) ® E) with respect to the eigenvaluerd of ﬁLH.
Let DY pps(n): FIL — F” be the restriction oD¥ ,pg on F}. ThenD’ ,o(n) is Fredholm. We denote its index
by ind(D% pps(n)) € Z.

Let Xy (resp.Yy) be the zero set off (resp.Hy) on X (resp.Y). ThenXy is aZ/k-manifold and there is a
canonical mapry,, : Xy — Yy induced fromzr. We fix a connected componekKiy , of X, and we omit the
subscriptx if there is no confusion.

We identify the normal bundle t& 5 in X to the orthogonal complement GfXy in TX|x, . ThenTX|x,
admits ans*-invariant orthogonal decompositidhX |y, = Np, @ -+ ® Ny, ® TXpy, where eachv,, y € Z,
is a complex vector bundle on whiche S c C acts by multiplication byg”. By using the same notation
as in [8, (1.8)], we simply write thal X|x,, = €D,.o Nv ® TXy. Similarly, let E|x,, admits thest-invariant
decompositiorE|x, = P, Ev.

Let S(T Xy, (detN)~1) be the complex spinor bundle ové&t; associated to the canonically induced Spin
structure onT Xg. It is a Z/k Hermitian vector bundle and carries a canonically induZe¢d Hermitian
connection.

Recall that by [1, 2.4], one hgs , vdim N, = 0 mod Z. Following [8, (1.15)], set

R(q) = g2 IP1dmNs (S (Sym, . (N,) @ detNy) (R) Sym, - (N) ® D ¢" Ev = D) Rug”".

v>0 v<0 v
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R'(q) =g~ 22 MAmNe (S Sym, _ (N,) (R)(Sym, (V) @ detn,) ®Zq”E —EBR
v>0 v<0
Then eactr, (resp.R),) is aZ/k Hermitian vector bundle oveX y carrying a canonically induced)/ k Hermitian
connection. For any € Z, let DR” LTS (T Xy, (detN) ™) ® R,) — I'(S_(T Xy, (detN)~1) ® R,) be the
canonical twisted SpihDirac operator oK. Let DX1 _+ Aps be the corresponding elliptic operator associated to
the Atiyah—Patodi—Singer boundary condition [2]. We will use similar notatioRfor

Theorem 2.1.For any integer n € Z, the following identities hold,

indDE ppg(n) =Y " (—1)Zo<v MmN ind DY r.Aps ModKZ, 2)
o

. i . R/

ind DY ppg(n) = D (~1)Zv=0®™Nind Dy | spg mOdZ, 3)
o

Proof. For anyT € R, following Witten [10], IetDE + T(S4(TX)® E) — I'(S—(TX) ® E) be the Dirac type
operator defined by} | = DY 4+ v/ —1Tc(H). Let DT +.aps be the corresponding elliptic operator associated to
the Atiyah—Patodi—Singer boundary condition [2]. CleaﬂyﬁjL,APS also commutes with th&'-action. For any
integern, let D]I::,+,APS(n) be the restriction onanAPS on F7. ThenD$,+,APS(n) is still Fredholm. By an easy
extension of [5, Theorem 1.2] to the current equivariantankl situation, one sees that i(ﬂ]h:,+,APS(n)) modkZ
does not depend df € R (compare with [9, Theorem 4.2]).

Let Df , oy T((S(TX) ® E)lax) = I'((S4+(TX) ® E)|ax) be the induced Dirac type operator bf;
on dX. For any integen, let Df |, (n): Fi|yx — Fi|ax be the restriction oD} , ;. on F|sx. Also, the
induced Dirac operatorEf?aXH andDﬁ; can be defined in the same way as in Section 1.

Let a, > 0 be such that SpeDfl';) N [—2ay,, 2a,] € {0}. By combining the techniques in [3, Section 9], [4,
Section 4b]) and [8, Section 1.2], one can prove the following analogue of [4, Theorem 3.9], stating that there
existsTy > 0 such that for any” > T1,

#{1 e SpectDf | 5y (m): —an <A <a,} = dim(kerD "

k) = kdim(kerDﬁ;). 4)

If dim(keer;) =0, then by (4), one sees that when> T1, D , ;. (n) is invertible. Then indDf , \pg(n))
itself does not depend of > T;. Moreover, by combining the techniques in [8, Section 1.2] and [5, Section 3],
one can further prove that there exigs> 0 such that whefl > T,

ind(D% , aps(n)) Z( DXo< dMVind DY | os (5)

(compare with [5, (2.13)]). From (5) and the médnvariance of indD$7+7APS(n)) with respect tol' € R, one
gets (2).
In general, dimkerDﬁ:l) need not be zero, and the eigenvalue@ﬁfhax(n) lying in [—a,, a,] are not easy

to control. Thus the above arguments no longer apply directly. Instead, we observe t(kﬂranﬁ; —ay) =0
and we use the method in [5] to perturb the Dirac type operators under consideration.

To do this, lets > 0 be sufficiently small so that’ X, g andV¥ are of product structure d, ] x X C X.
Let f:X — R be an Si-invariant smooth function such that = 1 on [0,¢/3] x X and f = 0 outside
of [0,2¢/3] x dX. Let r denote the parameter ifD, ¢]. Let D)’f” gyt be the Dirac type operator acting

on I'(S¢(T Xy, (detN)™)) ® R,) defined byDY" _ =Dy  —ayfe(). Let DY’ | sog be the

corresponding elliptic operator associated to the Atlyah Patod| —Singer boundary condmon [2]. By an easy
extension of [5, Theorem 1.2] (compare with [9, Theorem 4.2]), we see that,
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Yo (=hXowdMNind D L pg= Y (=DZowd™Veind DI oo modkZ. (6)

o o

For anyT € R, let Df _ L TSH(TX)®E) > I'(S(TX)® E) be the Dirac type operator defined by

T,—ay,
Df’_aﬁ = D$’+ —ay fc((,;’—r). Let Df’_an’Jr’APS be the corresponding elliptic operator associated to the Atiyah—
Patodi-Singer boundary condition. L@tf,_aer’APS(n) be its restriction onF. Then D%_aer’APS(n) is still
Fredholm. By another extension of [5, Theorem 1.2], one has

indDf _, | aps(n) =iNdDf | apg(n) mModkZ. )

Moreover, sinceD :1 —ay, which is the induced Dirac type operatorfrdhf 4 throughrry ,, is invertible,
by combining the arguments in [8, Section 1.2] with those in [5, Section 3] one deduces that ther&sexidts
such that for any” > T3, the following analogue of (5) holds,

indDZb:,—an,+,APS(n) = Z(_l)ZM amind DJIXM —ap,+,APS’ (8)
o

From (6)—(8) and the moklinvariance of indD? +.aps() with respect tdl' € R, one gets (2).
Similarly, by takingT — —oo, one gets (3). O

3. Proof of Theorem 1.2

We apply Theorem 2.1 to the cage=C.
First, if Xy =@, by Theorem 2.1, it is obvious that for eagcle Z,

ind(D_,_’Aps(n)) =0 modkZ. 9)

When Xy # ¢, we see thad_, [v|dimN, > O (i.e., at least one of th&,’s is nonzero) on each connected
component ofX ;. Then by (2) and by the definition of th®,’s, we deduce that for any integer< 0, (9) holds.
Similarly, by (3) and by the definition of thg,,’s, one deduces that (9) holds for any integez 0.

In summary, for any: € Z, (9) holds.

From (1) and (9), by the Atiyah—Patodi—Singer index theorem [2], and using the obvious fact {liat i) =
>, ind(Dy aps(n)), one getA ) (X) =0. O

Remark 1. By combining Theorem 2.1 with the arguments in [8, Sections 2—4], one should be able to prove an
extension of the Witten rigidity theorem, of which-theoretic version has been worked out in [8],40k-
manifolds. This, together with some other consequences of Theorem 1.2, will be carried out elsewhere.
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